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ABSTRACT

In the proposed project we are working towards multi-sensor
smart cameras, i.e., we augment vision-based cameras by ad-
ditional sensors such as infrared and audio and, thus, trans-
form a single smart camera into an embedded multi-sensor
node. Our software framework for embedded online data fu-
sion, called I-SENSE, which supports data fusion on different
levels of data abstraction is presented.

Further our fusion model is presented with the focus set
on four main parts, namely (i) the acoustic and visual feature
extraction, (ii) feature based data fusion and the feature se-
lection algorithm, (iii) feature based decision modeling based
on Support Vector Machines (SVM) and (iv) decision mod-
eling based on a modified Dempster-Shafer approach is dis-
cussed. Finally we demonstrate the feasibility of our multi-
level data fusion approach with experimental results of our
“vehicle classification” case study.

Index Terms— sensor data fusion, multi-level fusion, ve-
hicle classification, smart camera, traffic surveillance

1. INTRODUCTION

In the future the world will be faced with a tremendous in-
crease in the number of vehicles on roads. Future traffic mon-
itoring systems will therefore play an important role to im-
prove the throughput and safety of roads and satisfy the trend
towards integration of sensor, computing and communication
technology into everydays life. Currently, monitoring sys-
tems which capture traffic data from a large sensory network,
by implementing a centralized architecture are usually vision-
based. Furthermore, they require continuous human supervi-
sion which is extremely expensive and often unreliable.

In [1] we have demonstrated the potential of combining
the scientific research areas multi-sensor data fusion and per-
vasive embedded computing by presenting an autonomous
traffic monitoring system. Visual data is fused with data from
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other sensors such as audio sensor, radar, infrared or inductive
loop sensors and therefore transform a single smart camera to
an decentralized multi-sensor smart camera. A novel combi-
nation of the following three approaches lead to an embedded
and reusable multi-sensor data fusion framework:

First, the full data oriented software fusion model (cp.
section 3) enables multi-task operations in a single system
capable of traffic monitoring, vehicle identification and clas-
sification. Furthermore, this model is a approach to step back
from the many application-specific and system-specific data-
fusion solutions to a generic model for an effective data fusion-
problem solution, and is therefore reusable for many applica-
tions with classification and observation tasks.

Second, multi-level data fusion is performed by combin-
ing data from different sensors at different levels of abstrac-
tion. These fusion levels are differentiated according to the
(i) amount of information they provide and (ii) computational
complexity. Therefore, dynamically reconfiguration based on
actual communication and computation loads is possible.

Third, the developed vision and acoustic feature extrac-
tion algorithm as well as fusion methods are implemented on
a distributed embedded platform which makes them wider ap-
plicable and supports real-time operation.

A sparse least-squares SVM (LS-SVM) [2] is used for
feature based decision modeling and is therefore extended
for calculating probability mass distributions based on cer-
tain and uncertain classification results. In [3] we present a
data oriented fusion model and the feature based data fusion
method. The shown results show the importance of a feature
selection process for selecting the features out of a pool of
candidates with the best class separability abilities. The con-
tribution of this article is to introduce a generic fusion model
and suitable data fusion methods in order to realize a generic
and reusable framework for online data fusion application on
an embedded smart cameras on different levels of data ab-
straction.

The remainder of the paper is organized as follows: Sec-
tion 2 gives an short review on related work. Section 3 dis-
cusses our model for multi-sensor data fusion. Section 4 deals
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Fig. 1. Relevant tasks of our Fusion Model characterized by input-
and output data

with the visual feature extraction tasks while section 5 treats
the acoustic feature extraction tasks. In section 6 we discuss
the feature fusion and the feature selection tasks. Section
7 deals with the decision modeling process while section 8
presents some experimental results of our approach, and sec-
tion 9 concludes the paper with a short discussion of our ap-
proach.

