
IMPROVED AGENT-ORIENTED MIDDLEWARE FOR DISTRIBUTED SMART CAMERAS

Markus Quaritsch1, Bernhard Rinner2, Bernhard Strobl3

1Graz University of Technology, Institute for Technical Informatics 8010 Graz, AUSTRIA
2Klagenfurt University, Institute of Networked and Embedded Systems, 9020 Klagenfurt, AUSTRIA

3Austrian Research Centers GmbH, Smart Systems Division, 1020 Wien, AUSTRIA

ABSTRACT

In the recent past, much effort has been put into the de-
velopment of distributed vision systems with smart cameras
as key components. Smart cameras combine video sensing,
processing and communication within a single embedded de-
vice and provide sufficient on-board infrastructure to carry
out high-level video analysis tasks. Networks of smart cam-
eras help to overcome some hard problems inherent to single-
camera systems by providing multiple views of a scene.

This paper reports on an improved, agent-oriented mid-
dleware for embedded smart cameras. Each image process-
ing task is represented by an agent resident on a smart camera
within the network. Agents are able to move from one camera
to another as needed during run-time. An agent is comprised
of the high-level application logic and the image processing
algorithm which is executed on the processing unit.

The presented middleware is also designed for distributed
image processing where two or more cameras can cooperate
for a single task. In the paper we discuss the requirements
for such an agent-oriented middleware capable of supporting
distributed image processing. Further, we describe the archi-
tecture of our middleware implementation. The evaluation
of our current middleware implementation shows significant
performance improvements compared to our previous Java-
based implementation.

Index Terms— smart camera, embedded system, middle-
ware, distributed image processing

1. INTRODUCTION

Smart cameras have gained increasing research interest in the
last few years. This trend is driven by recent advances in
the field of image processing and efforts on integrating im-
age processing in embedded systems. Smart cameras com-
bine video sensing, processing and communication within a
single embedded device [1, 2].

Recently, much effort has also been put into the develop-
ment of distributed vision systems with smart cameras as key
components. Networks of distributed smart cameras [3] are
an emerging technology for a broad range of important appli-
cations including smart rooms, surveillance, tracking and mo-

tion analysis. By having access to many views and through
cooperation among the individual cameras, these networks
have the potential to realize many more complex and chal-
lenging applications than single camera systems. The target
applications for distributed smart camera systems pose strong
requirements on the camera’s hardware and software. Typi-
cally, the cameras have to execute demanding video process-
ing and compression algorithms.

Developing distributed image processing applications is
challenging and implementing these on a network of smart
cameras is also difficult. A substantial system-level software,
therefore, would strongly support the implementation. Unfor-
tunately, embedded platforms with limited resources typically
do not provide middleware services well-known on general-
purpose platforms. In [4] we have discussed a set of important
services for a smart camera network and exemplified the ben-
efits of these services on a concrete application. Indeed, we
could demonstrate the benefits of such a middleware but the
achieved performance was very poor. This is a consequence
of implementing the middleware in Java which, unfortunately,
causes a considerable performance gap on embedded systems
due to the lack of a just-in-time compiler.

The agent-oriented programming paradigm is rather un-
common for embedded systems up to now. This is mainly be-
cause of the undesirable non-deterministic behavior of agent
systems. However, smart camera networks can benefit from
harnessing the agent-oriented approach. A smart camera net-
work typically has to carry out several different and indepen-
dent tasks. These tasks can be mapped to agents, whereas a
task is fulfilled by one or more agents. Each agent focuses
on its main job and cooperates with other agents in order to
fulfill its mission. Starting an additional task in a smart cam-
era network, thus, is as simple as creating a new agent in the
network.

In this paper, we focus on the implementation of an ef-
ficient, lightweight distribution service for embedded smart
cameras. Our proposed middleware follows the agent-oriented
programming paradigm, using agents as abstraction of im-
age processing tasks. Compared to our previous work [4],
we have significantly improved the performance of the distri-
bution layer concerning network communication, interaction
with image processing tasks, as well as resource utilization.

