
Towards Trust Services for Language-Based Virtual
Machines for Grid Computing

Tobias Vejda, Ronald Toegl, Martin Pirker, Thomas Winkler

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, A–8010 Graz, Austria

{tvejda,rtoegl,mpirker}@iaik.tugraz.at
{thomas.winkler}@uni-klu.ac.at

Abstract. The concept of Trusted Computing (TC) promises a new approach to improve
the security of computer systems. The core functionality, based on a hardware compo-
nent known as Trusted Platform Module (TPM), is integrated into commonly available
hardware. Still, only limited software support exists, especially in the context of grid com-
puting. This paper discusses why platform independent virtual machines (VM) with their
inherent security features are an ideal environment for trusted applications and services.
Based on different TC architectures building a chain-of-trust, a VM can be executed in
a secure way. This chain-of-trust can be extended at run-time by considering the identity
of the application code and by deriving attestable properties from the VMs configuration.
An interface to provide applications with TC services like sealing or remote attestation
regardless of the underlying host architecture is discussed.

1 Introduction

Grid computing promises to provide massive computational power by distributing the workload
over a large pool of independent systems. Virtual Machines (VM) allow one to overcome many
of the complexities and security issues involved and are a well-suited basis. Still, open security
issues exist. We use this context as example to show how these can be mitigated with Trusted
Computing (TC).
Grid computing has emerged as new field in the area of distributed computing. “The Grid”
provides flexible, secure and coordinated access to shared resources among dynamically changing
virtual organizations [12]. Much like the power grid, it aims to make computational power at
the level of supercomputing an ubiquitous commodity resource which is available at low costs.
Different projects use grid computing to tackle complex problems like climate prediction1 or the
search for collisions in the SHA-1 hash function2. Not only large organizations provide resources,
but also individual users may donate unused CPU cycles, bandwidth or memory.

Such a heterogenous environment is ideally suited for virtual machine environments [13] with
middleware based on Java commercially available. Java is an object-oriented, type-safe software
environment with built-in security mechanisms such as access control, signed executable code and
support for cryptography. Together with the security mechanisms, the intermediate byte-code
representation of Java programs provides a “natural” isolation to other applications. It is portable
per-se and also allows easy deployment. Building on the original notion of a sandbox, code can
be executed with a defined set of access rights to system resources with flexible stack inspection
mechanisms. Just-In-Time compilation creates native code for computational intensive program
hot spots at runtime, thus mitigating the performance disadvantages of bytecode interpretation.
1 http://www.climateprediction.net/
2 http://www.iaik.tugraz.at/research/krypto/collision/index.php

http://www.climateprediction.net/
 http://www.iaik.tugraz.at/research/krypto/collision/index.php


2 Tobias Vejda, Ronald Toegl, Martin Pirker, Thomas Winkler

Grid Computing as a Use Case for Trust Services The general operation model we
consider as possible use case in this paper is as follows. A grid user identifies a problem which
requires a large computational effort to solve. With the help of standard conformant middleware
packages and libraries, she creates a software package. It is then automatically deployed to the
participants on the grid. Work data is partitioned and distributed via secure channels to the
remote systems, which are composed of a diverse selection of architectures. Work is processed,
the results returned and assembled.

Of course, security in such a distributed system, where application code and data is sent to
remote systems that are under control of another administrative domain, is critical.

In a current Grid system, the user, respectively the middleware she chooses to use, is required
to trust the participants. The following security risks, as identified in [15], arise from this.

I Participants may deliberately report back wrong answers.
II Participants may not enforce data integrity or not compute accurately.

III Data protection requirements of sensitive data cannot be enforced on remote systems.
IV Theft of intellectual property on the distributed code by the participants is possible.
V Theft of confidential data by the participants is possible.

