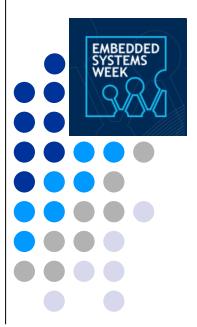
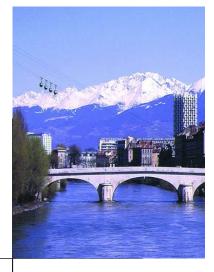
Smart Cameras and Visual Sensor Networks

Tutorial at ESWEEK 2009

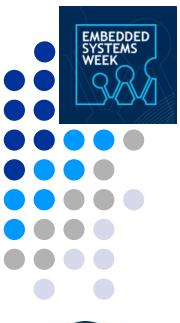
Bernhard Rinner, François Berry, Dominique Ginhac, Joel Falcou

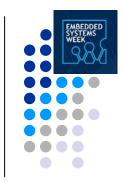

http://pervasive.uni-klu.ac.at/SCSN_tutorial



Smart Cameras and Visual Sensor Networks

Part 1 Introduction


Bernhard Rinner



Some Questions to start with

- What are Smart Cameras (SC) and Visual Sensor Networks (VSN)?
- Why is this important to me (as ES person)?
 - System/Application for my ES research
 - Related research challenges
- How can my ES research benefit from SC and VSN?

Revolution in Cameras

- Ongoing technological advances in
 - lenses
 - image sensors
 - onboard processing
 - networking

transform camera as box delivering images into spatially distributed that generate data and events

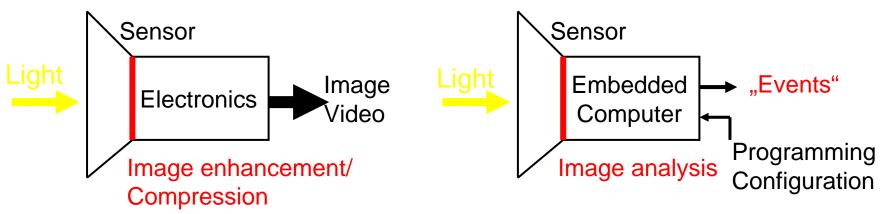
- Huge amount of visual information is processed in a network of resource-limited embedded nodes in dynamic environment
- Interesting application domain with challenging research questions for ES community

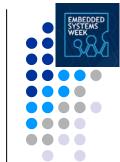
Principle of Smart Cameras

- Smart cameras combine
 - sensing,
 - processing and
 - communication
 - in a single embedded device
- perform image and video analysis in real-time closely located at the sensor and transfer only the results
- collaborate with other cameras in the network

Traditional vs. Smart Cameras

Traditional Camera


- Optics and sensor
- Electronics
- Interfaces

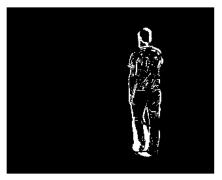

delivers data in form of (encoded) images and videos, respectively

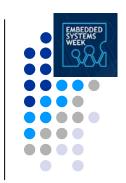
Smart Camera

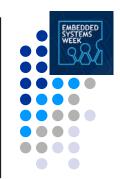
- Optics and sensor
- onboard computer
- Interfaces

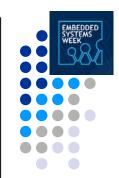
delivers abstracted image data is configurable and programmable

SCs look for important things

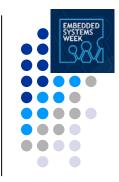

• Examples for abstracted image data


- compressed images and videos
- features
- detected events

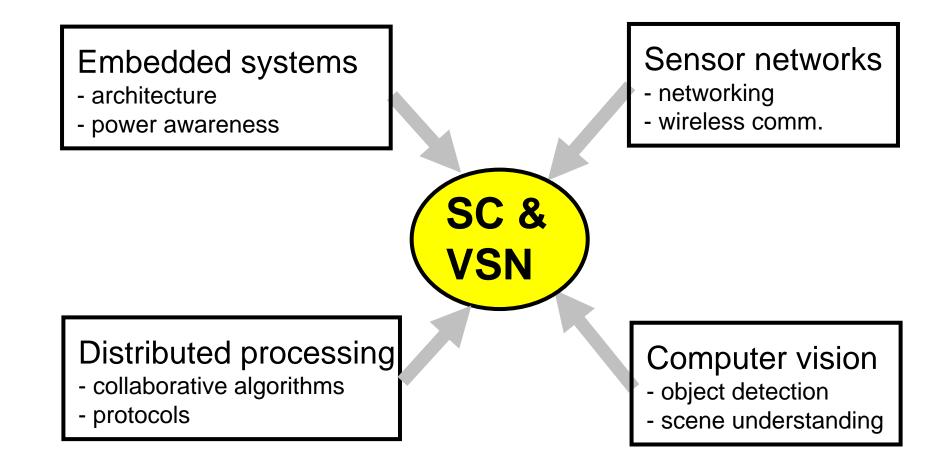




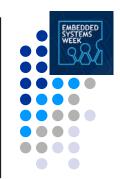
Smart Cameras collaborate


- Connect autonomous cameras in a network
 - exploit smart cameras' capabilities (eg. avoid raw data transfer)
 - relax centralized/hierarchical structure of MC networks
 - introduce dynamic configuration (structure and functionality)
- Distribution of sensing and processing imposes several challenges
 - camera selection and placement
 - calibration & synchronization
 - distribution of data and control
 - (ad-hoc) networking
- Form a visual sensor network

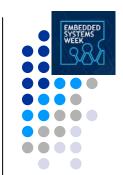
Advantages of DSC



• Scalability


- no central server as bottleneck
- Real-time capabilities
 - Short round-trip times; "active vision"
- Reliability
 - High degree of redundancy
- Energy and Data distribution
 - Reduced requirements for infrastructure; easier deployment?
- Sensor coverage
 - Many (cheap) sensors closer at "target"; improved SNR

Multidisciplinary field



New Applications

- From traditional cameras to pervasive smart visual sensor networks
 - distributed surveillance and security
 - vision-based interpretive applications
 - smart homes / smart buildings
 - ambient intelligence
 - office automation through occupancy sensing
 - human-computer interfaces
 - mobile and robotic networks
 - virtual reality systems
 - ...

Differences to traditional WSN

- Sensing & processing directional, multi-dimensional data
 - Larger data volumes
 - More demanding algorithms
- More powerful computing & networking infrastructure
 - Camera nodes and wireless network
- More complex data distribution
 - Streaming as well as eventing
- Network coordination and control
 - Active camera control (eg. PTZ cameras)
 - Real-time operation
 - Sensor selection

Tutorial Agenda

1. Introduction

2. Smart imager and smart cameras

3. Embedded image processing

- Heterogeneous Platforms (FPGAs, DSPs ...)
- Dedicated Processors (GPU and cell)

4. Visual Sensor Networks

• Distributed Sensing and Processing

5. Conclusion

Research Challenges

