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Abstract

Smart camera networks are real-time distributed embedded systems that perform
computer vision using multiple cameras. This new approach has emerged thanks
to a confluence of simultaneous advances in four key disciplines: computer vision,
image sensors, embedded computing, and sensor networks.

In this chapter, we briefly review and classify smart camera platforms and net-
works into single smart cameras, distributed smart camera systems and wireless
smart camera networks. We elaborate the vision of pervasive smart camera net-
works and identify major research challenges. As the technology for smart camera
networks advances, we expect to see many new applications open up—transforming
traditional multi-camera systems into pervasive smart camera networks.

Key words: distributed smart cameras, multi-camera networks, sensor networks,
pervasive computing

1 Introduction and Motivation

Smart cameras have been the subject of study in research and industry for
quite some time. While some camera prototypes which integrated sensing with
some low-level processing were developed in the 1980s, first commercial ”in-
telligent” cameras appeared in the 1990s. However, the sensing and processing
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capabilities were very limited on these cameras. In the meantime we have seen
a dramatic progress in smart camera research and development (e.g., [1,2,3]).

A number of technical factors are converging to cause us to totally rethink the
nature of the camera. Distributed smart cameras embody some (but not all) of
these trends, specifically: cameras are no longer boxes and cameras no longer
take pictures. A smart camera’s fundamental purpose is to analyze a scene and
report items and activities of interest to the user. Although the camera may
also capture an image to help the user interpret the data, the fundamental
output of smart cameras is not an image. When we combine several smart
cameras together to cover larger spaces and solve occlusion problems, we create
a distributed camera. When we furthermore use distributed algorithms to
perform smart camera operations, we create a distributed smart camera.

Law enforcement and security are the most obvious applications of distributed
smart cameras. Large areas can be covered only by large numbers of cameras;
analysis generally requires fusing information from several cameras. However,
distributed smart cameras have many other uses as well, including machine
vision, medicine and entertainment. All these applications require imagery
from multiple cameras to be fused in order to interpret the scene. Because of
the complex geometric relationships between subjects of interest, different sets
of cameras may need to cooperate to analyze different subjects. Because of
subject motion, the sets of cameras that must cooperate may change rapidly.
Pulling all of the video from a large number of cameras to a central server
is expensive and inherently unscalable. The combination of large numbers of
nodes, fast response times, and constantly changing relationships between the
cameras pushes us away from server-based architectures. Distributed comput-
ing algorithms provide a realistic approach to the creation of large distributed
camera systems.

Distributed computing introduces several complications. However, we believe
that the problems they solve are much more important than the challenges of
designing and building a distributed video system. As in many other appli-
cations, distributed systems scale much more effectively than do centralized
architectures.

e Processing all the data centrally poses several problems. Video cameras
generate large quantities of data requiring high-performance networks for
transmitting the video data in steady state.

e Moving video over the network also consumes large amounts of energy. In
many systems, communication is 100 to 1000 times more expensive in en-
ergy than computation. We do not expect camera systems to be run from
batteries for long intervals, but power consumption is a prime determinant
of heat dissipation. Distributing larger amounts of power also requires more
substantial power distribution networks, which increases the installation



cost of the system.

e Although data must be compared across several cameras to analyze video,
not all pairs of cameras must communicate with each other. If we can man-
age the data transfer between processing nodes, we can make sure that data
only goes to the necessary nodes. A partitioned network can protect physi-
cally distributed cameras so that the available bandwidth is used efficiently.

e Real-time and availability considerations also argue in favor of distributed
computing. The round-trip delay to a server and back adds to the latency
of making a decision, such as whether a given activity is of interest. Having
available multiple points of computation enables reconfigurations in case of
failure which increases the availability of the multi-camera system.