1-4244-1354-0/07/$25.00 c©2007 IEEE

The implementation also incorporates the efficient transmis-
sion of raw-images which is important for collaborative image
processing.

The remainder of this paper is organized as follows. Sec-
tion 2 first gives a short survey of current smart camera archi-
tectures and identifies similarities among those. Afterwards,
related middleware approaches are presented. Section 3 iden-
tifies the potential of distributed smart cameras. Section 4 is
dedicated to our proposed smart camera middleware. We first
identify the requirements for such a middleware and sketch
the basic architecture. Then we focus on the distribution layer
which is the central part of the middleware. Section 5 demon-
strates the efficiency of our implementation compared to our
Java-based middleware. Section 6 concludes this paper with
a brief discussion.

2. BACKGROUND AND RELATED WORK

2.1. Smart Camera Architectures

Image processing in general is a very computing intensive
task due to the huge amount of data to be processed. De-
pending on the level of abstraction, processing requirements
increase dramatically. Hence, implementing image process-
ing algorithms on embedded smart cameras is very challeng-
ing. Various architectures have been introduced, focusing on
a concrete set of image processing algorithms while minimiz-
ing the resource requirements, especially energy consump-
tion.

Kleihorst et al. present in [5] a smart camera mote opti-
mized for very low power consumption. The smart camera
mote consists of basically four components, one or two VGA
resolution color image sensors, an SIMD processor for low-
level image processing, a general purpose processor for high-
level processing and control, and a communication module.
Both processors are coupled using a dual-port RAM which
enables them to work in a shared workspace on their own
processing space. The SIMD processor allows to process 320
pixels of a line at once. The host controller is a 8051 based
ATMEL processor.

Fleck and Straßer use in their work [6] a commercially
available smart camera for embedded image processing. This
camera is comprised of a single CCD sensor with VGA res-
olution, a Xilinx FPGA for low-level image processing, and
a Motorola PowerPC processor as host controller. The host
controller is operated by a Linux kernel optimized for embed-
ded systems.

Bramberger et al. propose a heterogeneous multi-proces-
sor smart camera [2]. The architecture of this smart camera
contains three main units: a CMOS image sensor which de-
livers color images up to VGA resolution, the processing unit
comprised of one or more digital signal processors (DSPs),
and an ARM based network processor for overall system co-
ordination and communication. The operating system used

on this camera is also Linux.
These examples of smart camera architectures aim on dif-

ferent types of image processing, ranging from low-level pixel
filtering to high-level motion detection and object tracking,
according to the available computing power and energy con-
sumption. However, all of these approaches have a similar
architecture: A dedicated processor or DSP is used for image
processing while a general purpose processor is responsible
for camera coordination and communication. This trend is
also obvious in other commercially available smart cameras.
The IP-Camera advertised by Nuvation [7] for example uses
a DaVinci DM6446 processor, which combines a DSP core
and an ARM core in a single chip. This camera is operated
by a Linux kernel as well.

The emerging trend of using Linux as operating system
for embedded devices is also evident in the research area of
smart cameras. Linux brings a whole set of features usually
available on general-purpose PCs to embedded systems and
supports a wide variety of platforms. Due to its open source
license it can be easily adapted to new platforms and tuned
for special needs.

2.2. Related Middleware Approaches

On general-purpose platforms distributed applications are of-
ten implemented on the basis of a reusable middleware system
which encapsulates networking and data transfer [8]. Promi-
nent representatives are DCOM and CORBA, for example.
These component-based middleware systems are targeted for
general-purpose computing and are not suitable for resource
limited devices. There exist also lightweight variations of tra-
ditional CORBA services for resource constrained real-time
systems, e.g., by the Real-Time CORBA (RT-CORBA) spec-
ification and its ”TAO” implementation [8]. However, this
approach is still very resource consuming.

Middleware systems based on the Java programming lan-
guage are also very common on general-purpose platforms.
Java RMI (Remote Method Invocation) and EJB (Enterprise
Java Beans) are well-known examples for this kind of mid-
dleware. Agent-based systems like Voyager [9], Grasshop-
per [10] or Diet-Agents [11] are also used as middleware.
The agent-system not only abstracts the hardware platform
and distributed aspect but also introduces the agent-based pro-
gramming paradigm. Platform independence is inherent to all
these approaches as the actual hardware is hidden by the Java
virtual machine. However, using Java on embedded systems
is not an efficient choice because it is heavy weighted in terms
of memory footprint and computation.

