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C
lock synchronization is a critical component in the
operation of wireless sensor networks (WSNs), as it
provides a common time frame to different nodes. It
supports functions such as fusing voice and video data
from different sensor nodes, time-based channel shar-

ing, and coordinated sleep wake-up node scheduling mechanisms. Early
studies on clock synchronization for WSNs mainly focused on protocol
design. However, the clock synchronization problem is inherently related
to parameter estimation, and, recently, studies on clock synchronization
began to emerge by adopting a statistical signal processing framework. In
this article, a survey on the latest advances in the field of clock synchroniza-
tion of WSNs is provided by following a signal processing viewpoint. This arti-
cle illustrates that many of the proposed clock synchronization protocols can
be interpreted and their performance assessed using common statistical signal
processing methods. It is also shown that advanced signal processing techniques
enable the derivation of optimal clock synchronization algorithms under chal-
lenging scenarios.
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INTRODUCTION
With the help of recent tech-
nological advances in micro-
electromechanical systems and
wireless communications, low-
cost, low-power, and multi-
functional wireless sensing
devices have been developed.
When these devices are deployed over a wide geographical
region, they can collect information about the environment and
efficiently collaborate to process such information, forming the
so-called WSNs. WSNs are a special case of wireless ad hoc net-
work and assume a multihop communication without a com-
mon infrastructure, where the sensors spontaneously cooperate
to deliver information by forwarding packets from a source to a
destination. The feasibility of WSNs keeps growing rapidly, and
WSNs have been regarded as fundamental infrastructures for
future ubiquitous communications due to a variety of promising
potential applications: monitoring the health status of humans,
animals, plants, and the environment; control and instrumenta-
tion of industrial machines and home appliances; homeland
security; and detection of chemical and biological threats [1], [2].

Clock synchronization is a procedure for providing a common
notion of time across a distributed system. It is crucial for WSNs
in performing a number of fundamental operations:

n Data Fusion: Data fusion is a basic operation in all dis-
tributed networks for processing and integrating the col-
lected data in a meaningful way. It requires some or all
nodes in the network to share a common time scale.
n Power Management: Energy efficiency is a key design-
ing factor for WSNs since sensors are usually left unat-
tended without any maintenance and battery replacement
service along their lifetimes. Most energy-saving opera-
tions strongly depend on time synchronization. For in-
stance, the duty cycling (sleep and wake-up modes
control) helps the nodes to save huge energy resources by
spending minimal power during the sleep mode. There-
fore, network-wide synchronization is essential for effi-
cient duty cycling, and its performance is proportional to
the synchronization accuracy.
n Transmission Scheduling: Many scheduling protocols
require clock synchronization. For example, the time divi-
sion multiple access scheme, one of the most popular com-
munications schemes for distributed networks, is only
applicable in a synchronized network.
Moreover, many localization, security, and tracking proto-

cols also demand the sensor nodes to timestamp their messages
and sensing events. Therefore, clock synchronization appears as
one of the most important research challenges in the design of
energy-efficient WSNs.

DEFINITION OF CLOCK
Every individual sensor in a network has its own clock. Ideally,
the clock of a sensor node should be configured such that
C(t) ¼ t, where t stands for the ideal or reference time. However,

because of the imperfections of
the clock oscillator, a clock will
drift away from the ideal time
even if it is initially perfectly
tuned. For example, according
to the data sheet of a typical
crystal-quartz oscillator com-
monly used in sensor net-

works, the frequency of a clock varies up to 40 ppm, which
means clocks of different nodes can loose as much as 40 ls in a
second (or 0.144 s in an hour). In general, the clock function of
the ith node is modeled as

Ci(t) ¼ hþ f � t, (1)

where the parameters h and f are called clock offset (phase differ-
ence) and clock skew (frequency difference), respectively. A
graphical representation of the clock model is illustrated in
Figure 1.