2. RELATED WORK

Our idea of developing a high-performance data fusion ar-
chitecture originates from the SmartCam project [4]. We ex-
tend a single-source smart camera to a distributed embedded
sensor node (consisting of a network processor and various
digital signal processors) capable of fusing data from various
heterogeneous sensors. There exists a large variety of multi
sensor fusion applications, and therefore most solutions are
currently application-specific [5, 6].

Our proposed approach is different because it is a step
back from these application-specific and system-specific so-
lutions to a generic and reusable model for online data fu-
sion. Furthermore, most solutions are fusing data only on
an individual level and are therefore limited in reusability for
other applications. Our approach supports data-fusion based
on raw-data level, feature level and decision level depending
on the current situation.

Examples for single-level fusion solutions are given in (i)
[7, 8] in cases of decision fusion and (ii) [9] in cases of fea-
ture fusion, just to mention a few. However, only a few archi-
tectures serve multi-level data fusion but they have to much
overhead and are, therefore, not suitable for embedded sys-
tems.

3. FUSION MODEL

Figure 1 presents the relevant parts of our data oriented generic
software fusion model. The complete model and further de-
tails are given in [2]. In figure 1 we show an example of two
physical sensors, labelled with S1 and S2 (i.e. audio sensor
and visual sensor).

The Sensing Unit represents the intelligent sensor which

consists of the physical sensor itself and a suitable data pre-
processor.

A Local feature extraction Unit (LFE) is used to extract a
single-source feature vector based on color information, struc-
tural information, spectral information or acoustic informa-
tion of an observed object. These individual feature vectors
are input to a feature based data fusion process, namely the
Feature in feature out (FIFO) process, in order to achieve a
joint feature vector estimate based on multiple sensors. There-
fore, a Feature Selector (cp. section 6) is used to select a
suitable set out of a large amount of candidate features.

The Local decision extraction Unit (LDE) or the Feature
in decision out unit are used to extract decisions from objec-
tives features either from a single source or multiple sources
based on Support Vector Machines (cp. section 7.1). There-
fore, a modified Least-Squares Support Vector Machine (LS-
SVM) [2] is used to gather suitable information for a decision
fusion process, namely the Decision in decision out unit (DeI-
DeO) unit based on statistical Dempster-Shafer methods (cp.
section 7.2).

4. VISUAL FEATURES EXTRACTION

In this section the feature extraction task based on visual fea-
tures is explained. For our feature extractor we adopted the
ideas of Viola and Jones [10] to build a multi-class classifica-
tor and improved it using RealBoost [11]. Simple Haar-like
and center-surround features are used in the implementation.
Additional gradient-based information is used in order to gen-
erate robust features and calculate them in real-time on an
embedded platform. The boosting approach mainly is used
to extract the most powerful features while during feature re-
gression phase the overall interpretation of their values could
be left to the feature based decision modeling process (cp.
section 7.1).
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Fig. 2. Visual feature extraction tree. Individual feature extractor
are each trained with positive and negative training examples.

To establish a multi-class feature extractor we build a tree
structure consisting of several binary extractors (cp. figure 2).
We chose the tree scheme to improve computational efficiency.



The result of each stage is given as a set of features with suit-
able class discrimination abilities. Further information about
visual feature extraction can be found in [3].

5. ACOUSTIC FEATURE EXTRACTION

The acoustic feature extractor [12] uses various signal pro-
cessing algorithms to generate feature candidates. Major is-
sues for the algorithms are robustness against wind noise and
non-stationary signal behavior of moving vehicles, and com-
putational feasibility for real time implementation. Acous-
tic signatures of moving vehicles often behave non-stationary
due to variations in engine rotations, gear changes and Doppler
effects. Additional wind or environmental noise impact sig-
nificantly reduces signal to noise ratio. Features from spectral
analysis techniques such as harmonic line association [13] as-
sume stationary signals, and thus, often perform poor in our
recognition scenario. An optimized feature subset is selected
out of the pool of candidate features provided by the algo-
rithms. Audio processing is performed at sampling frequency
fS = 8kHz to afford analysis of broad band signal proper-
ties, such as the tire noise. The final optimized subset is build
as shown in section 6 and consists of features chosen from the
algorithms described in the following sections.