In the progress of smart cameras we can identify three major evolution paths.
First, single smart cameras focus on the integration of sensing with embedded
on-camera processing. The main goal here is to be able to perform various
vision tasks on-board and deliver abstracted data from the observed scene.
Second, distributed smart cameras (DSC) introduce distribution and collab-
oration to smart cameras resulting in a network of cameras with distributed
sensing and processing. Thus, distributed smart cameras collaboratively solve
tasks such as multi-camera surveillance and tracking by exchanging abstracted
features. Finally, pervasive smart cameras (PSC) integrate adaptivity and au-
tonomy to DSC. The ultimate vision of PSC is to provide a service-oriented
network which is easy to deploy and operate, adapts to changes in the envi-
ronment and provides various customized services to users.

The goal of this chapter is twofold. First, we briefly review and classify smart
camera platforms and networks. Second, we elaborate the vision of pervasive
smart camera networks and identify major research challenges towards this
vision. The discussion of the research challenges is based on an exploration of
trends in current smart camera systems.

The remainder of this chapter is organized as follows: Section 2 starts with
a brief overview of architectural issues of smart cameras and focuses then
on reviewing the evolution of smart camera systems. In Section 3 we iden-
tify current trends and speculate about future developments and applications.
Section 4 concludes this chapter with a brief discussion.

2 The Evolution of Smart Camera Systems

Smart cameras are enabled by advances in VLSI technology and embedded
system architecture. Modern embedded processors provide huge amounts of
performance. However, smart cameras are not simply cost-reduced versions of
arbitrarily-selected computer vision systems. Embedded computer vision re-



quires distinct techniques from non-real-time computer vision because of the
particular stresses that vision algorithms put on computer systems. Memory is
a principal bottleneck of computer system performance because memory speed
does not increase with Moores Law [4]. However, computer vision algorithms,
much like video compression algorithms, use huge amounts of data and often
with less frequent reuse. As a result, caches typically found in general-purpose
computing systems may be less effective for vision applications. At the mini-
mum, software must be carefully optimized to make best use of the cache; at
worst, the memory system must be completely redesigned to provide adequate
memory bandwidth [5].

Beside memory capacity and memory bandwidth computing power is a crucial
resource for embedded computer vision. The individual stages of the typical
image processing pipeline raise different requirements on the processing ele-
ments. Low-level image processing such as color transformations and filtering
operates on individual pixels in regular patterns. These low-level operations
process the complete image data at the sensor’s frame rate, but typically offer
a high data parallelism. Thus, low-level image processing is often realized on
dedicated hardware such as ASICs, FPGAs or specialized processors [6]. High-
level image processing on the other hand operates on (few) features or objects
which reduces the required data bandwidth but increases the complexity of
the operations significantly. These complex processing tasks exhibit typically
a data-dependent and irregular control flow. Thus, programmable processors
are the prime choice for these tasks. Depending on the complexity of the im-
age processing algorithms even multi-core or multi-processor platforms may
be deployed [7,8].

2.1 Single Smart Cameras

The integration of image sensing and processing on single embedded platforms
has been conducted for quite some time. However, research on single smart
cameras has intensified over the last decade. Table 1 presents an overview of
selected single smart camera platforms.

Moorhead and Binnie [9] presented one of the first fabricated CMOS imple-
mentations. Their SoC smart camera integrated edge detection into the image
sensor. VISoc [10] represents another smart camera-on-a-chip implementation
featuring a 320 x 256 pixel CMOS sensor, a 32-bit RISC processor and a vi-
sion/neural coprocessor. Kleihorst et al. [16] engaged in the development of
a specialized processor for image processing with high performance and low
power consumption. This processor features 320 processing elements allowing
to process a single line of an image in CIF resolution in one cycle, or an image
in VGA resolution in two cycles respectively.