From (1), the clock relationship between two nodes, Node A
and Node B, can be represented by

CB(t) ¼ hAB þ f AB � CA(t),

where hAB and f AB stand for the relative clock offset and skew
between Node A and Node B, respectively. Obviously, if two
clocks are perfectly synchronized, hAB ¼ 0 and f AB ¼ 1. Other-
wise, suppose Node A is the reference node, the task of clock
synchronization is to estimate hAB and f AB such that Node B can
adjust its own clock or translate its timing information to the time
scale of Node Awhen it is necessary. If there are L nodes in the net-
work, then the global network-wide synchronization requires
Ci(t) ¼ Cj(t) for all i, j ¼ 1, � � � , L, or all the relative clock offsets
and skews are estimated with respect to a reference node.

In the long term, clock parameters are subject to changes due
to environmental or other external effects such as temperature,
atmospheric pressure, voltage changes, and hardware aging [3].
Hence, in general, the relative clock offset keeps changing with
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[FIG1] Clock model of sensor nodes.
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time, which means that the network has to perform periodic
clock resynchronization to adjust the clock parameters.

THE CHALLENGE
AssumeNodeB needs to be synchronized to Node A. Node A sends
its current time to Node B. If there is absolutely no delay in the
message delivery, Node B can immediately know the difference
between its clock and that of Node A. Unfortunately, in a real wire-
less network, various delays affect the message delivery, making
clock synchronization muchmore difficult than it seems to be. In
general, a series of timing message transmissions is required to
estimate the relative clock skews and offsets among nodes. In
some sense, clock synchronization in WSNs can be regarded as
the process of removing the effects of random delays from the
timingmessage transmissions sent across wireless channels.

The various delays present in a message delivery include the
following components [4], [5]:

n Send Time: The time spent in building the message at
the application layer, including delays introduced by the
operating system when processing the send request.
n Access Time: The waiting time for accessing the channel
after reaching the medium access control (MAC) layer.
This is the most significant component and highly variable
depending on the specific MAC protocol.
n Transmission Time: The time for transmitting a mes-
sage at the physical (PHY) layer.
n Propagation Time: The actual time for a message to be trans-
mitted from the sender to the receiver in a wireless channel.
n Reception Time: The time required for receiving a mes-
sage at the PHY layer, which is the same as the transmis-
sion time.
n Receive Time: Time to construct and send the received
message to the application layer at the receiver.
The delay components can also be categorized into two

classes: deterministic (fixed portion) and stochastic (variable
portion). The variable portion of delays depends on various net-
work parameters (e.g., network status and traffic); therefore, no
single delay model can be found to fit for every case. Probability
density function (pdf) models that have been proposed for mod-
eling random delays in wireless networks include Gaussian,
exponential, Gamma, Weibull, and log-normal [6]–[8]. In the
first half of this article, we focus on Gaussian and exponential
delay models to illustrate the signal processing aspects in clock
synchronization. The Gaussian model is justified if the delays
are thought to be the addition of numerous independent ran-
dom processes due to the central limit theorem. This is sup-
ported by [9], where the chi-square test showed that the variable
portion of delays can be modeled as Gaussian distributed ran-
dom variables (RVs) with 99.8% confidence. On the other hand,
a single-server M/M/1 queue can fittingly represent the cumula-
tive link delay for point-to-point hypothetical reference connec-
tions, where the random delays are independently modeled as
exponential RVs [10]. The exponential delay model is also sup-
ported by experimental measurements [11], [12]. Toward the
end of this article, the assumption on the distribution assumed

by the network delays will be relaxed. Arbitrary network delay
distributions will be assumed and the emphasis will be put
toward developing clock offset estimation techniques that are
robust to the distribution of network delays.