Another research area related to smart camera networks
are wireless sensor networks (WSNs) [12]. Distributed and
collaborative signal processing is inherent to WSNs. In the
recent past, there is ongoing research on middleware systems
for WSNs. However, middleware approaches designed for
WSNs are not applicable to smart camera networks due to

different design aspects and resource constraints [13, 14]. For
WSNs, the focus is on reliable services in ad-hoc networks
and energy awareness. The amount of data to be processed
and the available communication bandwidth is also much small-
er in WSNs.

3. SMART CAMERA NETWORKS

Networks of distributed smart cameras (DSCs) are well suited
for distributed image processing. Although distributed image
processing introduces several difficulties, we believe that the
problems which can be addressed by this approach are more
important than the challenges of designing and implement-
ing networks of smart cameras. The main benefit of DSCs
compared to single-camera systems is that a network of smart
cameras may provide multiple views of a scene from different
views.

Occlusion is a major problem for single cameras. In a
multi-camera setup it is more likely that multiple views of
an object are available. Hence, parts of an object which are
occluded in one field of view may be visible from another
view.

Traditional multi-camera setups usually use a central node
which processes the different views of a scene. Obviously, the
scalability of such centralized systems is limited as the num-
ber of cameras directly influences the required communica-
tion bandwidth and processing power. Local image process-
ing on the smart cameras significantly improves the scalabil-
ity of the overall system and also reduces the required com-
munication bandwidth considerably. Instead of sending the
raw image data each camera processes the acquired images
locally and communicates abstracted information of a scene.
Nevertheless, for some applications it may be necessary to
process the images of different views jointly and thus transmit
raw image data. In contrast to centralized methods, a decen-
tralized approach shows better scalability because communi-
cation is done between typically two or three collaborating
cameras.

A network of smart cameras with multiple views of a
scene may also overcome failures of individual cameras. Dis-
tributed computing enables fault-tolerance and helps to in-
crease the reliability of the multi-camera system.

4. MIDDLEWARE FOR DISTRIBUTED SMART
CAMERAS

Designing and implementing software for distributed systems
is rather challenging. One has to cope with concurrency is-
sues, unreliable and basically non-deterministic network con-
nections between the hosts, as well as platform dependencies.
These issues are not specific to DSCs but apply for distributed
computing in general. However, the requirements for a mid-
dleware for distributed image processing on embedded de-
vices are significantly different.

Applications of smart cameras for distributed image pro-
cessing, therefore, either re-implement network communica-
tion itself (e. g. [15]) or adapt general-purpose middleware
(e. g. [16]) causing a dramatic performance penalty.

4.1. Middleware Requirements

A middleware for image processing on embedded smart cam-
eras has to provide basic functionality of general-purpose mid-
dleware like abstracting network communication and provid-
ing mechanisms to interact with other hosts but also has to
offer services specific for distributed image processing. In
the following, we describe important services and properties
of a middleware for DSCs.

Lightweight. For a DSC middleware it is essential to be
lightweight. As the computing power on embedded systems
is limited, the overhead introduced by a middleware should
be minimal. The memory requirements also have to be con-
sidered because this is a limited resource too.

Abstraction of image processing. A middleware for DSCs
has to support the abstraction of image processing and en-
courage the separation of DSC applications into application
logic and image processing algorithm. The application logic
on the one hand contains the high-level logic for performing
a certain task, e.g. generate an event if there is motion in a
scene or collaborate with other cameras in order to track an
object. The image processing algorithm on the other hand
does the low-level pixel processing and extracts features of
the acquired images, for example detect motion in a sequence
of images or classify objects in a scene.

The separation of application logic and image processing
makes the image processing exchangeable. Even for the sim-
ple case of generating an event when motion is detected in a
scene, different algorithms may be used, depending on the ac-
tual requirements (e.g. different background models). Thus,
the same application logic may be configured to use different
image processing algorithms depending on the current needs.

