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ABSTRACT

This paper investigates on middleware for distributed smart
cameras. We describe DSCAgents, our agent-oriented light-
weight middleware system. The design goal is to provide a
modular and flexible middleware that takes into account the
underlying hardware platform and also supports collaborative
image processing.

Mobile agents are used to model image processing tasks
and to manage the whole smart camera network. The agent-
oriented approach simplifies application development and do-
main specific services unburden programmers from imple-
menting the same functionality for each application again.
Mobility of agents allows to build highly dynamic and adap-
tive systems where image processing tasks can move from
one camera to another during operation. The evaluation of
DSCAgents shows reasonable performance while keeping the
resource requirements low.

Index Terms— Distributed Smart Cameras, Embedded
Middleware, Mobile Agent System

1. INTRODUCTION

Smart cameras have been the subject of study in research and
industry for quite some time. While in the ”early days” sens-
ing and processing capabilities were very limited, we have
seen a dramatic progress in smart camera research and devel-
opment in the last few years [1, 2, 3]. Recently, much effort
has been put in the development of networks of smart cam-
eras. These distributed smart cameras (DSC) [4, 5] are real-
time distributed embedded systems that perform computer vi-
sion using multiple cameras. This new approach is emerg-
ing thanks to a confluence of demanding applications and the
huge computational and communications abilities predicted
by Moore’s Law.

While sensing, processing and communication technol-
ogy is progressing at high pace, we unfortunately do not ex-
perience such a rapid development on the system-level soft-
ware side. Designing, implementing and deploying applica-
tions for distributed smart cameras is typically a complex and

challenging endeavor. So we would like to get as much sup-
port as possible from system-level software on the DSC net-
work. Such a system-level software or middleware system ab-
stracts the network and provides services for the application.
DSC networks, however, have significantly different charac-
teristic compared to other well-known network types such as
computer networks [6] or sensor networks [7]. Thus, we can
not directly adopt middleware systems available for these net-
works.

From the application’s point of view, the major services
a middleware system should provide are for the distribution
of data and control. However, DSC networks are mostly de-
ployed to perform distributed signal processing applications.
Thus, middleware systems for DSCs should also provide ded-
icated services for these applications. We propose to use the
agent-oriented paradigm for implementing the middleware ser-
vices and realizing custom applications.

In previous work [8, 9] we introduced the agent-oriented
approach for distributed smart cameras, identified a number
of basic services such a middleware should provide, and demon-
strated the use of mobile agents for application development.
In this paper we discuss our agent-oriented middleware and
certain services in greater detail. In [10] we presented a mid-
dleware for embedded sensor nodes in the context of sensor
fusion where we focus on services for task distribution and
dynamic reconfiguration.

The reminder of this paper is organized as follows. Sec-
tion 2 gives a short introduction to smart cameras and dis-
tributed smart cameras. Section 3 discusses related middle-
ware approaches in the domain of general purpose comput-
ing and embedded systems, focusing on agent-oriented ap-
proaches. Section 4 describes our agent-oriented middleware
design and its implementation as well as available services.
Section 5 presents some evaluation results and Section 6 fi-
nally concludes the paper.
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2. BACKGROUND

2.1. Embedded Smart Cameras

The generic architecture of smart cameras consists of a sens-
ing unit, a processing unit, and a communication unit (cf.
Fig. 1). The image sensor, which is implemented either in
CMOS or CCD technology, represents the data source of the
processing pipeline in a smart camera. The sensing unit reads
the raw data from the image sensor and often performs some
preprocessing such as white balance and color transformation.
The main image processing tasks take place at the process-
ing unit which receives the captured images from the sensing
unit, performs real-time image analysis and transfers the ab-
stracted data to the communication unit. The communication
unit controls the whole processing pipeline and provides var-
ious external interfaces such as USB, Firewire or Ethernet,
among others.

These generic units are implemented on various architec-
tures ranging from system-on-chip (SoC) platforms over sin-
gle processor platforms to heterogeneous multi-processor sys-
tems. The main design issues for building smart cameras are
to provide sufficient processing power and fast memory for
processing the images in real-time while keeping the power
consumption low.