Another challenge that clock synchronization in WSNs faces
is the limited and generally nonrechargeable power resources.
Clock synchronization is one of the critical components contrib-
uting to energy consumption due to the highly energy consum-
ing radio transmissions for delivering timing information.
Pottie and Kaiser showed in [13] that the radio frequency energy
required to transmit 1 kb more than 100 m (i.e., 3 J) is equiva-
lent to the energy required to execute 3 million instructions.
Therefore, developing efficient synchronization algorithms rep-
resents an ideal mechanism for trading computational energy
for reduced communication overhead.

REMARK 1
If the time stamping occurs at the interface between the MAC- and
PHY-layer, among the many sources of message delivery delay, the
send, access, and receive times can be eliminated [5]. This proce-
dure can dramatically reduce time-stamping errors at both the
transmitter and receiver, and it is a strategy prescribed in most of
the current standards, see e.g., IEEE 802.15.4.

REMARK 2
This article focuses on clock synchronization based on exchang-
ing time stamps between sensor nodes. This approach is also
referred to as packet coupling. This is in contrast to pulse-
coupling techniques [14]–[16], which achieves synchronization
by transmitting and processing PHY layer pulses directly.

FUNDAMENTAL APPROACHES TO CLOCK
SYNCHRONIZATION
Clock synchronization in WSNs can be achieved by transferring
a group of timing messages to the target sensors. The timing
messages contain information about the time stamps measured
by the transmitting sensors. There are three well-known timing
message signaling approaches for clock synchronization in
WSNs. These are the two-way message exchange (or sender–
receiver synchronization), the one-way message dissemination,
and the receiver–receiver synchronization.

TWO-WAY MESSAGE EXCHANGE
Two-way message exchange is a classical mechanism for
exchanging timing information between two adjacent nodes.
Examples of existing WSN clock synchronization protocols that
employ this approach include timing-sync protocol for sensor
networks (TPSNs) [17], tiny-sync and mini-sync [18], and light-
weight time synchronization (LTS) [19]. Consider Node B as the
reference node, where Node A needs to synchronize with Node
B. The clock model for the two-way message exchange is
depicted in Figure 2, where timing messages are assumed to be
exchanged N times [17], [20]. In the kth round of message
exchange, Node A sends a synchronization message to Node B at
T1, k. Node B records its time T2, k at the reception of that
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message and replies to Node A at T3, k. The replied message con-
tains both time stamps T2, k and T3, k. Then, Node A records the
reception time of Node B’s reply as T4, k. Note that T1, k and T4, k
are the time stamps recorded by the clock of Node A, while T2, k
and T3, k are the time stamps recorded by the clock of Node B.
After N rounds of message exchanges, Node A obtains a set of
time stamps fT1, k, T2, k, T3, k, T4, kgNk¼1. The above procedure
can be mathematically modeled as [21]

T2, k ¼ f (T1, k þ sþ Xk)þ h, (2)
T3, k ¼ f (T4, k � s� Yk)þ h, (3)

where f and h denote the relative clock skew and offset of Node A
with respect to Node B, respectively, s is the fixed delay, Xk and
Yk are the variable delays in the transmissions from Node A to
Node B and from Node B to Node A, respectively.

In general, there are three parameters that have to be esti-
mated: f , h, and s. Stacking all the time stamps from (2) and (3)
in a matrix form, it follows that
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where 12N is the all-one column vector of dimension 2N 3 1.
Depending on whether the fixed delay s is known or unknown,
themaximum likelihood estimator (MLE) and the corresponding
Cramer-Rao bound (CRB) for joint skew and offset estimation
under Gaussian variable delays were derived in [21] and [22],
respectively. Besides optimal MLEs, suboptimal but lower com-
plexity algorithms were also reported in [21] and [22].