Collaborative image processing. Collaborative, distributed
image processing is the most important and challenging as-
pect of DSC networks. There is a whole class of image anal-
ysis challenges which require or can benefit of having multi-
ple views. For example, when performing face recognition it
may be helpful to have multiple views of the person of interest
from different perspectives either to deal with occlusion or in-
crease reliability. Collaborative image processing can be done
in two ways. Either, each camera performs the image pro-
cessing locally and only abstracted information is exchanged
among collaborating cameras. This case does not introduce
additional requirements for the middleware as message ori-
ented communication between individual nodes is a basic fea-
ture of each middleware. The second, and more challenging,

Subscribe
Publish/

Application

Linux Kernel

Processing Unit

gurationAllocation
Reconfi−

Operating

System

Domain−specific

Services

Distribution

Services

Host

Services

Hardware

DSP Driver

...

Agent Environment

Platform

Abstraction

Dynamic
Loading Monitoring

SmartCam Framework

Host Processor

Figure 1: The architecture of a middleware for DSC networks.

approach is that the image processing task is executed only on
a single camera incorporating the images of other cameras.
This imposes, that the raw images acquired by one camera
have to be transmitted to another camera. A middleware for
DSC networks thus has to provide a service which gives other
cameras access to the raw image data—either of the complete
scene or only a certain region of interest. Of course, the avail-
able resources, especially bandwidth, have to be taken into
account.

Synchronization. The collaboration of cameras for a cer-
tain task implicates to have a well-defined temporal relation
among the individual cameras in the DSC network. Otherwise
it is impossible to bring images acquired by different cameras
in a common context. The required temporal accuracy de-
pends on the image processing algorithm and may range from
frame synchronization to a very relaxed synchronization.

4.2. Proposed Middleware Architecture

The individual components of our proposed middleware for
DSC networks are organized in a layered architecture, whereas
each layer abstracts the services provided by the underlying
layer. The functionality of each layer is adapted from [8]. Fig-
ure 1 sketches our proposed architecture. This architecture is
similar to the one presented in [4] but has been adapted to our
lightweight middleware approach. Although some modules—
especially in the host services layer—are specific to the used
smart camera hardware, this approach is also suitable for other
smart camera platforms. Only the platform related modules
such as the SmartCam Framework and the DSP Driver have
to be adapted for new platforms.

Operating system. The host processor is operated by a stan-
dard Linux kernel optimized for embedded systems. A cus-

tom kernel module (DSP Driver) handles the communication
between the DSPs as well as the DSPs and the host processor.
This layer is mostly independent of the smart camera plat-
form as long as the Linux kernel supports the host processor.
Only the communication between the individual processors
depends on the concrete platform.

Host services. The foundation of the host services layer is
the SmartCam Framework. This module provides a message-
oriented communication mechanism between applications on
the host processor and the image processing tasks on the DSPs.
The services for (1) dynamic loading, (2) publish/subscribe
[17], and (3) monitoring operate on top of the SmartCam
Framework. The dynamic loading service allows an applica-
tion to load and unload image processing algorithms to the
DSPs dynamically during run-time. The publish/subscribe
service offers a flexible communication mechanism between
data sources and data sinks whereas the data sources and data
sinks can be located on different processors. The monitoring
service provides information about the resource utilization of
the various hardware components.

The Platform Abstraction module encapsulates native low-
level operating system functionality such as network commu-
nication and concurrency mechanisms. For this module, the
ADAPTIVE Component Environment (http://www.cs.
wustl.edu/∼schmidt/ACE.html) is used. It supports
a great number of operating system and provides an object-
oriented API.

Adapting this layer to a different smart camera platform
basically requires to replace the SmartCam Framework and
provide a mechanism for sending messages between the host
processor and the processing unit.

Distribution layer. The distribution layer is the main com-
ponent of the DSC middleware. While the lower layers pro-
vide services for applications on a single camera, this layer
integrates multiple smart cameras to a distributed image pro-
cessing system. Thus, the basic service provided by this layer
is remote communication, which can either be message ori-
ented or stream oriented. Message oriented communication
is typically used for exchanging control messages and data
while stream oriented transmission is intended for sending
raw-images from one camera to another or stream encoded
video. Details on this layer are given in section 4.3.