1.1 Related Work

A general study on the applicability of TC for grid computing, including use cases, is given in
[15]. In [22], integration of VMs with grid computing is categorized and discussed how the policy
and sandboxing features of an assumed-trustworthy Java Virtual Machine (JVM) can be used.
TC is only suggested as an approach to integrate legacy systems in future grids. In the so-called
Trusted Grid Architecture [20] participants integrate grid functionality in a hardware-supported
virtualization scheme. Native code grid jobs are run in compartments3 separated from a legacy
OS. A protocol is designed for the attestation of multilateral security. Likewise, in the Daonity
[23] project, native virtualization and TC are applied to Grid middleware. Platform independence
or the issues that arise when realizing trust and measurements within virtual machines are not
considered in these works.

Apart from work in grid computing, several approaches in the area of attestation are relevant
to this work. The concept of Property-Based Attestation (PBA) [5] provides an alternative to
the attestation mechanisms specified by the TCG henceforth called binary attestation. A Trusted
Third Party (TTP) translates the actual system configuration into a set of properties and issues
certificates for those properties. As the certification is done externally, that approach is called
delegation. Chen et al. [19] have proposed a protocol for property-based attestation, also following
the delegation approach. They identify two additional categories to determine properties which
are code control and code analysis. Code control infers regulations on the target machine, e.g.
using SELinux as a reference monitor [30]. The attestation includes SELinux and its security
policy. An example for code analysis is Semantic Remote Attestation (SRA) [6]. SRA utilizes
language-based techniques to attest high level properties of an application running in a JVM.
The approach is hybrid as it uses binary attestation to attest to the Trusted Computing Base
(TCB) below the JVM. However, detailed knowledge of the application and eventual protocols is
needed to extract high-level properties. A generalized approach based on a language-based VM
has not been proposed yet.

3 Note that such hardware-emulating compartments are often referred to as Virtual Machine (VM). In
this paper we use the term for intermediate code interpreters like the Java VM exclusively.



Towards Trust Services for Language-Based Virtual Machines for Grid Computing 3

1.2 Contribution

With the contributions of this paper we present novel Trust Services for language-based Virtual
machines. We show how the afore-mentioned risks in the context of Grid computing can be
mitigated as an exemplary use-case. We present a JVM with integrated services for TC based on
a Trusted Computing Platform (TCP). Those services allow to extend the chain-of-trust into a
language-based VM environment and their transparent usage in a remote attestation scenario. To
complete the integration of TC into Java, we present the outline of an API allowing applications to
use functionality such as key-management and provide security for application data. We believe
this separation of concerns, low-level security services and a high-level API for applications,
provides the necessary flexibility to tackle security problems arising in complex architectures,
such as found in grid-computing. As our approach is based on the Java programming language,
we maintain platform independence.

The JVM services presented in this work include support for property-based attestation. We
see sandboxing as a tool to achieve security guarantees for grid computing and propose to extract
properties from the security policy of the JVM. This allows us to provide a flexible basis for a
framework for generalized attestation and sealing. We further outline a straightforward way to
integrate those properties into existing proposals of protocols for property-based attestation.

1.3 Outline of the Paper

The remainder of this paper is organized as follows. Approaches to provide a trustworthy ex-
ecution environment for the Java bytecode interpreter are discussed in Section 2. In Section 3
we present the extension of the so created chain-of-trust into the JVM. Section 4 explains how
hardware supported TC functionalities can be provided to platform independent applications.
The paper concludes in Section 5.

2 Trustworthy execution of Virtual Machines

Security enforced by software can be manipulated by software based attacks. To overcome this
dilemma, the Trusted Computing Group (TCG) [10] has defined the TPM, a separate chip
affixed to the mainboard of the computing platform. Similar to a smartcard, the device provides
cryptographic primitives such as a random number generator, asymmetric key functionality and
hash functions. A non-volatile and tamper-proof storage area keeps data over reboots. Access
to the TPM is controlled through authorization of the commands and input data using a secret
known to the owner of the TPM. The chip itself is a passive device providing services to software
running on the main CPU, but does not actively take control or measurements of the host system.

Instead, the TPM allows to record measurements of the platform state in distinct Platform
Configuration Registers (PCR). It receives measurements x from system software and hashes the
input to the PCR with index i and content PCRt

i using the extend operation

PCRt+1
i = SHA-1(PCRt

i, x).