On the other hand, if there is only clock offset between the
two nodes, i.e., f ¼ 1, (2) and (3) can be simplified to

Uk ¼ sþ hþ Xk , (5)

Vk ¼ s� hþ Yk , (6)

where Uk :¼ T2, k � T1, k and Vk :¼ T4, k � T3, k. Under the
assumption that Xk and Yk are independent and identically dis-
tributed zero mean Gaussian RVs, it can be shown that the MLE
for h is given by [21]

ĥ ¼ 1
N

XN
k¼1

(Uk � Vk) (7)

and the value of s does not affect the estimator. Interestingly, if
only one round of message exchanges is performed (i.e., N ¼ 1),
the MLE of clock offset under the Gaussian delay model coin-
cides with the clock offset estimator adopted in TPSN [17].

ONE-WAY MESSAGE DISSEMINATION
In the one-way message dissemination, a master node P broadcasts
its timing information to many nodes, and these nodes record the
arrival times of the broadcast message, as shown in Figure 3. The
timing model of the kth broadcast message is the same as the first
equation in the two-waymessage exchange, and it is given by

T2, k ¼ f (T1, k þ sþ Xk)þ h: (8)

The corresponding equation when there is only clock offset is

T2, k ¼ T1, k þ sþ hþ Xk: (9)

Notice that with only one-way message dissemination, the
clock offset h and the delay s cannot be differentiated. However,
assuming the fixed delay s is negligible, and since the clock skew
f � 1, (8) can be approximated by

T2, k � f � T1, k þ hþ Xk: (10)

Collecting all the time-stamps and putting (10) into matrix form,
the least squares (LS) estimate for f and h can be obtained. This is the
idea behind the flooding time synchronization protocol (FTSP) [5].
Reference [23] also adopts a similar approach, albeit it combines the
one-way message dissemination scheme for clock skew estimation
and the two-waymessage exchange scheme for offset estimation.

RECEIVER–RECEIVER SYNCHRONIZATION
Apart from synchronizing to the master node, two nodes that
receive the same broadcast timing information can also be
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synchronized with each other directly. This is achieved by
having them exchange their arrival time stamps with each
other, as shown in Figure 4. Suppose the arrival time stamps
of the common broadcast message at Node A and Node B are
denoted by

TA
2, k ¼ f PA(T1, k þ sA þ XA

k )þ hPA, (11)
TB
2, k ¼ f PB(T1, k þ sB þ XB

k )þ hPB, (12)

where the superscripts A and B on T2, k, s, and Xk are used to dis-
tinguish the same quantity at two different nodes. Subtracting
(12) from (11) leads to

TA
2;k � TB

2;k ¼ f ABT1, k þ hAB þ f PAsA � f PBsB|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
:¼s0

þ f PAXA
k � f PBXB

k|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
:¼X0

k

,

(13)

where f AB :¼ f PA � f PB and hAB :¼ hPA � hPB are the relative clock
skew and offset betweenNodeA andNodeB, respectively. Collecting
the subtracted time stamps into amatrix form, it yields
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and the LS solution for f AB and hAB can be developed.
As a special case, if there is no relative clock skew

[i.e., f AB ¼ 0 in (13)] and assuming s0 � 0, it is straightforward
to show that the LS estimate of the relative clock offset ĥAB is

ĥAB ¼ 1
N

XN
k¼1

TA
2, k � TB

2, k

h i
, (15)

which is equivalent to the reference broadcast synchronization
(RBS) algorithm presented in [9]. Notice that, in this case, there
is no need for the master node to embed its transmission time-
stamp T1, k in the broadcast message, as it does not appear in the
estimator’s expression.

SIGNAL PROCESSING TECHNIQUES FOR CLOCK
SYNCHRONIZATION UNDER EXPONENTIAL DELAY
Previous discussions reveal that most of the existing fundamen-
tal synchronization protocols rely on standard statistical estima-
tion techniques when the variable delay in message delivery is
Gaussian distributed. It is known that when the random pertur-
bation in observations is Gaussian distributed, the optimal
parameter estimator is relatively easy to derive. Furthermore,
the minimum variance unbiased estimator (MVUE), best linear
unbiased estimator (BLUE), MLE, and LS estimator all coincide.