Platform Capabilities Application

System Sensor CPU Comm. | Power

Moorhead and | CMOS custom n/a mains || low-level

Binnie [9] logic for on- edge detec-

chip edge tion
detection

VISoc CMOS, 32-bit RICS | n/a battery|| low-level

(Albani)[10] 320x256 and Vi- edge detec-

sion/neural tion
processor

Wolf [11] Hi8 Cam- | PC  with | n/a mains || gesture
corder, TriMedia recognition
NTSC TM-1300

boards

Single Smart- | color, DSP n/a mains || adaptive

Cam (Bram- | VGA background

berger, Rinner) substraction

12)

TRICAM [13] | video DSP  and | Ethernet | mains || Viola-Jones
in (no | FPGA, object detec-
sensor) 128MB tion

RAM

Bauer [14] neuro- Blackfin n/a mains || vehicle
morphic DSP detection
sensor and  speed
(64x64) estimation

Dias and Berry | 2048x2048,| Altera Firewire | mains || template-

[15] gyroscope | Stratix (1394) based object
and  ac- | FPGA tracking
celerome-
ter

Table 1

Classification of single smart camera systems.

Wolf et al. [11] developed a first generation smart camera prototype for real-
time gesture recognition. For the implementation they equipped a standard PC
with additional PCI-boards featuring a TriMedia TM-1300 VLIW processor.

A Hi8 video camera is connected to each PCI-board for image acquisition.

A completely embedded version of a smart camera was introduced by Bram-
berger et al. [12]. Their first prototype was based on a single DSP COTS-
system (TMS320C64xx processor from Texas Instruments) equipped with
1 MB on-chip memory and 256 MB external memory. A CMOS image sensor



is directly connected to the DSP via the memory interface. Communication
and configuration are realized over a wired Ethernet connection.

Arth et al. [13] presented the TRICam—a smart camera prototype based on
a single DSP from Texas Instruments. Analog video input (either PAL or
NTSC) is captured by dedicated hardware, and a FPGA is used for buffering
the scanlines between video input and DSP. The TRICam is equipped 1 MB
on-chip and 16 MB external memory.

Bauer et al. [14] presented a DSP-based smart camera realizing a neuromor-
phic vision sensor. This smart sensor delivers only information about intensity
changes with precise timing information which is then processed to identify
moving objects and estimate their speed.

Dias et al. [15] described a generic FPGA-based smart camera. The FPGA is
used to implement several standard modules (e.g., interface to the image sen-
sor, memory interface, Firewire interface) along with a programmable control
module and a flexible number of processing elements. The processing elements
can be interconnected arbitrarily according to the algorithm’s data-flow.

2.2 Distributed Smart Cameras

Distributed smart cameras not only distribute sensing but also processing.
However, the degree of distribution may vary substantially. On the one hand,
smart cameras can serve as processing nodes that perform some fixed pre-
processing but still delivering data to a central server. On the other hand,
processing may be organized in a completely decentralized fashion where the
smart cameras organize themselves and collaborate in a dynamic manner.

Implementing and deploying distributed smart cameras with decentralized co-
ordination pose several new research challenges. Multiple threads of processing
may take place on different processing nodes in parallel. This requires a distri-
bution of data and control in the smart camera network. The required control
mechanisms are implemented by means of dedicated protocols.

In [17,18] we have already discussed that a substantial system-level software
or middleware would greatly enhance application development. Such a middle-
ware has to integrate the camera’s image processing capabilities and provide
a transparent inter-camera networking mechanism. In [19] we propose to use
agents as top-level abstraction for the distribution of control and data. A
distributed application comprises several mobile agents, whereas agents rep-
resent image processing tasks within the system. Combining agents with a
mobility property allows to move the image processing tasks between cam-
eras as needed. To demonstrate the feasibility of this agent-oriented approach,



we have implemented an autonomous and fully decentralized multi-camera
tracking method [20].

Patricio et al. [21] also use the agent-oriented paradigm. But in their ap-
proach, the agent manages a single camera, and an internal state representing
beliefs, desires and intentions. Collaboration of cameras hence corresponds to
collaboration of agents, i.e., an agent can inform its neighbor about an object
expected to appear or ask other agents whether they currently track the same
object.