At a later time the TPM can provide a compelling proof by attesting the received measure-
ments in the form of quoting a set of PCR contents, cryptographically signed with a private
Attestation Identity Key (AIK) key bound to the TPM. This integrity report allows a remote
party to form a qualified trust decision of the platforms state. Data may also be bound to PCRs,
in a process called sealing, in which decryption is only possible in a single valid system state.

At current level of technology, it is impossible to provide an full security assessment for open
architectures like todays personal computers. Thus, the TC concept does not claim to enforce



4 Tobias Vejda, Ronald Toegl, Martin Pirker, Thomas Winkler

perfect security under all conditions and tasks. The TCG defines a trustworthy system as a
system that behaves in the expected manner for the intended purpose.

A system may provide a proof report of its state by applying the transitive trust model.
Starting from booting the hardware with the BIOS acting as the root of trust each successive
software block is measured into the TPM before it is executed, leading to a chain-of-trust.
There are variations of this concept. The basic TCG model envisions a static chain-of-trust from
hardware reboot onwards. Newer developments in CPUs and chipsets provide the option of a
dynamic switch to a trusted system state: A special CPU instruction switches the system into
a defined security state and then runs a measured piece of software which assumes full system
control. Close hard-wired cooperation of CPU, chipset and TPM guarantees that the result is
accurate. Using a hypervisor with support for hardware enforced virtualization, for instance
Xen4, allows execution of trusted and untrusted code in dedicated isolated compartments.

An intuitive assessment of a systems security is its size: The larger a system is the more likely it
contains security relevant problems. Additionally, measuring of code takes time, especially when
using the TPM itself with its low-performance communication link and hash implementation.
Thus it is desireable to minimize the Trusted Computing Base, the critical parts of a system
where every small bug can compromise global system security. Using a JVM as trust basis, the
question of possible size reduction of the OS layer below arises. This issue has been addressed
by Anderson et al. [31] who created a library OS for the Xen hypervisor.

With a choice of the mechanisms above, depending on the actual architecture, the JVM can
be executed in a trustworthy way, providing a platform-independent TCB.

3 Trusted Computing Services for the JVM

We now address issues related to the JVM itself, starting with the basic security services provided
by a language-based VM environment.

Java provides security mechanisms based on a security policy that enforces access control
through stack inspection [24,21]. That is, the decision whether a method is allowed to access
a resource is based on the entire call stack. The algorithm searches each stack frame starting
from top to bottom (hence starting from the most recently called method) and tests whether
the method has the appropriate permissions to access the resource. Each stack frame is mapped
to a protection domain through the class the method belongs to. Each protection domain has
assigned a set of permissions5 which is checked through a security manager interface.

The security manager is held by the System class. A program fragment that needs access to
a security relevant resource has to query the System class, check whether the security manager
is actually instantiated (i.e. whether the return value is not null), and then query the security
manager interface for access rights on the resource. The access control model is configured in
so-called policy files at the granularity of code-bases (i.e. locations on the class path).

3.1 Code Identity

Code identity, based on binary measurement, is the central metric for remote authentication as
defined by the TCG. The identity of the code is obtained through applying the extend command
to binary executables. For a Java environment this would be class files, and as a special case, JAR

4 http://www.cl.cam.ac.uk/research/srg/netos/xen/
5 The full set of permissions available in the OpenJDK is documented in

http://java.sun.com/javase/6/docs/technotes/guides/security/permissions.html

http://www.cl.cam.ac.uk/research/srg/netos/xen/


Towards Trust Services for Language-Based Virtual Machines for Grid Computing 5

files. A JAR file is the typical unit of deployment for an application or a library and contains a
collection of classes and associated meta-data.