5.1. Cepstral Features

Cepstral analysis techniques estimate the spectral envelope of
a signal and are widely spread in speech recognition and mu-
sical instrument classification systems. Cepstral coefficients
(CCs) are features with good information packing properties
and low mutual correlation. They can be estimated efficiently
via linear predictive (LP) analysis by conversion of the coef-
ficients into LP based cepstral coefficients. The LP parame-
ters ai are directly obtained as system of equations from the
autocorrelation function r(k), by solving the so called Yule-
Walker equations [14]:

p∑
i=1

air (|k − i|) = r(k), (1)

where p denotes the selected model order. A recursive
method for solving these equations is the Levinson-Durbin
algorithm. The CCs are then calculated by the following re-
cursion:

cm =

{
ln (r(0)) for m = 0
am +

∑m−1
k=1

(
k
m

)
ckam−k for m ≥ 1

(2)

where a0 = 1 and ak = 0 for k > p and p denotes the selected
model order. This method avoids any signal transformation
and thus, computational effort is highly reduced in compari-
son to CCs calculated from Fourier transform, since we only
require a few CCs to capture the slowly varying properties of

the spectrum, i.e. the spectral envelope. The whole signal
energy, for example, is contained only in the first coefficient
(c0 term), which yields excellent class discrimination between
cars and trucks. The first 60 coefficients are calculated from
the same number of autoregressive parameters, which guaran-
tees sufficiently detailed signal description. They are finally
used as candidates for the feature selection stage.

5.2. Spectral features

Spectral features [15] include signal attributes that describe
average energies, positions and spreads in frequency domain,
such as the spectral centroid, signal bandwidth, spectral flux,
or band energy ratios. Due to the frame processing of au-
dio signals, spectral features are always given as vectors that
reflect signal behavior over time. Thus, statistical moments
such as mean, variance and median values are utilized to sup-
port spectral features with information about non-stationary
signal behavior. Multiresolution analysis was also carried out
using discrete wavelet transform with Daubechier-10 wavelets.
The energy content of each resolution level can be used to lo-
calize signal energy and to provide information about spectral
composition.

5.3. Time Domain Features

These features describe short time energy behavior of the au-
dio signals, zero crossing rates and features achieved by cor-
relation analysis methods. As single energy values provide
only local information, again mean and variance must be cal-
culated as statistical moments to capture long term signal char-
acteristics. The zero crossing rate counts the number of zero
crossings of a signal within the specified time interval. It is
a measure for the noisiness of a signal, and hence it provides
useful information about the presence of tire noise, especially
with cars at higher vehicle speed. Cross-correlation analysis
was performed with two microphones placed along the road
side. Point like sound sources produce interference patterns
when passing the sensors, which can be investigated by image
processing and thus used for feature extraction.

6. FEATURE FUSION - FEATURE SELECTION

This section deals with the fusion of features from different
sensors (cp. section 4 and 5) and the selection of a suitable
set out of a pool of candidate features. After feature genera-
tion often a very large number of candidate features must be
reduced to a sufficient minimum as the SVM classifier can
only handle limited number of input features. Some of these
candidate features may give reliable class discriminatory in-
formation while others do not carry any relevant information
and hence, must be excluded as they could mislead the classi-
fier. This task is not trivial since features that provide good
classification information only achieve little improve when



combined in a feature vector, because of a high mutual corre-
lation. Conversely, the correct combination of features with
little class discriminatory abilities may carry out good results.