Smart cameras deliver some abstracted data of the ob-
served scene. It is natural that the delivered abstraction de-
pends on the camera’s architecture and applications; almost
every smart camera currently delivers a different output. Smart
cameras perform a variety of image processing algorithms
such as motion detection, segmentation, tracking, object recog-
nition and so on. They typically deliver color and geomet-
ric features, segmented objects or rather high-level decisions
such as wrong way drivers or suspect objects.

2.2. Distributed Smart Cameras

Single camera systems are very limited. Either only a very
limited area is can be monitored or the number of pixels on
target is too low to identify certain objects when covering
larger areas. To overcome this limitation, multi-camera sys-
tems are deployed. However, most installations follow a cen-
tralized architecture where huge amounts of processing power
is provided in the back office for image processing and scene
analysis (e.g., [11, 12]). But processing the images of multi-
ple sensors on a central host has several drawbacks. First of
all, the communication costs are very high. Analog CCTV
cameras but also digital IP cameras require dedicated high-
bandwidth wiring from each camera to the back office. Cen-
tralized systems have the downside of limited scalability. The
main limiting factors are the communication bandwidth that
can be handled in the back office and the processing power
required for analyzing the images of dozens of cameras in
real-time.

Smart cameras are key components for future distributed
vision systems and promise to overcome the limitations of
centralized systems. Distributed computing offers greater flex-
ibility and scalability than centralized systems. Instead of
processing the accumulated data on a dedicated host, scene
analysis is done in a distributed manner within the smart cam-
era network. Individual cameras, therefore, have to collab-
orate on certain high-level tasks (e.g. scene understanding,
behavior analysis). Low-level image processing is done on
each camera. Collaboration among cameras is based on ab-
stracted data, which influences the communication infrastruc-
ture. Smart camera networks communicate in a peer-to-peer
manner and typically have significantly lower bandwidth re-
quirements. Instead of depending on a central control in-
stance which manages the whole system, distributed smart
cameras are able to organize themselves, i.e. allocate tasks,
form clusters of collaboration, etc. Fault tolerance is another
aspect in favor of a distributed architecture. While the reli-
ability of a centralized system depends on a single or a few
components in the back office, distributed smart cameras, in
contrast, can degrade gracefully.

3. RELATED WORK

Middleware systems are used in many application domains of
distributed systems. In general purpose computing the proba-
bly most prominent middleware standard is OMG’s Common
Object Request Broker Architecture (CORBA) [13]. CORBA
is a distributed object system which allows objects on dif-
ferent hosts to interoperate across the network. CORBA is
designed to be platform independent and not constrained to
a certain programming language. An object’s interface is
described in a more general language, the interface descrip-
tion language (IDL), which is then mapped to the native data
types of a programming language. Real-Time CORBA (RT-
CORBA) and Minimum CORBA [14, 15] have been specified
for resource constrained real-time systems. Other approaches
are Microsoft’s Distributed Component Object Model (DCOM)
[16, 17] and Sun’s Java Remote Invocation (RMI) [18]. Un-
like CORBA, these middleware implementations are limited
to a certain platform (i.e., Microsoft Windows) or a certain
programming language (i.e., Java).

Most agent systems for general purpose computing are
implemented either in scripting languages (e.g., D’Agents [19],
ARA [20]) or Java (e.g., Grasshopper [21], Voyager [22],
Diet-Agents [23, 24]) and only very few are implemented in
languages compiled to native code (e.g., Mobile-C [25])

Embedded systems are becoming more and more distributed
in recent years. Hence, middleware systems are developed
in this application domain as well, but the requirements are
typically different due to tight resource constraints. For wire-
less sensor networks most middleware systems are based on
TinyOS [26], a component oriented, event-driven operating
system for motes. Middleware implementations range from
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Fig. 1: Generic smart camera architecture.

a virtual machine on top of TinyOS, hiding platform and op-
erating system details, to more data-centric middleware ap-
proaches for data aggregation and data query (cf. [27]).