This layer is independent of the smart camera architecture
as long as the services listed in the host services layer are
available.

Domain-specific services. On top of the distribution layer
reside the domain-specific services. These are services which
are on the one hand very specific to the application domain
(e.g. video surveillance) and on the other hand common for
applications of a DSC network. Such services are, for ex-

ample, camera calibration and localization, reconfiguration or
QoS management.

4.3. Agent-Oriented Distribution Layer

The distribution layer is the central part of the DSC middle-
ware. It is responsible for handling the communication be-
tween cameras and provides a foundation for the applications
in a DSC network. Therefore, it is crucial to implement this
layer in an efficient manner, keeping the overhead minimal.

We have chosen to implement applications using the a-
gent-oriented programming paradigm. This form of abstrac-
tion has already proven to be suitable for image processing
tasks (c.f. [16]). The distribution layer, therefore, can also be
seen as an agency providing the environment for agents which
form the application layer and domain-specific services layer.

Each agent represents a task in the DSC network. This
is, for example, generating an event in the case of motion in a
scene or tracking a person. The agent itself contains the appli-
cation logic and has attached the image processing algorithm,
which is executed on the processing unit. The agent loads the
image processing algorithm on the processing unit and uses
the information supplied by the image processing task to take
further actions, e.g. trigger another agent. This approach also
encourages a strict separation between application logic and
image processing.

Each camera hosts an agency which provides the envi-
ronment for the agents. An agency allows agents to create
new agents of a certain type, communicate with other agents
on the same camera or another camera, and interact with the
processing unit on the local camera in order to do image pro-
cessing. While agent creation and agent communication are
treated as a basic features, these are provided by the agency
itself. Further services, like interaction with the processing
unit, are provided by additional agents available on each cam-
era.

Allowing agents to migrate from one camera to another is
fundamental for autonomous, self-adapting behavior of DSC
networks. Unfortunately, code migration is not supported by
C++. An agent can, however, migrate to another camera by
remotely creating a new agent and initializing it accordingly.
Afterwards, the original agent can terminate. If the agent
class is not known on the new camera, a dynamic library can
be sent to the camera which provides the agent definition.

The distribution layer further has to provide a mechanism
which allows to distribute the raw-images among collaborat-
ing cameras. For this high-bandwidth stream oriented com-
munication we propose to use the Stream Control Transmis-
sion Protocol (SCTP) [18] which has been standardized re-
cently. SCTP is a connection-oriented point-to-point trans-
port layer protocol (OSI layer 4) providing a reliable delivery
over an IP network. It combines the benefits of TCP and UDP
while cutting their drawbacks and introduces a set of new fea-
tures valuable for DSC networks. A selection of features is

described in the following.

Multiple streams in a single association. SCTP uses the
term association for what is called connection in the TCP pro-
tocol for various reasons. An SCTP stream is a unidirectional
logical data flow within a SCTP association. An arbitrary
number of these logical streams can be used per SCTP as-
sociation in both directions. For each stream, the data order
is preserved. This novel feature is the basis for a set of other
features.

Using multiple streams avoids the head-of-line blocking
which may occur when a TCP receiver is forced to re-sequence
packets that arrive out of order because of network reordering
or packet loss. In SCTP, if data on a stream is lost, only this
stream is blocked waiting for retransmission while all other
streams are not affected.

Multiple delivery modes. SCTP offers multiple delivery
modes. Within a stream, messages can be delivered in strict
order-of-transmission, like TCP, partially ordered, or unor-
dered, like UDP. Additionally, SCTP not only supports re-
liable transmission but also unreliable transmission.

Multihoming. Multihoming is an attempt to increase the
network resilience to failed interfaces. If the host is equipped
with multiple network interfaces, SCTP may use one or more
of these interfaces for a single association. In the case of a
failure in the network, SCTP automatically switches to an-
other interface preserving the established association. This is
transparent to the application.