At run-time, the JVM searches for classes on the so-called class path and dynamically loads
them into the environment. As Java aims at a networked environment, class path entries may
include remote locations as well. Hence, the code that is running on a JVM is generally not
known on beforehand. We implemented a measurement architecture for the JVM which performs
measurement of class files (resp. JAR files) and places the hashes in a PCR. To this end, we
integrated measurement hooks into the class loading process. This allows us to extend the chain-
of-trust into the JVM and gives the possibility to integrate further TCG concepts into the Java
environment. In the context of Grid computing, this allows the user to verify that the code
executed by the participant is actually identical to the distributed package, thus dealing with
security risks I and II.

The JVM allows application designers to swap out certain operations to native code, i.e.
to use native libraries from Java programs. This feature is intended for low-level access to the
hardware and for computationally intensive algorithms. An example is the System.arraycopy
operation from the runtime library which performs better than any Java equivalent in terms of
performance. As such a library directly accesses VM memory, it is a potential security problem
for the measurement architecture. We deal with this problem through measuring the code of the
native library.

3.2 Trust Properties from the VM Configuration

The binary attestation approach foresees that configuration files of applications are measured
and, to allow the verifier determine the security of the configuration, are included in the Stored
Measurement Log (SML). As discussed before, the configuration of the access control mechanism
is done in a java policy file. On a remote verifier side, this policy file has to be evaluated and
checked whether it conforms to a given security policy, i.e. whether it matches the verifier’s
needs. As the policy files are not of a precisely defined format, identical configurations may
hash to different PCR values. Hence, there needs to be a non-ambiguous mean to determine the
properties of a specific configuration.

A work by Sheehy et al. [17] defines delegation as a requirement to ensure the trustworthiness
of a generalized attestation mechanism. We address this issue in the following way: Determin-
ing the security of the configuration of the JVM can be delegated to a TTP through binary
attestation. However, to obtain properties of that configuration, the TTP needs to translate
the information as well. The proposed approach can also be used at a TTP to translate the
configuration into a set of properties.

The Java security model permissions related to the specific scenario of Grid computing de-
mand evaluation. To this end, we group certain permissions of the security policy to obtain a set
of trust properties. The list of properties we propose is shown in Table 1. Note that this approach
is an “all-or-nothing” approach. For instance, the property file access tells an attestor whether
any code is able to access the file system. Further restrictions apply for the other properties.
We have introduced this abstraction of the configuration to reduce the complexity of the access
control model of Java as a first step towards determining properties.

We map permissions related to the general run-time security features to a single trust property
runtime. An attestor has the possibility to determine whether the security manager is activated,
and whether an application has the ability to change its implementation, the installed security
policy, and class loaders. Furthermore, the settings of security permissions are reflected.

The full set of properties allows us to deal with several issues:



6 Tobias Vejda, Ronald Toegl, Martin Pirker, Thomas Winkler

Table 1. Trust properties for a JVM security policy for use in grid computing.

Trust Property Semantics Java Permissions

Runtime Status of run-time security features createSecurityManager, setSecurityManager,
modifyThread, modifyThreadGroup, stopThread,
createClassLoader, getClassLoader,
setContextClassLoader,
enableContextClassLoaderOverride,
suppressAccessChecks,
any security permission

Native code Ability to use native libraries loadLibrary

File access Ability to access the file system any file permission

Network access Ability to access the network any network/socket permission

– Sensitive Data: If a specific JVM instance has the property of file access set to false, data
cannot be written to disk, and hence, not be gathered by other, malicious entities. We, of
course, assume that the network channel itself is confidential which is a property as well.

– Native Code: in special cases hardware optimization of the computing algorithm might be
necessary. In addition to the bytecode, binaries can be distributed for invocation via JNI.
As we are able to measure these files as well before executing them, this does not reduce the
overall security. Grid applications using native code need the respective property to be true.

The proposed properties of the security policy are examples which match the needs of grid
computing and allow us to enforce a behavioral policy to handle risk III. In [18], a property P
is defined as a bit-string s of length l. As we chose to map permissions to properties that can
only be true or false, l of such properties can be integrated into a single bit-string of respective
length. This concept can be extended by using several bits for a single property to allow for more
flexibility in defining s. Thus, the complex Java policy file can be reduced to s which can easily
be extended to a PCR and thus integrated in attestation protocols, such as a binary attestation
protocol or a property-based attestation protocol as proposed in [19].