Fleck et al. [22] demonstrate a multi-camera tracking implementation where
camera coordination and object hand-off between cameras is organized cen-
trally. Each camera uses a particle-filter based tracking algorithm to track the
individual objects within a single camera’s field of view. The camera nodes
report the tracking results along with the object description to the central
server node.

Norouznezhad et al. [23] present an FPGA-based smart camera platform which
is developed for large multi-camera surveillance applications. The most dis-
tinctive features compared to the other platforms is the large CMOS image
sensor (2592 x 1944) and the GigE vision interface. The processing unit is
partitioned into pixel-based processing and ROI processing which can be ex-
ecuted in parallel.

2.3 Smart Cameras in Sensor Networks

Wireless sensor networks are receiving a lot of attention in the scientific com-
munity [25]. While many networks are focused on processing scalar sensor
values such as temperature or light measurements, there are some networks
focusing on visual sensors. Since a core feature of sensor networks is that they
are designed to run on battery power, one of the main challenges is to find a
reasonable tradeoff between computing power, memory resources, communi-
cation capabilities, system size and power consumption.

The Meerkats sensor nodes [31] use an Intel Stargate mote equipped with a
400 MHz StrongARM processor, 64 MB SDRAM and 32 MB Flash. Wireless
communication is realized with a 802.11b standard PCMCIA card. A con-
sumer USB webcam serves as imager (640x480 pixels). The sensor nodes are
operated by an embedded Linux system. A focus of this work is to evaluate
the power consumption of different tasks such as flash memory access, image
acquisition, wireless communication and data processing. In [30], further de-
tails on deploying Meerkats in a multi-node setup are given. For detection of
moving objects, image data is analyzed locally on the cameras. Nodes collabo-
rate for handover using a master-slave mechanism. Compressed image data is



Platform Capabilities Application
System Sensor CPU Comm. Power
Distributed VGA ARM and | 100Mbps | mains local image
SmartCam multiple Ethernet, analysis;
(Bramberger, DSPs GPRS cooperative
Quaritsch, tracking
Rinner) [8]
BlueLYNX VGA PowerPC, Fast Eth- | mains local image
(Fleck) [22] 64MB ernet preprocess-
RAM ing; central
reasoning
GestureCam | CMOS, Xilinx Fast Eth- | mains local image
(Shi) [24] 320x240 Virtex-11 ernet analysis; no
(max. FPGA; collaboration
1280x1024) | custom
logic  plus
PowerPC
core
NICTA CMOS Xilinx Gigk mains local image
smart camera | 2592x1944 | XC3S5000 vision analysis; no
(Norouznezhad) FPGA; interface collaboration
[23] microBlaze
core
Table 2

Classification of distributed smart camera systems.

transmitted to a central sink. Feng et al. [35] presented the Panoptes—a very
similar system which is also based on Stargate motes and USB webcams.

Another representative of a smart camera for sensor networks is the Cyclops
camera by Rahimi et al. [28]. This node is equipped with a low-performance
ATmegal28 8-bit RISC microcontroller operating at 7.3 MHz, 4 kB on-chip
SRAM and 60 kB of external RAM. The CMOS sensor can deliver 24 bit
RGB images at CIF resolution (352x288). The Cyclops platform does not
provide on-board networking facilities but it can be attached to a MicaZ mote.
Medeiros and Park [29] use a network of Cyclops cameras to implement a pro-
tocol supporting dynamic clustering and cluster head election. They demon-
strate their system in the context of an object tracking application.