However, when the variable delay is not Gaussian, it takes
more than intuition and basic signal processing techniques to
derive the optimal clock synchronization algorithm. Next, we
will illustrate the use of advanced signal processing techniques
to derive clock parameter estimation algorithms when the delay
is exponentially distributed. Later, we will further show how sig-
nal processing techniques help to tackle the more challenging
situation, when the distribution of network delays is arbitrary.

MAXIMUM LIKELIHOOD ESTIMATION
The maximum likelihood method is overwhelmingly one of the
most widely used approaches for parameter estimation. The par-
ticularly attractive features of the MLE are due to its asymptotic
properties: it is unbiased and achieves the CRB at large enough
numbers of data samples. Deriving the MLE of the clock offset in
the exponential network delay model is a simple but very impor-
tant first step, which was surprisingly accomplished only
recently when the clock synchronization problem was addressed
from a statistical signal processing viewpoint in [24] and [25].

Under the two-way message exchange mechanism and assum-
ing symmetric exponential delays with common mean k in the
uplink and downlink, according to the signaling model depicted by
(5) and (6), the likelihood function of (s, h, k) can be expressed as

L(s, h, k) ¼ k�2Ne
�1
a

PN
k¼1

(UkþVk�2s)
3 I U(1) � sþ h;V(1) � s� h
� �

,

where I½�� represents the indicator function, achieving the value
1 when its argument is true and 0 otherwise, and U(1) and V(1)
denote the minimum order statistics of fUkgNk¼1 and fVkgNk¼1,
respectively. The likelihood function is maximized by making s
as large as possible, while having the constraints s � U(1) � h
and s � V(1) þ h satisfied. The support region of the constraints
is shown in Figure 5, and it can be seen that the point corre-
sponding to maximum s is located at the intersection of the
boundary lines represented by the indicator functions, which is
the vertex M of the shaded triangle in Figure 5. Hence, the MLE
of the vector parameterHMLE ¼ ½s h k� is given by [24]

ĤMLE ¼
ŝ

ĥ

k̂

2
664
3
775 ¼ 1

2

U(1) þ V(1)

U(1) � V(1)

U þ V � (U(1) þ V(1))

2
664

3
775, (16)

where U and V represent the sample averages of fUkgNk¼1 and
fVkgNk¼1, respectively. It is found that the MLE of the clock offset
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[FIG4] Receiver-receiver synchronization.
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ĥML coincides with the minimum round delay estimator previ-
ously proposed by [12] through informal arguments. Interest-
ingly, in the general case of asymmetric link delays, the MLE of
clock offset ĥ assumes the same expression.

When the clock skew is also taken into account as in (2)
and (3), there is no closed-form expression available for the
joint estimates of clock parameters under exponential link
delays. Instead, the optimization problem is solved by maxi-
mizing the likelihood function over nonlinear constraints
through iterative methods and it has been addressed in [26] in
the case of symmetric exponentially distributed delays. A more
elegant method to find the MLE of the clock offset and skew
was presented in [27], which utilizes the concept of profile
likelihood whereby not only the five-dimensional optimiza-
tion problem is reduced to a one-dimensional problem but
also the general asymmetric delay case can be handled.
Another way to get around the high-dimensional maximiza-
tion of the likelihood function is to note that adding (2) and
(3) eliminates the fixed delay. Then, the MLE for the clock off-
set and skew can be easily derived from the resultant equation
[28]. On the other hand, under the RBS protocol, [29] derives
the joint MLE for clock offset and skew under the exponential
delay model, and the Gibbs sampler is proposed to maximize
the likelihood function.

BEST LINEAR UNBIASED ESTIMATION
USING ORDER STATISTICS
In many practical applications, it is difficult or impossible to find
an optimal estimator due to various reasons. In such scenarios,
a commonly applied methodology is to restrict the estimator to
be linear in the data and find an unbiased linear estimator with
minimum variance. This results in the BLUE.