3.3 Trusted Class Sealing

The distribution of software packages, as on the grid, might endanger intellectual property of
the user, for instance, when the computational algorithm itself is of value. Current middleware
[14] relies on bytecode obfuscation which makes recovery of the original source code only more
difficult but not impossible. An other näıve approach, to encrypt class files and decrypt in a
special class loader is easy to attack [26] if the current system integrity is not considered. Thus,
to handle security risk IV we propose the concept of trusted class sealing.

This should not be confused with the following legacy concepts: Firstly, package sealing,
which is a mechanism to control object inheritance [28]. Secondly, object sealing [29], allows
one to encrypt all serializable objects, but without hardware protection of the keys and not
transparently to the application. Instead, the user seals the sensitive classes to a trusted state of
the target environement. Unsealing a class can be done through decoding the byte-stream in the
class loading process. For performance reasons, only individual, security sensitive, classes should
be sealed.



Towards Trust Services for Language-Based Virtual Machines for Grid Computing 7

Trusted Device Driver Library (TDDL)

TPM

OS device driver

Trusted Core Services (TCS)
TCS
(daemon)

TSP
(l ibrary)

Java Application

Trusted Service
Provider (TSP)

Wrapper Backend

Native
Application

Wrapper Frontend

SOAP

Trusted Service
Provider (TSP)

Trusted Service
Provider (TSP)

SOAP SOAP

. . .

Fig. 1. Overview of jTSS Wrapper layered architecture, allowing both integration in Java and
concurrent access. Legend: Hardware is light gray, native code is white and Java code is dark
grey.

4 Application Interfaces to TC Mechanisms

The trustworthiness of a system does not end at the mechanics internal to the JVM, but extends
into the application layer as well, especially to the maintenance and control middleware of a
Grid. To receive sealed data and decrypt it, a participant requires both, high-level networking
capabilities as provided by Java and access to TC services. The same holds true for remote
attestation, where a networked protocol needs to maintain and transmit both the high-level
SML and the PCR states from the TPM. It is a small step to allow also general purpose Java
applications the access to TC services based on the TPM hardware device by means of defining
an open Application Programming Interface (API).

There are two distinct approaches to integrate such an interface into Java. Firstly by wrapping
an existing service of the native OS. A second approach is to create a complete pure Java TPM
access software.

As the TPM is a device with limited resources a singleton software component has to manage
it. Besides the VM, as detailed in Section 2, other software such as the OS require TPM services
as well, possible already at boot time. Combining the need for an interface that handles both,
resource management and concurrent access, makes it clear that this service cannot, in general,
be implemented on top of the stack of running software alone, i.e. within a virtual machine.

Yet in case of a fully virtualized environment [25], where an exclusive environment for Java is
provided in a compartment of its own and no concurrent accesses occur, the pure Java approach,
as detailed in [16] or used by [2], will allow one to reduce the overall size and complexity. Such
implementations may also be used if the resources of the TPM alone are virtualized as, for
instance, with the TPM Base Services (TBS) [3] in Windows Vista. Still, for grid computing
wrapping has the major advantage that it allows deployment on legacy operating systems as
found today, which do not provide TPM virtualization. In the remainder of this section, we
present the wrapper approach. An overview of the architecture is given in Figure 1.

The TCG Software Stack The TCG not solely specifies TPM hardware, but also defines
an accompanying layered software infrastructure called the TCG Software Stack (TSS) [8]. An



8 Tobias Vejda, Ronald Toegl, Martin Pirker, Thomas Winkler

interface in the C programming language allows applications to access TC functionality in a
standardized way.

Generic TPM 1.2 drivers are integrated in recent OS releases, like Linux or Windows Vista.
The lowest layer of the TSS, the Trusted Device Driver Library (TDDL), abstracts the drivers
to a platform independent interface that takes commands and returns responses as bytestreams.
System tools provide basic functionality like resetting or taking ownership.