The MeshEye sensor node by Hengstler et al. [32] combines multiple vision
sensors on a single node. The platform is equipped with two low resolution
image sensors and one VGA color image sensor. One of the low resolution
sensors is used to constantly monitor the field of view of the camera. Once
an object has been detected, the second low resolution sensor is activated and



Platform Capabilities Application
System Sensor CPU Comm. Power
CMUcam 3 | color ARMT none battery || local image
(Rowe) [26] CMOS, at 60 MHz | onboard analysis;
352x288 (802.15.4 inter-node
via collaboration
FireFly [27]
mote)
Cyclops color ATmegal28 | none battery || collaborative
(Rahimi) [28] CMOS, at 7.3 MHz | onboard object track-
352288 (802.15.4 ing [29]
via  Mi-
caZ
mote)
Meerkats webcam, StrongARM | 802.11b battery || local image
(Margi) [30] 640x480 at 400 MHz analysis; col-
lab.  object
tracking;
image trans-
mission  to
central sink
31]
MeshEye 2% low | ARM7 802.15.4 | battery || unknown
(Hengstler) resolution | at 55 MHz
[32] sensor,
1x  VGA
color
CMOS
sensor
WiCa 2x  color | Xetal 3D | 802.15.4 | battery || local pro-
(Kleihorst) CMOS (SIMD) cessing;
[7] sensor, collab. rea-
640x 480 soning [33]
CITRIC OV9I655 XScale 802.15.4 | battery || compression,
(Chen) [34] color PXA270 (428 - | tracking,
CMOS 970mW)| localization
sensor,
1280x 1024
Table 3

Classification of wireless smart camera systems.




the location of the detected object is estimated using simple stereo vision. The
estimated object’s region of interest is then captured by the high resolution
sensor. The main advantage of this approach is that the power consumption
can be kept at a minimum as long as there are no objects in the field of view
of the system. The processing is done on an ARM7 microcontroller running
at 55 MHz. The MeshEye is equipped with 64 kB of RAM and 256 kB flash
memory. An 802.15.4 chip provides wireless networking capabilities.

The WiCa wireless camera by Kleihorst et al. [7] is equipped with the STMD
processor IC3D operating at 80 MHz. This processor features 320 RISC pro-
cessing units operating concurrently on the image data stored in line memory.
In addition to the line memory, the platform also provides access to external
DPRAM. For general purpose computations and communication tasks, the
WiCa is equipped with an 8051 microcontroller. The WiCa can be extended
with an 802.15.4 based networking interface used for inter-node communica-
tion. The WiCa platform has been designed with respect to low-power ap-
plications and hence could be operated on batteries. Distributed processing
between four WiCas has been demonstrated in a gesture recognition system

33].

The CMUcam 3 is the latest version of an embedded computer vision platform
developed by Rowe et al. [26]. It consists of a color CMOS sensor capable of
delivering 50 frames per second at a resolution of 352x288 pixels. Image data
is stored in a FIFO and processed by an ARM7 microcontroller operating
at 60 MHz. The CMUcam 3 is equipped with 64 kB RAM and 128 kB flash
memory. It comes with a software layer implementing various vision algorithms
such as color tracking, frame differencing, convolution or image compression.
Networking capabilities can be achieved by attaching an external mote via a
serial communication channel, e.g., by combining it with FireFly motes [27].
This FireFly Mosaic relies on tight time synchronization for multi-camera
cooperation. The nodes are statically deployed in the context of home activity
monitoring.

The CITRIC mote [34] is a wireless camera hardware platform with a SXGA
OmniVision CMOS sensor, an XScale processor, 64 MB RAM and 16 MB
flash memory. Wireless communication using IEEE 802.15.4 is achieved by
connecting the CITRIC board to a Tmote Sky board. The CITRIC plat-
form is similar to the prototype platform used by [36], which consists of an
iMote2 connected to a custom-built camera sensor board. The CITRIC plat-
form has been demonstrated in image compression, single traget tracking via
background subtraction and camera localization using multi-target tracking
34].

10



3 Future and Challenges

Distributed smart camera networks can be used in a variety of applications.
The different constraints imposed by these applications and their associated
platforms require somewhat different algorithms:

e Best results are obtained for tracking when several cameras share overlap-
ping fields of view. In this case, the cameras can compare the tracks they
generate to improve the accuracy of the overall track generated by the net-
work.

e When covering large areas, we may not be able to afford to install enough
cameras to provide overlapping fields of view. Tracking must then estimate
the likelihood that a person seen in one view is the same person seen by a
different camera at a later time.

e Not all cameras may be alike. We may, for example, use low-power, low-
resolution cameras to monitor a scene and wake up more capable cameras
when activity warrants. We may also use cameras in different spectral bands,
such as infrared.

e Some cameras may move, which causes challenges for both calibration and
background elimination. A moving camera may be part of a cell phone
that captures opportunistic images; the camera may also be mounted on a
vehicle.