In recent years, the agent-oriented paradigm has also been
used to enhance software development for embedded systems
in general in various application domains such as process con-
trol, real-time control and robotic, among others (cf. [28, 29,
30]) and wireless sensor networks in particular (e.g., Agilla [31],
In-Motes [32]).

Typical smart camera platforms lie in-between general pur-
pose computing and wireless sensor nodes when considering
the available resources. In addition, smart cameras have to
support real-time image processing as well as collaborative
image processing. Hence, a middleware for smart camera net-
works has to find a trade-off between platform independence,
programming language independence and the overhead intro-
duced by the middleware.

4. DSCAGENTS: AN AGENT-ORIENTED
MIDDLEWARE

In this section we describe DSCAgents, a lightweight agent-
oriented middleware for embedded smart cameras. Agent-
oriented programming (AOP) has become more and more promi-
nent in software development during the last years. The agent-
oriented programming paradigm extends the well known ob-
ject oriented paradigm and introduces active entities, so-called
agents. The agents are situated in an environment, usually
called agency, which provides the required infrastructure and
services.

We believe that mobile agents are perfectly suited to man-
age whole networks of smart cameras. The ultimate goal is
that distributed smart cameras operate completely autonomous
with no or only minimal human interaction. Mobile agents,
therefore, can be used to model individual tasks within the
system whereas the agents are able to organize themselves.
Collaborative image processing, hence, maps to collaboration
among agents.

Figure 2 sketches a smart camera network operated by
mobile agents. The cameras are connected via an IP network
(wired or wireless) whereas each camera hosts an agency, ex-
ecuted on the camera’s communication unit. Mobile agents
represent the image processing tasks that have to be executed.
Note that the tasks are not bound to a certain camera but can
be moved from one camera to another during operation.

IP Network

Mobile Agent

Fig. 2: Smart camera network operated by a mobile agent
system.

Since DSCAgents targets embedded smart cameras, C++
was chosen as programming language for efficiency reasons.
This decision influences the design of DSCAgents to some
degree, especially regarding mobility of agents.

4.1. Software Architecture

The general architecture of smart cameras distinguishes be-
tween the processing unit and the communication unit (cf.
Section 2.1). Consequently, this separation is reflected in
the software architecture as depicted in Figure 3. The soft-
ware stack on the processing unit (cf. Figure 3b) comprises
a real-time operating system, drivers for additional hardware
modules such as image sensors, and management modules in
form of the DSPFramework [33]. The software stack on the
communication unit consists of the Linux operating system,
various libraries, a network layer for inter-camera communi-
cation, and DSCAgents on top of it.

Stationary system agents provide general services as well
as domain specific services supporting application develop-
ment such as remote agent creation, gathering monitoring in-
formation, obtaining camera parameters, and interacting with
algorithms executed on the processing unit, among others.

4.2. Agent Layer

The agency layer is the core of DSCAgents on top of the net-
work layer which provides basic inter-camera communication
mechanisms. Application developers implement a number of
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new agents for certain tasks. Hence, the goal of this layer is
to hide platform specific issues and concurrency issues so that
application developers can concentrate on the main things,
namely the application logic.

4.2.1. Agents

From the application programmer’s point of view, each agent
is executed in its own thread and agent communication—either
on the same host or on a remote host—must not interfere with
the other agent’s thread. But due to the tight resource con-
straints on embedded systems it is not guaranteed to have a
dedicated thread for each agent. Moreover, a pool of threads
is used to execute the agents as required.

The Agent interface which is mandatory for all agents de-
fines a set of methods that allow the agency to pass over con-
trol to the agent. After agent creation, for instance, the agent
has the opportunity to execute initialization code; other meth-
ods are for connection handling, message handling and the
like. The central component, however, is the AgentGover-
nor. It acts as a mediator between an agent and the agency
as well as agents itself. Each new agent instance gets as-
signed a dedicated AgentGovernor. From the agent’s point
of view, the AgentGovernor represents the agency; each re-
quest of an agent to the agency is intercepted by the Agent-
Governor which in turn performs some plausibility checks be-
fore delegating the request to the agency. Requests from other
agents (e.g. connection requests, incoming messages) as well
as requests from the agency actually go to the AgentGovernor
which enqueues the request in a kind of working queue. The
requests are then handled by the agent in its own context.