Since the hardware resources of the TPM are limited, the loading, eviction and swapping of
keys and authorization sessions need to be managed. This is implemented in the Trusted Core
Services (TCS), which run as a singleton system service for a TPM. Additional functionalities are
persistent storage of keys, TPM command generation and communication mechanisms. The TCS
event manager handles the SML where PCR extend operations are tracked. To upper layers, a
platform-independent Simple Object Access Protocol (SOAP) interface is provided. It is designed
to handle multiple requests by ensuring proper synchronization.

System applications can access Trusted Computing functionality by using the Trusted Service
Provider (TSP) interface. It provides a flat C-style interface. A Context object serves as entry
point to all other functionality such as TPM specific commands, policy and key handling, data
hashing, encryption and PCR composition. In addition, command authorization and validation
is provided. Each application has their own instance of the TSP library, which is communicating
via SOAP to the underlying TCS.

Java Bindings for the TSS The jTSS Wrapper software package integrates the TSP service
into Java. The Java Native Interface (JNI) is used to call the functions of the TSP. A thin
C Backend integrates the TSP system library, in our case that of the open source TrouSerS
implementation [4]. From it, the JNI link is in large parts autogenerated using the SWIG6 tool,
which creates a set of Java methods out of the C functions and structures. Building on this, the
Java Frontend abstracts several aspects of the underlying library, such as memory management,
the conversion of error codes to exceptions and data types. On top of it all an API is provided
to developers. Being a slight abstraction of the original C interface it permits to stay close to the
original logic and provides the complete feature set of the underlying TSS implementation.
With features like data sealing and unsealing available to the distributed software, risks like V
can be handled and protocols for risks I-III implemented.

5 Conclusions and Outlook

In this paper we outline approaches to increase the security of JVM based computing using
Trusted Computing concepts. A chain of trust can be built from boot-up to the execution of the
JVM. We propose how property- based attestation can be realized scenarios by deriving abstract
security properties from the security policy configuration of the JVM. We show how to create a
foundation for remote attestation of grid participants to the user.

With the concept of TPM based sealing of classes we propose a solution of how TC can be
applied to protect intellectual property of distributed code. To actually allow middleware as well
as general purpose applications access to TPM features, such as data sealing, a software interface
is presented. It integrates in todays environments by wrapping existing TC services of the host.
This allows a Grid user to establish trust in the participants of a grid.

Our proof-of-concept implementation is based on Sun’s OpenJDK and openly avaiable at [7].
It currently encompasses an implementation of binary measurement as outlined in Section 3.1.
Our experiments with the measurement architecture show that measurement of single class files
6 http://www.swig.org/

http://www.swig.org/


Towards Trust Services for Language-Based Virtual Machines for Grid Computing 9

can significantly affect the performance of class loading if the number of class files of the appli-
cation grows large. If JAR-files are measured on the other hand, this overhead can be reduced
to a minimum. As JAR-files are a usual way to distribute Java applications, this approach is the
most practical one.

Currently, we do not consider the Java notion of signed code, a feature orthogonal to TC.
Furthermore, to reduce the complexity, we do not differentiate trustworthiness of code-bases, i.e.
different locations of the classpath. We leave these issues open for future work.

The original TSS design strives to provide access to the bare functions of a TPM and intro-
duces only a few high-level abstractions. It is specified in and following the conventions of C. As
our Java API focusses on providing feature completeness, its behavior is nearly identical. Re-
peated passing of numerous parameters and constants in hardly varying call sequences, instead
of objects with intuitive behavior are witnessed. It would be more beneficial, if an easier to use,
well-abstracted and object-oriented API were available for Java. We are currently designing and
standardizing such a future high-level API [27].

Acknowledgements The authors thank anonymous reviewers for giving comments on an earlier
version of this paper.

The efforts at IAIK to integrate TC technology into the Java programming language are part
of the OpenTC project funded by the EU as part of FP-6, contract no. 027635. The project
aims at providing an open source TC framework with a special focus on the Linux operating
system platform. Started as an open source project the results can be inspected by everybody,
thus adding towards the trustworthiness of Trusted Computing solutions.