A genetic algorithm (GA) [16] is used as a search method
that follows the principals of natural biological evolution. A
set of possible candidate features, is generated at the begin-
ning and used to produce optimized solutions by repeatedly
modifying its candidate solutions, the individuals, over suc-
cessive generations.We provide two feature selection fitness
algorithms (i) based on class separability criterions calculated
for feature subsets and (ii) based on the classification result of
the classifier itself.

6.1. Class separability measures

Different class separability measures have been developed as
efficient feature selection criterions in various feature subset
searching methods. The major drawback is that they do not
always reflect the classifier behavior, and thus yield only sub-
optimal classification results. Better performance is usually
achieved by including the classifier into the selection process
and using the classification error rate directly as separabil-
ity criterion, but this step also includes a high computational
cost. Therefore, separability measures are especially impor-
tant when pre-selecting features out of a large amount of can-
didate features. Two different measures are implemented in
our I-SENSE framework:

Bhattacharyya Distance: The Bhattacharyya distance is de-
rived from Bayes decision theory, which assumes mul-
tivariate Gaussian distribution for the underlying prob-
ability densities:

Bij = 1
8 (µi − µj)T

(
Σi+Σj

2

)−1

(µi − µj)

+ 1
2 ln

( ∣∣∣ Σi+Σj
2

∣∣∣√
|Σi||Σj |

)
(3)

with Σ denoting the covariance matrix and µ is the
mean vector, calculated for the selected feature subset
over all objects of the classes i and j, and | · · · | as
the determinant of the respective term. This criterion
consists of two additive terms, one that weights fea-
ture vectors with different mean values and the other
for different variances. In a multiple class case with
M classes, the average Bhattacharyya distance is cal-
culated as follows:

Bhat =
M∑
i=1

M∑
j �=i

BijPiPj (4)

where Pi is the appearance probability of class i.

Scatter Matrices: Unlike the above separability measure, the
scatter matrices criterion does not assume Gaussian prob-
ability distribution for individual features, but investi-
gates how feature vector samples are scattered in the
feature vector space. Several scatter matrices are im-
plemeted for that purpose:

• Within-class scatter matrix:

Sw =
M∑
i=1

PiSi (5)

• Mixture scatter matrix:

Sm = E
{
(x − µ0)(x − µ0)T

}
(6)

where Si = E
{
(x − µi)(x − µi)T

}
denotes the co-

variance matrix for class i and µ0 =
∑M

i=1 Piµi de-
notes the global mean vector. Sm represents the covari-
ance matrix with respect to the global mean. The traces
of the matrices can be used to define three different cri-
terions for class separability:

J =
|Sm|
|Sw| (7)

where J-criterion is invariant under linear transforma-
tions of the feature space.

Both class separation measures perform well as fitness
function in the GA based Feature Selector.

6.2. SVM classifier error measures

The second method act as follows: for each feature vector
combination, the classification error probability of the clas-
sifier is estimated and the one with minimum error selected.
That means increased complexity and computational demand
for the feature selection process, but on the other hand direct
inclusion of the classifier into the optimization process.

As the fitness function is being minimized by the GA, the
error rate of the classifier is interpreted as a reciprocal mea-
sure for the fitness. That is, for each individual the SVM is
trained with part of the database samples and then tested with
the other one, yielding the error rate as fitness value. A sin-
gle train & test run of the SVM does not necessarily lead to a
reliable classification result, since feature data can be noised
and the result highly depends on the selected training sam-
ples. Classifier results can be significantly scattered when us-
ing different training data. Hence, the SVM must be trained
and tested several times with randomly chosen samples from
the database to ensure an accurate average result for the se-
lected features.



feature type candidate features error SVM error CSM
acoustic 108 14.3%(20/108) 18.1%(20/108)
visual 56 11.8%(24/56) 13.5%(21/56)
fused 164 8.3%(20/164) 11.3%(21/164)

Table 1. Feature selection results for individual features and
combined candidate features, in brackets the selection ratio
is given (e.g 24/56 means 24 features are selected from 56
candidates)

6.3. Feature selection results

Our experiments have shown that the best way to select suit-
able class separation features from a set of candidate features
is to use the classifier itself to obtain the classification error
minimized by a GA. The main bottleneck for this method
is the limited computational power. Using the method men-
tioned above as Class Separability Measures (CSM) leads to
sufficient results while reducing the necessary time by factor
approx. 100.