It is known that when the observation noise is Gaussian dis-
tributed, BLUE provides the optimal solution by virtue of the
Gauss-Markov theorem. For other distributions, including the
exponential distribution, direct application of BLUE cannot
guarantee any optimality. However, inspired by the results that
MLE under exponentially distributed delays depends heavily on
the order statistics of the observation data, [30] derived BLUE,
which later turned out to possess certain optimality features.

Now assume the two-way message exchange model and the
general set-up of exponential network delays for the uplink and
downlink of possibly different means, denoted by a and b,
respectively. Define

U 0
k :¼

1
a
(Uk � s� h),

V 0
k :¼

1
b
(Vk � sþ h)

as a set of independent observations on the standardized variate.
Hence, their distribution will be parameter free. Furthermore,
let fU 0

kgNk¼1 and fV 0
kgNk¼1 be the order statistics of fU 0

kgNk¼1 and
fV 0

kgNk¼1, respectively. Using standard results for the exponential
distribution [31, p. 500], the N 3N symmetric positive-definite
covariance matrix C for both ½U 0

ð1Þ U
0
ð2Þ . . . U

0
ðNÞ�T and

½V 0
(1) V

0
(2) . . . V

0
(N)�T takes the common expression
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1
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1
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N2

1
N2

1
N2 þ 1
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.
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1
N2 þ 1

(N�1)2
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2
6666664
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7777775,

and the inverse C�1 could also be expressed in closed form.
LetH :¼ ½s h a b�T be the 43 1 vector of unknown parame-

ters and z :¼ ½U(1)U(2) . . .U(N)V(1)V(2) � � � V(N)�T . Then, exploiting
the following relations

E U(k)
� � ¼ sþ hþ a E U 0

(k)

h i
, E V(k)
� � ¼ s� hþ bE V 0

(k)

h i
,

var U(k)
� � ¼ a2var U 0

(k)

h i
, var V(k)

� � ¼ b2var V 0
(k)

h i
,

cov U(k)U(j)
� � ¼ a2cov U 0

(k)U
0
(j)

h i
, cov V(k)V(j)

� � ¼ b2cov V 0
(k)V

0
(j)

h i
,

the mean and covariance matrix of the ordered observations z is
expressed in the equation at the bottom of the page.

E z½ � ¼

1 1 � � � 1 1 1 � � � 1
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[FIG5] Support region for the likelihood function of clock
offset estimation under exponential delays.
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Consequently, the BLUE assumes the expression

Ĥ ¼ (QTC�1
z Q)�1QTC�1

z z ¼

ŝ

ĥ

â

b̂

2
6666664

3
7777775

¼ 1
2(N � 1)

N(U(1) þ V(1))� (U þ V )

N(U(1) � V(1))� (U � V )

2N(U � U(1))

2N(V � V(1))

2
66666664

3
77777775
: (17)

In case of symmetric link delay (i.e., a ¼ b), it can be shown
that the BLUE based on order statistics (BLUE-OS) for clock off-
set coincides with the ĥML in (16). Furthermore, the optimality
of (17) will be revealed next in the discussion of MVUE.

MINIMUM VARIANCE UNBIASED ESTIMATION WITH
RAO-BLACKWELL-LEHMANN-SCHEFF�E THEOREM
In search of optimal estimators, mean square error (MSE) is
often the chosen criterion. But from a practical viewpoint, the
minimum MSE (MMSE) estimator is usually not realizable
because of its dependence on the required parameter. Since
the MSE is the sum of estimator variance and squared bias,
and the dependence of the MMSE estimator on the unknown
parameter typically arises from the bias, an alternative
approach is to constrain the bias to be zero and find the esti-
mator with minimum variance. Such an estimator is called
the MVUE. Finding the MVUE necessitates the identification of
the sufficient statistics and the application of the Rao-Black-
well-Lehmann-Scheff�e theorem [32].