TCP-friendly congestion control. As SCTP is used togeth-
er with TCP and UDP in the same network, it is important that
SCTP uses a TCP-friendly congestion control. This means,
that the available bandwidth is shared fairly between SCTP
and TCP. UDP, in contrast, has no congestion control mecha-
nism. Hence, high bandwidth UDP transmissions (e.g. stream-
ing video data, or exchanging raw image data) lead to an un-
fair sharing of bandwidth with other protocols like TCP or
SCTP.

Taking these features into account, the SCTP protocol is
well suited DSC networks due to its rich set of features and
high configurability. For collaborative image processing, in-
dividual regions of interest (ROIs) can be transmitted via sep-
arate streams between cameras. This supports independent
processing of each ROI at the receiver, especially in the case
of packet loss. Encoded video data may be transmitted via
multiple streams of different reliability. For example, I-frames
are transmitted partially reliable while P-frames are transmit-
ted unreliable.

When using UDP for streaming the raw-images, a major
drawback would be the lack of a congestion control mecha-

Figure 2: Smart Camera.

Agency 1,8 MB
Java Classpath 11,0 MB
Java VM 0,5 MB
Total: 13,3 MB

(a) Java Implementation

Agency 0,8 MB
Libraries 2,1 MB
Total: 2,9 MB
(b) C++ Implementation

Table 1: Comparison of the code size

nism, while using TCP may lead to increased delays caused
by its reliability and the potential for head-of-line blocking.

5. EXPERIMENTAL RESULTS

We have implemented our proposed agent-oriented lightweight
DSC middleware in C++. The evaluation first compares the
C++ implementation with our previous Java-based middle-
ware [16] and discusses the achieved performance. We then
analyze whether the SCTP protocol is suitable for transmit-
ting raw images from one camera to another in order to do
collaborative image processing.

5.1. SmartCam Architecture

For the evaluation we have used our SmartCamera [2] which
is comprised of an ARM-based host processor and two DSPs
from Texas Instruments. The processors are connected via
a PCI bus. The operating system of the host processor is a
standard Linux kernel version 2.6.17. Figure 2 depicts our
smart camera.

5.2. Agency Implementation

Embedded devices typically have tight resource constraints,
especially with respect to computing power and memory. There-
fore, a lightweight middleware has to use the scarce resources

C++ Java
Loading dynamic executable 8 ms 180 ms
Initializing tracking algorithm 250 ms 250 ms
(5 frames @ 20 fps)
Creating agent on next camera 18 ms 2130 ms
Reinitialize tracking algorithm 2 ms 40 ms
on next camera

Table 2: Comparison of the improved C++ middleware im-
plementation and Java implementation

efficiently. Table 1 compares the code sizes of the C++ im-
plementation with the Java-based Implementation. The major
benefit of Java, its comprehensive class library, has the down-
side of requiring plenty of memory. Thus, the Java-based im-
plementation is with 13,3 MB more than four times larger
than the C++ implementation.

5.3. Loading Image Processing Tasks

The image processing tasks (i.e. the CamShift tracker) are
loaded and unloaded dynamically by the agent as needed.
Therefore, we have evaluated the time required for loading
a dynamic executable to the DSP as well as initializing the
image processing task.

Table 2 shows the time intervals for loading, initializing
and reinitializing the CamShift tracking algorithm opposed to
the results of our Java based middleware implementation.

Considering the obtained results in table 2, it can be seen,
that the improved implementation of our middleware is about
20 times faster than the Java implementation. Loading a dy-
namic executable takes no more than 8 ms and re-initializing
the tracking algorithm requires about 2 ms. The time intervals
required for initializing the tracking algorithm are equal be-
cause this is done by the tracking algorithm itself and requires
no interaction with the agent.

Creating an agent on the next camera took more than 2
seconds using the Java implementation. this time interval
could be decreased significantly to less than 20 ms.