3.1  Distributed Algorithms

Distributed algorithms have a number of advantages and are a practical ne-
cessity in many applications. Centralized algorithms create bottlenecks that
limit the scalability of systems. Distributed algorithms can also, when properly
designed, provide some degree of fault tolerance.

Two styles of distributed algorithms have been used in distributed smart cam-
eras: consensus algorithms compare information between nodes to improve
estimates; coordination algorithms hand off control between nodes. Consen-
sus and coordination algorithms use different styles of programming and have
distinct advantages.

Consensus algorithms are typically thought of as message-passing systems. An
example of a coordination algorithm for distributed smart cameras is the cali-
bration algorithm of Radke et al. [37]. This algorithm determines the external
calibration parameters (camera position) of a set of cameras with overlapping
fields of view by finding correspondences between features extracted from the
scenes viewed by each of the cameras. It is formulated as a message-passing
system in which each message includes a node’s estimate of the position.
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Consensus algorithms are well-suited to estimation problems, such as the de-
termination of position. Many algorithms showed that matrix algorithms can
be formulated as message-passing systems. An important characteristic of con-
sensus algorithms is loose termination criteria. Distributed systems may not
provide reliable transmission of messages. As a result, termination should not
rely on strict coordination of messages into iterations.

Coordination algorithms can be viewed as token-passing systems. A token
represents the locus of control for processing. They are well-suited to problems
like tracking, in which the identity of a subject must be maintained over an
extended period. These algorithms can be thought of as protocols—each node
maintains its own internal state and exchanges signals with other nodes to
affect both its own state and the state of other nodes.

Coordination algorithms date back to the early days of distributed smart cam-
eras. The VSAM system [38] handed off tracking from camera to camera. More
recently, the gesture recognition system of Lin et al. [39] uses a token to rep-
resent the identity of the subject whose gestures are being recognized. Some
low-level feature extraction is always performed locally but the final phases of
gesture recognition may move from node to node as the subject moves and fea-
tures from several cameras need to be fused. A protocol manages the transfer
of the token between nodes; the protocol must ensure that tokens are neither
duplicated nor lost. The tracking system of Velipasalar et al. [40] also uses a
protocol to trade information about targets. Each node runs its own tracker for
each target in its field of view. A protocol periodically exchanges information
between nodes about the position of each target. This system is considered a
coordination algorithm rather than a consensus algorithm because only one
round of information exchange is performed at each period.

Of course, tracking includes both maintenance of identity (coordination) and
position of estimation (consensus). More work needs to be done to combine
these two approaches into a unified algorithmic framework.

3.2 Dynamic and Heterogeneous Network Architectures

Dynamic and heterogeneous camera networks provide some advantages over
static architectures. They can be better adapted to the requirements of the
applications and—even more important—are able to react to changes in the
environment during operation.

Such a heterogeneous architecture can be comprised of cameras with different
capabilities concerning sensing, processing and communication. We can choose
the mode the camera operates and hence determine the configuration of the
overall camera network. By that we can set the network into a configuration
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which best fits the current requirements. There are many optimization crite-
ria possible—energy, response time, communication bandwidth are just a few
examples. The optimization goal we want to achieve clearly depends on the
application.