References

1. R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and Implementation of a TCG-based
Integrity Measurement Architecture. In Proceedings of the 13th USENIX Security Symposium, pp.
223–238, USENIX Association, 2004.

2. L. Sarmenta, J. Rhodes, and T. Müller. TPM/J Java-based API for the Trusted Platform Module.
http://projects.csail.mit.edu/tc/tpmj/, 2007.

3. Microsoft Developer Network. TPM Base Services.
http://msdn2.microsoft.com/en-us/library/aa446796.aspx, 2007.

4. TrouSerS - An Open-Source TCG Software Stack Implementation. http://trousers.sourceforge.
net/, 2007.

5. A.-R. Sadeghi, and C. Stüble. Property-based Attestation for Computing Platforms: Caring about
Policies, not Mechanisms. In Proceedings of the New Security Paradigm Workshop (NSPW), pp.
67–77, ACM, 2004.

6. V. Haldar, D. Chandra, and M. Franz. Semantic Remote Attestation - Virtual Machine Directed
Approach to Trusted Computing. In Proceedings of the 3rd Virtual Machine Research and Technology
Symposium, pp. 29–41, USENIX Association, 2004.

7. M. Pirker, T. Winkler, R. Toegl and T. Vejda. Trusted Computing for the JavaTMPlatform, http:

//trustedjava.sourceforge.net/, 2007.
8. Trusted Computing Group. TCG Software Stack Specification, Version 1.2 Errata A. https://www.

trustedcomputinggroup.org/specs/TSS/, 2007.
9. Trusted Computing Group. TCG Infrastructure Specifications. https://www.

trustedcomputinggroup.org/specs/IWG, 2007.
10. Trusted Computing Group. https://www.trustedcomputinggroup.org, 2007.
11. Trusted Computing Group. TCG Specification Architecture Overview, Revision 1.4, https://www.

trustedcomputinggroup.org/groups/TCG_1_4_Architecture_Overview.pdf, 2007.
12. I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual

Organizations. Int. J. High Perform. Comput. Appl. 15(3):200–222, Aug. 2001.

http://projects.csail.mit.edu/tc/tpmj/
http://msdn2.microsoft.com/en-us/library/aa446796.aspx
http://trousers.sourceforge.net/
http://trousers.sourceforge.net/
http://trustedjava.sourceforge.net/
http://trustedjava.sourceforge.net/
https://www.trustedcomputinggroup.org/specs/TSS/
https://www.trustedcomputinggroup.org/specs/TSS/
https://www.trustedcomputinggroup.org/specs/IWG
https://www.trustedcomputinggroup.org/specs/IWG
https://www.trustedcomputinggroup.org
 https://www.trustedcomputinggroup.org/groups/TCG_1_4_Architecture_Overvi ew.pdf
 https://www.trustedcomputinggroup.org/groups/TCG_1_4_Architecture_Overvi ew.pdf


10 Tobias Vejda, Ronald Toegl, Martin Pirker, Thomas Winkler

13. V. Getov, G. von Laszewski, M. Philippsen and I. Foster. Multiparadigm communications in Java
for grid computing. Communincations of the ACM 44(10):118–125, Oct. 2001.

14. Parabon Computation, Inc. Frontier: The Premier Internet Computing Platform Whitepaper. http:
//www.parabon.com/users/internetComputingWhitePaper.pdf, 2004.

15. W. Mao, H. Jin and A. Martin. Innovations for Grid Security from Trusted Computing, http:

//forge.gridforum.org/sf/go/doc8087, 2005.
16. K. Dietrich, M. Pirker, T. Vejda, R. Toegl, T. Winkler and P. Lipp. A Practical Approach for Es-

tablishing Trust Relationships between Remote Platforms using Trusted Computing. In Proceedings
of the 2007 Symposium on Trustworthy Global Computing, in print, 2007.

17. J. Sheehy, G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, L. Monk, J. Ramsdell, and B.
Sniffen. Attestation: Evidence and Trust. Technical report 07 0186, MITRE Corporation, 2007.