5.4. Transmitting RAW-Images

This section focuses on collaborative image processing. There-
fore, we compare the SCTP protocol and the TCP protocol
for streaming raw image data from one camera to another. We
transmitted a ROI of various sizes over a 100 MBit wired Eth-
ernet network under different packet-loss conditions. When
using SCTP, we used either a single stream or four concur-
rent streams with reliable transmission. In the case of four
streams the ROI is split up into four equally sized chunks—
one for each stream. For both protocols we used the standard
configuration of the Linux kernel. Table 3 shows the average
transmission time of a ROI over 200 transmissions.

ROI size TCP SCTP
(1 stream) (4 streams)

100×100 2 ms 2 ms 3 ms
200×200 5 ms 5 ms 7 ms
352×288 12 ms 9 ms 17 ms

(a) 0% packet loss

ROI size TCP SCTP
(1 stream) (4 streams)

100×100 7 ms 2 ms 2 ms
200×200 12 ms 2 ms 4 ms
352×288 24 ms 30 ms 8 ms

(b) 1% packet loss

ROI size TCP SCTP
(1 stream) (4 streams)

100×100 19 ms 2 ms 2 ms
200×200 32 ms 2 ms 4 ms
352×288 35 ms 156 ms 10 ms

(c) 5% packet loss

ROI size TCP SCTP
(1 stream) (4 streams)

100×100 32 ms 4 ms 3 ms
200×200 46 ms 11 ms 6 ms
352×288 46 ms 397 ms 11 ms

(d) 10% packet loss

Table 3: Comparison of TCP and SCTP for streaming raw
image data for different packet loss conditions.

In the case of no packet loss (c.f. Table 3a), SCTP is com-
parable to TCP for small ROIs when using a single stream
and slightly slower when using four streams. This is caused
by the rather small chunks for each stream and the associated
transmission overhead. The transmission time increases for
all three protocols according to the ROI size. However, SCTP
with only one stream performs better than TCP.

In the case of packet loss (c.f. Table 3b–d), the transmis-
sion time for TCP increases according to the packet loss rate
as well as the ROI size (up to 35 ms for transmitting a ROI
of CIF resolution for 5% packet loss). In contrast to this, the
average transmission time for SCTP is almost independent of
the packet loss rate for small ROIs. For larger ROIs, TCP
shows better performance than SCTP when using only one
stream. But using four streams significantly reduces the trans-
mission times for SCTP and thus outperforms TCP. A ROI
of CIF resolution is on average transmitted in about 10 ms
when using four SCTP streams although the packet loss rate
is 10%. This illustrates the advantage of preventing head-of-
line blocking in SCTP.

The obtained results show that SCTP performs better when

transmitting large ROIs by using multiple streams. In the case
of small ROIs, SCTP is comparable to TCP. Thus, SCTP is a
good choice for transmitting raw image data. However, it is
beneficial to know the size of the ROI in order to adapt the
number of streams of the SCTP association accordingly.

6. CONCLUSION

In this paper we have presented an improved middleware for
networks of distributed smart cameras. We focus on the dis-
tribution layer of the middleware which follows the agent-
oriented programming paradigm. Image processing tasks in
the smart camera network are abstracted by agents. Each
agent contains the high-level application logic, e.g. generate
an alarm when there is motion in a scene, and has attached
the image processing algorithm which does the actual pixel
processing, e.g. detect motion in a scene. First evaluation
results show a significant performance increase compared to
our previous Java-based implementation.

Our proposed middleware is further designed for collab-
orative image processing which requires a camera to access
the raw image data of another camera. Therefore we propose
the use of SCTP, a recently standardized transport layer pro-
tocol. Due to the various new features, SCTP is well suited
for transmitting small as well as large image chunks. Using
multiple streams also avoids head-of-line blocking which re-
duces the transmission time significantly in the case of packet
loss.

7. REFERENCES

[1] Wayne Wolf, Burak Ozer, and Tiehan Lv, “Smart cam-
eras as embedded systems,” Computer, vol. 35, no. 9,
pp. 48–53, Sept. 2002.

[2] Michael Bramberger, Andreas Doblander, Arnold
Maier, Bernhard Rinner, and Helmut Schwabach, “Dis-
tributed Embedded Smart Cameras for Surveillance Ap-
plications,” Computer, vol. 39, no. 2, pp. 68 – 75, 2006.