The table (cp. table 1) show the results from GA based
on classifier behaviour compared with error rates of feature
subsets derived from optimization runs with scatter matrices
criterion J . The presented percentages correspond to the me-
dian value of 20 random permutations from the database (i.e.
over 2000 cars, 850 large trucks and 520 small trucks) where
50% of each vehicle class are used as learning data and the
other 50% are used for evaluation.

7. DECISION MODELING

The decision modeling process is provided as a generic soft-
ware framework which allows online data fusion on a dis-
tributed embedded system with limited memory resources. In
our multi-level data fusion framework Support Vector Ma-
chines (SVM), proposed by Vapnik [17] as well as a deci-
sion fusion approach based on Dempster-Shafer theory of evi-
dence [18] are used as classification method for decision mod-
eling.

7.1. SVM - Feature based decision modeling

For large sets of training data, common SVM learning strate-
gies are not feasible, especially on embedded platforms be-
cause of their restricted time and memory resources. There-
fore, a modified version of the original SVM, the so called
Least Squares Support Vector Machine (LS-SVM) [19] is used
for decision modeling in our framework. The main charac-
teristic of LS-SVMs is the lower computational complexity
compared with original SVMs, without any quality loss in the
classification results.

The extraction of support vectors from a given training
dataset is comparable with the problem formulation of finding
the most significant vectors in a given data set. The optimal
solution for solving this task should combine the following

features. It should (i) be fast, (ii) lead to a sparse solution
(i.e. low number of support vectors) and (iii) produce good
classification results.

In [2] we propose a modified nearest neighbor technique
for an intelligent preselection of learning data in order to re-
duce the training set and therefore reduce the number of sup-
port vectors which are then used by the LS-SVM classifier.
The remaining datasets are used as support vectors for a LS-
SVM classifier to find the decision boundary between two
classes in the learning process. Using our approach leads to
a sparse LS-SVM classifier with good classification results
(about 2% higher error rate compared to standard SVM) and
lower computational costs (about 70% faster than Standard
SVM) and lower memory costs (about 55% less data for stor-
age compared to LS-SVM).

The learned function by our LS-SVM approach can be
given as:

f(x) =
∑

i

yiαik(x,xi) + b (8)

where i are the indices of the support vectors out of the train-
ing data set, y are the label of the support vectors, αi are
the non-zero Langrange multipliers and b is the bias. It is
seen that both training and evaluation of f(x) can be done in
terms of arbitrary kernel functions k(x,xi) = 〈ϕ(x), ϕ(xi)〉.
In cases of classification we modified the interpreting of the
given result by equation 8 in a way that we introduce a thresh-
old value to distinguish between certain and uncertain classi-
fication. In both cases a probability measure for the classifi-
cation correctness is calculated – by interpreting the distance
from the actual data point to the separating hyperplane. By
using a simple one-against-one technique the classifier out-
put is modified in a way that a list of all possible classes and a
corresponding probability measure is given as well as the a re-
sulting uncertainty instead of investigating only the probable
class. This output style is suitable for our DS based decision
fusion approach.

7.2. DS combination - Decision based decision modeling

This section deals with the fusion of decisions from individual
sensors. The main objective is to use the complementary in-
formation from different single-source classifiers to fuse these
classification result into a single decision or more precise into
a matrix of uncertainty intervals for each possible proposition
the so called “frame of discernment Θ”. Here, we use a dis-
tance mass function of our SVM based classifier as our DS
belief function.