Communication between agents is connection oriented,
message based and basically asynchronous. Upon connec-

tion establishment the agent can assign a certain context to
the connection in order to keep track of the current state of
the communication and use this context information when
processing incoming messages. Although the asynchronous
communication is more flexible and allows communication
with multiple agents in parallel, it is more difficult to use.
Therefore, the AgentGovernor provides a synchronous com-
munication top of the asynchronous channel.

4.2.2. Image Processing

Mobile agents are used to represent the image processing tasks
in a smart camera network. The agent, however, is executed
on the communication unit while image processing is done
on the dedicated processing unit. Hence, agents are split into
two parts. The image processing algorithm, on the one hand,
is implemented as dynamic executable for the processing unit
and is devoted to low-level pixel processing. On the other
hand, the agent implements the application logic and controls
the image processing algorithm. Of course, both parts can
communicate with each other.

This strict separation into image processing part and ap-
plication logic supports flexibility and modularity of applica-
tions. A tracking agent, for instance, may use different track-
ing algorithms depending on the application and environment
with the same strategy for following the target over the cam-
era network.

4.2.3. System Agents

System agents provide common services simplifying appli-
cation development. The NodeManagementAget is somewhat
distinguished as it has extended privileges for interacting with
the agency. This agent, among others, provides information



about agents currently residing on an agency, and allows to
create new agent instances either on the local agency or on
a remote agency. Each agency hosts exactly one instance of
a NodeManagementAgent which can be accessed via a well-
known name.

The ImageProcessingAgent provides an agent-oriented in-
terface to the processing unit. Hence, other agents can com-
municate with algorithms on the processing unit in the same
manner as with other agents. The message content is, of
course, specific for the algorithm. Moreover, this agent al-
lows to load and unload algorithms on the processing unit.

For certain applications, additional system agents may be
deployed providing domain specific services. Distributed com-
puter vision, for instance, usually requires knowledge of the
camera parameters but also the topology of other cameras
(e.g., position and orientation) in their vicinity. The Scene-
InformationAgent is used to manage this kind of information
in a distributed manner.

4.2.4. Agent Mobility

An important feature is mobility of agents, i.e., agents can mi-
grate from one agency to another. While this feature can be
implemented easily in high-level languages such as Java or
.NET, it requires some effort to implement similar behavior
in C++, especially when taking into account different plat-
forms. While other C++-based agent systems interpret the
agent code (e.g., [25]), we want to execute the agents natively
for efficiency reasons.

Our approach to support mobility of agents, therefore, is
based on remote cloning. If an agent intends to migrate to
another camera, it simply creates a new agent instance on the
remote camera and passes it its current internal state for ini-
tialization. After successfully creating the new instance, the
agent terminates itself. This requires, that the agent’s code
is already available at the destination. If this is not the case,
the agent code can be loaded during runtime from a dynam-
ically linked library which is obtained from a repository in
the camera network. Remote cloning also supports different
camera platforms in the network since agent communication
is platform independent.

4.3. Middleware Services

We have stressed our middleware implementation in differ-
ent case studies [34, 35] and identified common middleware
services and domain specific middleware services. In the fol-
lowing we describe a selection of these services.

Dynamic task loading. Mobility of agents, and thus image
processing tasks, requires to load and unload these tasks
dynamically during runtime. Despite the low-level sup-
port integrated into the DSPFramework on the process-
ing unit, this functionality has to be provided to the
agents as well. In our case, a dedicated system agent,

the ImageProcessingAgent, gives an abstract represen-
tation of the processing unit.

Camera configuration. In image processing applications it
is important to know certain camera parameters such as
the image resolution, spectrum of the captured images,
camera geometry, etc. All this information is stored
locally on the camera and provided through the Scene-
InformationAgent.