[3] Bernhard Rinner and Wayne Wolf, Eds., Proceedings of
the Workshop of Distributed Smart Cameras, Boulder,
CO, USA, October 2006.

[4] Bernhard Rinner, Milan Jovanovic, and Markus Quar-
itsch, “Embedded Middleware on Distributed Smart
Cameras,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Process-
ing, April 2007, vol. 4, pp. 1381–1384.

[5] Richard Kleihorst, Ben Schueler, Alexander Danilin,
and Marc Heijligers, “Smart Camera Mote with High
Performance Vision System,” in Proceedings of the
Workshop on Distributed Smart Cameras (DSC-06),
Boulder, CO, USA, October 2006, pp. 17–21.

[6] Sven Fleck and Wolfgang Straßer, “Adaptive Probabilis-
tic Tracking Embedded in a Smart Camera,” in Pro-
ceedings of IEEE Embedded Computer Vision Workshop
(ECVW) in conjunction with IEEE CVPR 2005, 2005,
pp. 134 – 134.

[7] Nuvation, “Pixim IP Camera,”
http://www.nuvation.com/ip/ipcamera.html.

[8] Douglas C. Schmidt, “Middleware for real-time and em-
bedded systems,” Communications of the ACM, vol. 45,
no. 6, pp. 43–48, June 2002.

[9] Thomas Wheeler, “Voyager Architecture Best Prac-
tices,” Tech. Rep., Recursion Software, March 2005.

[10] C. Bäumer, M. Breugst, S.Choy, and T.Magedanz,
“Grasshopper – A Universal Agent Platform based on
OMG MASIF and FIPA Standards,” in First Interna-
tional Workshop on Mobile Agents for Telecommunica-
tion Applications (MATA’99), October 1999, pp. 1–18.

[11] C. Hoile, F. Wang, E. Bonsma, and P. Marrow, “Core
Specification and Experiments in DIET: A Decen-
tralised Ecosystem-inspired Mobile Agent System,” in
Proc. 1st Int. Conf. on Autonomous Agents and Multi-
Agent Systems (AAMAS2002), July 2002, pp. 623–630.

[12] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci, “Wireless sensor networks: a survey,” Com-
puter Networks, vol. 38, no. 4, pp. 393–422, March
2002.

[13] Mohammad M. Molla and Sheikh Iqbal Ahamed, “A
Survey of Middleware for Sensor Networks and Chal-
lenges,” in Proceedings of the 2006 International Con-
ference on Parallel Processing Workshops (ICPPW’06),
Columbus, Ohio, USA, Aug 2006, pp. 223–228, IEEE.

[14] Yang Yu, Bhaskar Krishnamachari, and Viktor K.
Prasanna, “Issues in Designing Middleware for Wire-
less Sensor Networks,” Network, IEEE, vol. 18, no. 1,
pp. 15–21, Jan/Feb 2004.

[15] Sven Fleck, Florian Busch, Peter Biber, and Wolfgang
Straßer, “3D Surveillance – A Distributed Network of
Smart Cameras for Real-Time Tracking and its Visual-
ization in 3D,” in Proceedings of the 2006 Conference
on Computer Vision and Pattern Recognition Workshop,
Jun. 2006, pp. 118 – 126.

[16] Markus Quaritsch, Markus Kreuzthaler, Bernhard Rin-
ner, Horst Bischof, and Bernhard Strobl, “Autonomous
Multi-Camera Tracking on Embedded Smart Cameras,”
EURASIP Journal on Embedded Systems, vol. 2007,
2007.

[17] Andreas Doblander, Bernhard Rinner, Norbert
Trenkwalder, and Andreas Zoufal, “A Middle-
ware Framework for Dynamic Reconfiguration and
Component Composition in Embedded Smart Cam-
eras,” WSEAS Transactions on Computers, vol. 5, no.
3, pp. 574–581, March 2006.

[18] R. Stewart and C. Metz, “SCTP: new transport protocol
for TCP/IP,” IEEE Internet Computing, vol. 5, no. 6, pp.
64–69, 2001.