Dynamic and heterogeneous architectures are not special to camera networks.
These principles are well known for example in sensor networks or communi-
cation networks. One such example are multi-radio networks which combine
low and high performance radios to adapt bandwidth, energy consumption
and connectivity over time. The system of Stathopoulos et al. [41] uses dual
radio platforms to implement a protocol to selectively enable high-bandwidth
nodes to form end-to-end communication paths. For their work they use a low-
bandwidth network that is always on for control and management purposes
as well as for transmission of low-bandwidth data. High-bandwidth radios are
only enabled when fast response times or large data volumes have to be trans-
ferred. Lymberopoulos et al. [42] evaluate the energy efficiency of multi-radio
platforms. They compare a 802.15.4 radio providing a data rate of 250 kbps
with an 802.11b radio providing a data rate of up to 11 Mbps. They also con-
sider the different startup times of the two radios in their energy evaluation.

A moving camera not only poses challenges for calibration and background
elimination. A freely moving camera connected by some wireless links can
also change the topology of the overall network. Communication links to some
nodes may drop; new links to other nodes may need to be established. This is
closely related to mobile ad-hoc networks (MANET) [43] which mainly deals
with the self-configuration of the dynamic network.

3.8  Privacy and Security

When deploying camera networks in end-user environments such as private
homes or public places, the awareness of privacy, confidentiality and general
security issues is rising [44]. By being able to perform onboard image analysis
and hence to avoid transferring raw data, smart cameras have great potential
for increasing privacy and security. Boult et al. [45] and Fleck et al. [46],
among others, have explored smart cameras in privacy-sensitive applications
by omitting the transfer of images of some parts of the observed scene.

Serpanos et al. [47] identified the most important security issues of smart cam-
era networks and classified the major security requirements at the node level
and the network level. Although security issues of distributed smart cameras
are analogous to networked embedded systems and sensor networks, emphasis
should be given to special requirements of smart camera networks, including
privacy and continuous realtime operation. To guarantee data authenticity
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and protect sensitive and private information, a wide range of mechanisms
and protocols should be included in the design of smart camera networks.

3.4 Service Orientation and User Interaction

Besides all technological considerations and challenges, one of the major as-
pects is easily forgotten: smart camera systems should be designed for users.
This is even more important for future camera networks—some of which are
targeted at consumer applications. For these applications, service orientation,
robustness and and ease of use are important factors for user acceptance.

A main challenge is still identifying and demonstrating multi-camera appli-
cations which are really useful and desirable for users. Aside from obvious
surveillance scenarios, applications that are frequently mentioned are personal
health and elderly care where the environment is monitored for unusual events
such as a falling person [48]. Smart homes are another related scenario where
pervasive smart camera networks could be employed to simplify the life of the
residents. Services for smart homes include an adaptation of the environment
(e.g., lighting or air conditioning) based on the detection of the presence of
persons. The automatic detection of gestures and activities by the smart cam-
era network supports a more active user interaction. Much progress has been
achieved in that field in recent years (e.g., [49]), however a lot of research is
still required until human gesture and activity recognition can be applied in
real-world settings.

Regardless of the actual application scenario, a big challenges is to develop
multi-camera systems that can be deployed, set up and operated by customers
with little or no technical knowledge.

4 Conclusion

Smart camera networks have emerged thanks to the simultaneous advances
in four key disciplines: computer vision, image sensors, embedded computing,
and sensor networks. The convergence of these technical factors stimulates a
revolution in the way we use cameras. Image sensors will become ubiquitous
and fade into the everyday environment. Their onboard processing and com-
munication facilities foster collaboration among cameras and distributed data
analysis.

Considering the recent advances of smart cameras in research and industrial
practice, we can identify several trends: First, camera networks currently un-
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dergo a transition form static to dynamic and adaptive networks. Second, as
the cost of single cameras and the required network infrastructure drops we
will see an increase in the size of the camera networks. Finally, we expect to see
researchers start to integrate different sensors—audio, seismic, thermal, etc.—
into distributed smart sensor networks. By fusing data from multiple sensors,
the smart camera exploits the distinct characteristics of the individual sen-
sors resulting in an enhanced overall output. All these advances will stimulate
the development of many new applications—transforming traditional multi-
camera systems into pervasive smart camera networks.
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