18. U. Kühn, M. Selhorst, and C. Stüble. Realizing Property-Based Attestation and Sealing with Com-
monly Available Hard- and Software. In Proceedings of the 2007 ACM Workshop on Scalable Trusted
Computing, pp. 50–57, ACM, 2007.

19. L. Chen, R. Landfermann, H. Löhr, M. Rohe, and A.-R. Sadeghi. A Protocol for Property-Based
Attestation. In STC ’06: Proceedings of the first ACM workshop on Scalable trusted computing, pp.
7–16, ACM, 2006.

20. H. Loehr, H. Ramasamy, A.-R. Sadeghi, S. Schulz, M. Schunter, C. Stueble. Enhancing Grid Security
Using Trusted Virtualization. In Proceedings of the 4th Conference on Autonomic and Trusted
Computing (ATC-07), pp. 372–384, Springer-Verlag, 2007.

21. D. Wallach and E. Felten. Understanding Java Stack Inspection. In Proceedings of the 1998 IEEE
Symposium on Security and Privacy, pp. 52–63, IEEE, 1998.

22. M. Smith, T. Friese, M. Engel, B. Freisleben. Countering security threats in service-oriented on-
demand grid computing using sandboxing and trusted computing techniques. J. Parallel Distrib.
Comput. 66(9):1189–1204, Sept. 2006.

23. W. Mao, F. Yan and C. Chen. Daonity: grid security with behaviour conformity from trusted
computing. In Proceedings of the First ACM Workshop on Scalable Trusted Computing (STC’06),
pp. 43–46, ACM, 2006.

24. L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers. Going beyond the sandbox: an overview
of the new security architecture in the javaTM development Kit 1.2. In Proceedings of the USENIX
Symposium on Internet Technologies and Systems, pp. 103–112, USENIX Association, 1997.

25. S. Berger, R. Cáceres, K. Goldman, R. Perez, R. Sailer, L. van Doorn. vTPM: Virtualizing the
Trusted Platform Module. IBM Research Report, RC23879 (W0602-126), 2006.

26. Roubtsov, V. Cracking Java byte-code encryption, JavaWorld. http://www.javaworld.com/javaqa/
2003-05/01-qa-0509-jcrypt_p.html, 2003.

27. R. Toegl et al. Trusted Computing API for Java, Java Specification Request 321, Java Community
Process, http://www.jcp.org/en/jsr/detail?id=321, 2008.

28. M. Biberstein, J. Gil and S. Porat. Sealing, Encapsulation, and Mutability. In Proceedings of the
15th European Conference on Object-Oriented Programming, pp. 28–52, Springer-Verlag, 2001.

29. L. Gong, and R. Schemers. Signing, Sealing, and Guarding Java Objects. In Mobile Agents and
Security, pp. 206–216, Springer-Verlag, 1998.

30. T. Jaeger, R. Sailer, and U. Shankar. PRIMA: policy-reduced integrity measurement architecture.
In Proceedings of the eleventh ACM symposium on Access control models and technologies (SAC-
MAT’06), pp. 19–28, ACM, 2006.

31. M. J. Anderson, M. Moffie, and C. I. Dalton. Towards Trustworthy Virtualisation Environments:
Xen Library OS Security Service Infrastructure. HP Research Report, HPL-2007-69, 2007.

http://www.parabon.com/users/internetComputingWhitePaper.pdf
http://www.parabon.com/users/internetComputingWhitePaper.pdf
http://forge.gridforum.org/sf/go/doc8087
http://forge.gridforum.org/sf/go/doc8087
http://www.javaworld.com/javaqa/2003-05/01-qa-0509-jcrypt_p.html
http://www.javaworld.com/javaqa/2003-05/01-qa-0509-jcrypt_p.html
http://www.jcp.org/en/jsr/detail?id=321

	Towards Trust Services for Language-Based Virtual Machines for Grid Computing
	Tobias Vejda, Ronald Toegl, Martin Pirker, Thomas Winkler

