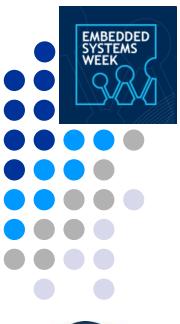
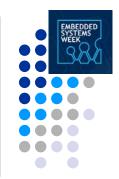

Smart Cameras and Visual Sensor Networks

Part 5 Conclusion

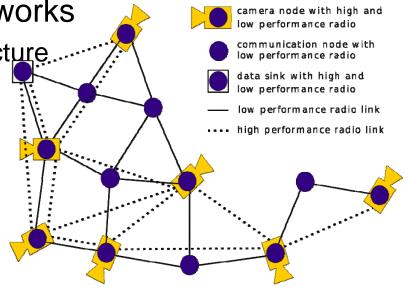

Francois Berry, Joel Falcou, Dominique Ginhac, Bernhard Rinner


Tutorial Agenda

- **1. Introduction**
- 2. Smart imager and smart cameras
- 3. Embedded image processing
 - Heterogeneous Platforms (FPGAs, DSPs ...)
 - Dedicated Processors (GPU and cell)
- 4. Visual Sensor Networks
 - Distributed Sensing and Processing

5. Conclusion

Research Challenges

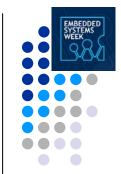

Research Challenges

#1: Architecture

How to design resource-aware nodes and networks

- Low-power (high performance) camera nodes
 - Dedicated platforms: vision processors, PCBs, systems
 - Many examples: CITRIC, NXP
- Visual/Multimedia Sensor Networks
 - Topology and (multi-tier) architecture.....
 - Multi-radio communication

#2: Networking



How to process and transfer data in the network

- Ad hoc, p2p communication over wireless channels
 - Providing RT and QoS
 - Eventing and/or streaming
- Dynamic resource management
 - (local) computation, compression, communication, etc.
 - Degree of autonomy: dynamic, adaptive, self-organizing
 - Fault tolerance, scalability
 - Network-level software, middleware

[Doblander_ACMTECS2009], [Rinner_ICASSP2007], [Shin_2007]

#3: Distributed Sensing & Processing

Where to place sensors and analyze the data

- Sensor placement, calibration & selection
 - Optimization problem
 - Distributed approaches eg., consensus, game theory [Soto_CVPR2009], [Devarajan_PIEEE2008]
- Collaborative data analysis
 - Multi-view, multi-temporal, multi-modal
 - Sensor fusion

[Kushwaha_ICCCN2008], [Cevher_TransMM2007]

#4: Mobility

How to exploit networks of mobile cameras

- Ubiquitous mobile cameras
 - PTZ, vehicles, robotics etc.
 - Mobile phones
- Advanced vision algorithms
 - Ego motion, online calibration
 - Closed-loop control, active vision

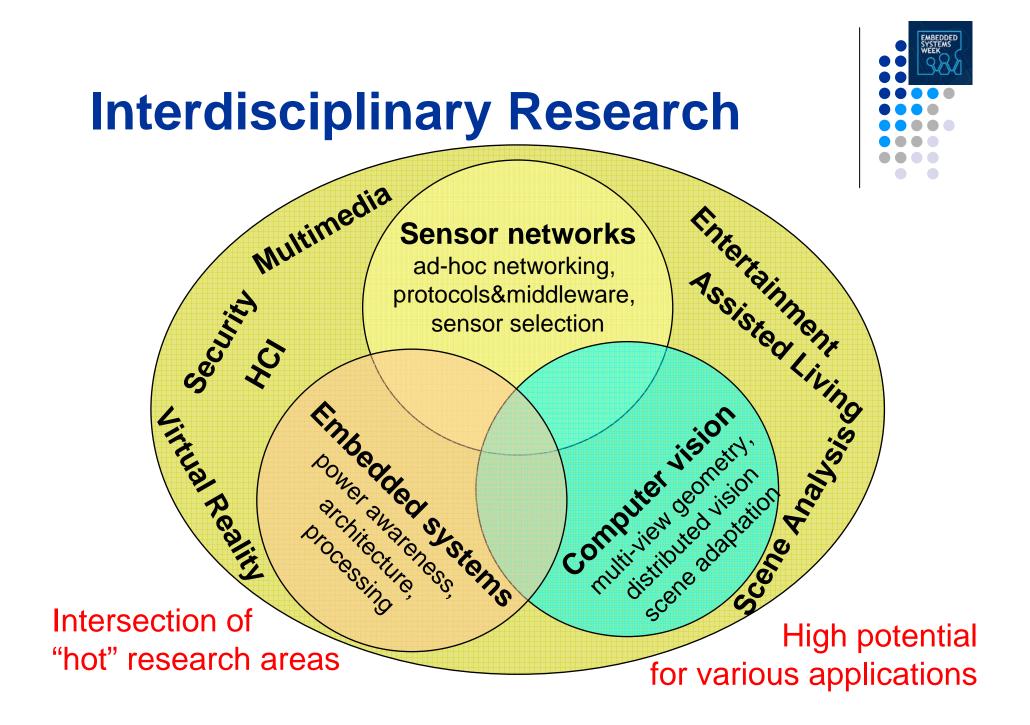
#5: Usability

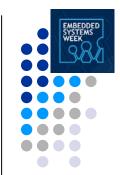
How to provide useful services to people

- Ease of deployment, maintenance
 - Self-* functionality
- Privacy and Security [Serpanos_PIEEE2008]
- Killer application

Potential for Applications

(Potential) further Applications


- Entertainment (computer games)
 - in 3D environments
- "Smart Rooms / Smart Environments
 - detection gestures, sign language, room occupancy ...
- Environmental monitoring
 - sensor fusion, habitat monitoring
- Security
 - Safety enhancement (trains, cars), access control, surveillance
- "Virtual Reality"
 - augment real world with digital information


Smart Cameras

- combine
 - sensing,
 - processing and
 - communication
 - in a single embedded device
- perform image and video analysis in real-time closely located at the sensor and transfer only the results
- collaborate with other cameras in the network (multi-camera system)

Further Information

 Tutorial Site <u>http://pervasive.uni-klu.ac.at/SCSN_tutorial</u>