The DS theory of evidence is a powerful tool represent-
ing uncertain knowledge. Therefore this theory have inspired
many researchers to investigate different aspects related to
uncertainty and lack of knowledge and their application to
real world problems. In the following a short overview about
the DS theory basics should be given and our method for
weighted DS combination is introduced.



The hypotheses set Θ, is indent to represent a set of mutu-
ally exclusive prepositions. The evidence on a subset X ⊂ Θ
is represented with a basic belief assignment m(X) ≥ 0 and
satisfies the following:

∑
X⊆Θ

m(X) = 1, and m(φ) = 0 (9)

where φ is the empty set. The belief function Bel(X)
gives the amount of evidence which implies the observation
of X . This function is defined on the frame of discernment
by the relation:

Bel(X) =
∑

A⊆X

m(A) (10)

where A is a subset of X . The basic belief assignment m(.)
is a generalization of a probability density function whereas a
belief function is a generalization of a probability distribution
function. The plausibility function Pl(X) can be seen as the
amount of evidence which does not refute X and is given as:

Pl(X) =
∑

A∩X �=φ

m(A) (11)

where the plausibility can be computed as the sum of all
basic belief assignments belonging to the subset A that have
a non-null intersection with X .

Consider two basic belief assignments m1(.) and m2(.)
the DS rule of combination combines these pieces of evidence
from independent sources to obtain the belief committed to
X ⊂ Θ according to the following formula:

m(X) = m1(X) ⊕ m2(X)

=
∑

Ai∩Bj=X m1(Ai)m2(Bj)

1−∑Ai∩Bj=X m1(Ai)m2(Bj)
, X �= φ

(12)

Implementation of equation 12 implies that we trust all
sensors equally. This approach can cause problems if the DS
fusion system is not properly designed and is therefore suit-
able only for situations when both sensors(i.e. two sensors are
involved into the data fusion process) have the same accuracy
estimates or in situations where the basic belief assignments
over the frame of discernment Θ can reflect the ignorance go-
ing with the observations. Due to building a generalizable
sensor fusion framework working with sensors of different
accuracy we introduce a weighted combination rule. The ba-
sic idea is supposing that we know how a sensor performs
historically in similar situations, we can use the historical cor-
rectness rates to decide how much we trust in a sensors actual
estimation. By using this approach we modify the original
DS combination rule to handle cases of sensors with unequal
confidence. Equation 12 changes therefore to:

m(X) = m1(X) ⊕ m2(X)

=
∑

Ai∩Bj=X w1m1(Ai)w2m2(Bj)

1−∑Ai∩Bj=X w1m1(Ai)w2m2(Bj)
, X �= φ

(13)
where w are the corresponding estimation correctness rates

in history.

8. EXPERIMENTAL RESULTS

In this section we present the results of our vehicle classi-
fication case study. We have implemented a simple multi-
class classifier by using the One-against-All technique. The
database consists of 3 different classes: (i) large trucks, (ii)
small trucks and (iii) cars. Further vehicle classes (motor-
cycles and busses) are available but the number of samples
in these classes are rather low in comparison with the other
classes and therefore we decide to use only these three classes
to demonstrate the feasibility of our multi-level data fusion
approach. We generate a database with at least 250 samples in
each class (2140 cars, 264 small trucks and 554 large trucks) –
30% are used as training samples and the other 70% are used
as evaluation samples. The samples for training and evalua-
tion are chosen randomly from the database.

For all classifications we used our LS-SVM with support
vector preselection and radial basis function (RBF) as the ker-
nel function. The results presented in the following figures are
average values from 20 runs with random selection of train-
ing datasets and random selection of the evaluation set (Note:
Both sets are disjunctive).