For the two-way message exchange mechanism under expo-
nential network delays, the MVUE of clock synchronization
parameters was derived in [33] by exploiting the following
strategy. Considering the asymmetric case, the likelihood func-
tion for the clock offset as a function of observations fUkgNk¼1

and fVkgNk¼1 is expressed as

L(s, h, a, b) ¼ a�N exp � 1
a

XN
k¼1

Uk � s� hf g
" #

� b�N exp � 1
b

XN
k¼1

Vk � sþ hf g
" #

� I U(1) � s� h
� � � � � I V(1) � sþ h

� �
, (18)

which can be factored as a product of the following functions

g1
XN
k¼1

U(k), s, h, a

 !
¼ a�Ne

�1
a

PN
k¼1

U(k)�s�hð Þ
,

g2
XN
k¼1

V(k), s, h, b

 !
¼ b�Ne

�1
b

PN
k¼1

(V(k)�sþh)
,

g3(U(1), s, h) ¼ I U(1) � s� h
� �

,

g4(V(1), s, h) ¼ I V(1) � sþ h
� �

,

h1 Uk;Vkð Þ ¼ 1:

Note that T ¼ fPN
k¼1 U(k),U(1),

PN
k¼1 V(k), V(1)g is a sufficient

statistic for H ¼ ½s h a b�T because h1(Uk, Vk) is independent
of H, whereas g1(

PN
k¼1 U(k), s, h, a), g2(

PN
k¼1 V(k), s, h, b),

g3(U(1), s, h), and g4(V(1), s, h) are functions depending on the
data through T .

On the other hand, the joint pdf of U(1),U(2), � � � ,U(N) is
given by

p(U(1),U(2), . . . ,U(N))¼N !a�Ne
�1
a

PN
k¼1

U(k)�s�hf g
:
YN
k¼1

I U(k)� s�h
� �

,

(19)

whereas the pdf of the minimum order statistic U(1) is also
exponential with a mean a=N . With the transformation
zk ¼ (N � kþ 1)(U(k) � U(k�1)), k ¼ 1, . . . ,N , and U(0) :¼
sþ h, (19) can be equivalently expressed as [30]

p(z1, z2, � � � , zN ) ¼ a�Ne
�1
a

PN
k¼1

zk
:
YN
k¼1

I zk½ �,

i.e., zk are independent exponential RVs with the samemean a. Also,
since each zk � exp (a), each zk assumes a Gamma distribution
zk � C(1, a) too. Using the relationship

PN
k¼1 (U(k) � U(1)) ¼PN

k¼2 zk, and the fact that each of z2, z3, � � � , zN is independent of
z1 [and hence of U(1), since z1 ¼ N(U(1) � s� h)],PN

k¼1 (U(k) � U(1)) � C(N � 1, a) and is independent ofU(1).
Through a similar reasoning, it can be inferred thatPN
k¼1 (V(k) � V(1)) � C(N � 1, b) and is independent of V(1).

Therefore, the one-to-one function T0 ¼ fPN
k¼1 (U(k) � U(1)),

U(1),
PN

k¼1 (V(k) � V(1)),V(1)g of T is also sufficient for estimating
H because the sufficient statistics are unique within one-to-one
transformations [32]. Consequently, T0 consists of four inde-
pendent RVs that in terms of the three-parameter Gamma distri-
bution assume the distributions

r ¼
XN
k¼1

(U(k) � U(1)) � C(N � 1, a, 0),

s ¼
XN
k¼1

(V(k) � V(1)) � C(N � 1, b, 0),

U(1) � C(1,a=N , sþ h), V(1) � C(1,b=N , s� h),

respectively.
Finally, it is straightforward to prove that T0, or equivalently

T, is complete and minimal [30]. Therefore, what remains is to
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find an unbiased estimator for H as a function of T, which is
also the MVUE according to Rao-Blackwell-Lehmann-Scheff�e
theorem. Since the BLUE-OS in (17) is such an unbiased
estimator of H as a function of T and for this reason, it is the
MVUE too.