Network and Camera topology. For collaborative image pro-
cessing the algorithms also require information about
cameras in their vicinity. This may be a list of other
cameras observing the same scene or neighboring cam-
eras in a certain direction. The SceneInformationAgent
is used to provide this information as well.

Resource monitoring. Resource monitoring keeps track of
the utilization of available resources such as memory,
processing power, DMA channels and communication
bandwidth, among others. An image processing task
can only be migrated to a certain camera if there are
sufficient resources available.

Time synchronization. Collaborative image processing re-
quires a uniform time-base for all cameras. Without
a system-wide synchronized clock it would be impos-
sible to combine results from different cameras. There-
fore, a dedicated agent may be used to synchronize the
clocks of each processor as well as the whole camera
network.

Video streaming. Although the ultimate goal in surveillance
applications is to unburden human operators from ob-
serving dozens of video streams, in some situations it
is still required to deliver real-time video data, either
for analysis by humans or archiving. New protocols
and improved encoding algorithms offer new possibil-
ities for streaming video data [35]. A dedicated agent
can be used to provide such a streaming service for all
agents in the system.

5. EVALUATION

We have implemented our agent-oriented middleware on our
embedded SmartCam [3], PoQoCam [36] and the PC plat-
form respectively. Since we target embedded platforms, a
small memory footprint is desired. Table 1 lists the code-size
of DSCAgents and its modules (stripped, cross-compiled bi-
naries) which is less than 3.5 MB, including all libraries. Ta-
ble 2 lists the memory consumption depending on the number
of agents. After startup DSCAgents consumes approximately
2.5 MB of RAM and each agent accounts for approximately
10 kB (depending on the memory required by the agent it-
self). Note that in this case each agent has its own thread



Libraries 2680 MB
ACE 2060 kB
Boost 442 kB
SmartCam Framework 178 kB

DSCAgents 885 kB
Total 3565 kB

Table 1: Code-size of DSCAgents and its components.

Number of Agents Allocated Memory
0 Agents 2488 kB

10 Agents 2768 kB
30 Agents 3020 kB
50 Agents 3280 kB

Table 2: DSCAgents’ memory consumption.

of execution which accounts for the greater part of the allo-
cated memory. The execution times of frequent operations are
summarized in Table 3 (average of 20 measurements). Creat-
ing a new agent on the same agency and on a remote agency
takes about 4.5 ms and 10 ms respectively. Messaging be-
tween agents is also an important factor, especially for col-
laboration and migration of agents. The results are depicted
in Figure 4. In case of local messaging it takes approximately
2 ms, independent of the message size. Sending messages to
remote agents takes somewhat longer and also depends on the
message size. For small messages (< 1000 Bytes, the inter-
face’s MTU) the transmission delay is almost constant but for
larger messages the transmission time increases linearly.

6. CONCLUSION

Smart cameras are embedded devices with high performance
on-board processing and communication capabilities. Recent
work focuses on the integration of multiple smart cameras
into a network and thus building a distributed system devoted
to image processing.

In this paper we presented DSCAgents, an agent-oriented
middleware for distributed smart cameras. We presented the
architecture and modules of our proposed middleware and
describe the core components, namely the agent layer and
domain specific services, in greater detail. The evaluation
presents performance measures of our implementation on the
embedded smart cameras.

Although we demonstrated the applicability of our mid-

Creating an agent (local) 4.49 ms
(remote) 10.11 ms

Loading image processing algorithm 17.86 ms

Table 3: Execution times for frequent operations.
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dleware approach in different case studies there is still lack of
a widely accepted middleware approach for distributed smart
cameras. Such a middleware should on the one hand be spe-
cialized for the application domain of smart camera networks
but on the other hand general and modular to support many
different smart camera platforms, ranging from low-perfor-
mance camera motes to high-performance multi-processor plat-
forms. It should also be applicable for various applications in
the context of smart cameras such as single and multiple tar-
get tracking, . . . , among others, and thus build a solid foun-
dation for future application development.
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