Firstly we demonstrate the vehicle classification results
of our single sensors with the proposed LS-SVM classifier.
The box plots shown in figure 3a indicate that class separa-
tion only with acoustic features is quite difficult especially in
cases of small trucks. Using a confusion (cp. table2) matrix
for this case study experiment indicates that the classification
system can make the distinction between cars and other ve-
hicles pretty well but has troubles distinguishing between the
two types of trucks. Figure 3b indicate that class separation
only based on visual features work overall pretty well. Using
a confusion matrix (cp. table3) for this case indicates that the
classification system can make the distinction between cars
and other vehicles pretty well but has troubles distinguishing
between the two types of trucks – but still less troubles than
classification based on acoustic data only.

Figures 3c and 3d indicate that fusing data from various
sensors help to improve the robustness and confidence as well
as to reduce ambiguity and uncertainty of the processed vehi-
cle classification. In figure 3c and table 4 we show that our
approach for fusing data at decision level is advantageous in
comparison to single sensor classification in the overall clas-
sification result as well as the individual class separation abil-
ities (e.g. the classification of small trucks can be increased
by at least 7% and the classification of large trucks increases
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Fig. 3. Classification result with LS-SVM based on (a) acoustic features only, (b) visual features only, (c) DS fused decisions
from individual sensors and (d) fused features from both sensors and accurate feature selection; Note: the given boxes have
lines at the lower quartile, median, and upper quartile values. The whiskers are lines extending from each end of the box to
show the extent of the rest of the data.

car s. truck l. truck
car 1377 82 39

s. truck 13 117 55

l. truck 25 99 264

Table 2. Confusion matrix of the acoustic feature based clas-
sification result

car s. truck l. truck
car 1426 48 24

s. truck 25 140 20

l. truck 3 26 359

Table 3. Confusion matrix of the visual feature based classi-
fication result

by at least 10% in comparison to single sensor classification).
In our case study we use a weight w1 = w2 valued by 0.5
in order to trust in both sensors equally. In figure 3d and ta-
ble 5 we show that our approach for fusing data at feature
level is advantageous in comparison to single sensor classifi-
cation as well as in decisions gained by fusing single sensor
decisions by the proposed DS approach, discussed in section
7.2. Furthermore, fusing data on feature level allows to de-
crease the number of learning samples in order to gain same
classification results than with single source data [2]. Note,
that classification based on single sensor decisions needs less
memory and communication requirements than using feature
based classification and therefore both approaches are suit-
able in an multi-level sensor fusion framework – depending
on the current situation and the available computational and
memory resources.

9. DISCUSSION

Vehicle classification is one of the most important tasks in
traffic surveillance systems. Our aim is to develop a generic
software fusion framework which allows online data fusion
of different types of sensors on different levels of abstraction.



car s. truck l. truck
car 1431 42 25

s. truck 11 153 21

l. truck 1 9 378

Table 4. Confusion matrix of the decision fused classification

car s. truck l. truck
car 1447 33 18

s. truck 5 170 10

l. truck 2 2 384

Table 5. Confusion matrix of the feature fused classification

A multi-sensor smart camera serves as key component for
this implementation. A training data preselection approach
[2] makes learning of large training datasets possible even as
these embedded systems with restricted memory and time re-
sources.

We show that our approach for multi-level data fusion is
advantageous in comparison to single source vehicle classifi-
cation (e.g. based on visual sensors only) by demonstrating
the feasibility in our case study experiment. The results of our
experiment demonstrate that the advantage is twofold. First,
the classification error rate decreases by using our modified
LS-SVM classifier and data fusion based on feature level with
a suitable feature selection algorithm proposed in this paper.
Second, the decision based data fusion enabled on a modified
LS-SVM output of single source decision extractions and the
proposed Dempster-Shafer framework can be used to obtain
quite similar classification results while reducing the amount
of necessary communication and storage data – which is quite
important in embedded systems.

We plan to extend our database by a bus class and motor-
bike class. Further acoustic feature extraction algorithm will
be implemented in real-time as DSP based software tasks.
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