MLE VERSUS MVUE IN MSE
From our previous discussion, it follows that, for asymmetric
exponential delays in the uplink and downlink with different
means, the MVUE is given by

ĥMVUE ¼ N(U(1) � V(1))� (�U � �V )
2(N � 1)

, (20)

while the MLE is ĥMLE ¼ (U(1) � V(1))=2. One may wonder which
estimator is better in terms of
MSE? To answer this question,
note that the MVUE is not
necessarily the best estimator.
It is only the best among
unbiased estimators. If a biased
estimator is devised having
reduced variance relative to
MVUE at the price of an insignificant increase in its squared bias,
then the biased estimator might outperform the MVUE in the
MSE sense.

For the considered modeling setup, the MSEs of the MVUE
and MLE can be expressed in closed form, respectively, as

MSE(ĥMVUE) ¼ 1
4N(N � 1)

(a2 þ b2),

MSE(ĥMLE) ¼ 1
2N2 (a

2 þ b2 � ab):

The MLE performs better than MVUE in the MSE sense when
MSE(ĥMVUE) > MSE(ĥMLE), or equivalently

N
2
� 15

ab

(a� b)2
:

From the above equation, it can be seen that the MLE is better
than the MVUE when the means of the uplink and downlink
delays are very close to each other. Otherwise, the MVUE is bet-
ter. This observation is illustrated in Figure 6, in which N ¼ 15,
a ¼ 2, and b is varied across the interval ½a� 2, aþ 2�.

REMARK 3
Notice that most of the techniques in this section were proposed
in the context of the two-way message exchange mechanism.
Since after performing a mild approximation, the system of
equations for the one-way message dissemination becomes lin-
ear [see (10)], the analysis of the one-way message dissemination
framework under the exponential delay model generates similar
results to those corresponding to the two-way message
exchange mechanism. For receiver–receiver synchronization,

only [29] derives the joint MLE for clock offset and skew. The
derivation of estimators assuming other optimization criteria
(e.g., MVUE and BLUE) in the exponential delay environment is
an interesting research topic for future studies.

SIGNAL PROCESSING TECHNIQUES FOR
DELAYS WITH ARBITRARY DISTRIBUTION
In synchronizing the clocks in a WSN, it might happen that
the underlying pdf of the network delay model is not known
in advance, and, hence, the performance of estimators spe-
cially designed for a particular distribution can vary a lot.
Therefore, there is a need for developing statistical signal
processing estimation techniques that are robust to the
unknown network delay distributions or can adapt to dif-
ferent delay distributions. In this section, we consider three

such statistical signal pro-
cessing techniques.

LINEAR PROGRAMMING
ESTIMATION
A linear programming (LP)
problem is defined as the prob-
lem of maximizing or minimiz-

ing a linear function subject to linear equality or inequality
constraints. For the one-way message dissemination scheme,
note from (10) that if the link delays are coming from a nonnega-
tive distribution, estimation of clock skew and offset can be cast
as a linear program

minimize
XN
k¼1

(T2, k � T1, kf � h),

subject to h � T2, k � T1, kf 8 k ¼ 1, 2, . . . ,N :

The above linear program can be solved through many different
techniques such as the simplex algorithm, ellipsoid method, or
interior point methods. The solution to this linear program gives
the ML estimate if the transmission delays are exponentially
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[FIG6] TheMSE of the MLE andMVUE under different a and b.

TWO-WAYMESSAGE EXCHANGE IS A
CLASSICALMECHANISM FOR

EXCHANGING TIMING INFORMATION
BETWEEN TWOADJACENT NODES.
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distributed. Even if the delay
distribution is not exponential,
it is quite logical to use a linear
program to estimate the clock
parameters, and, hence, this
approach was elegantly put for-
ward in [11]. LP was also
employed to solve the clock synchronization problem in the con-
text of wireless ad hoc networks based on the one-way message
disseminationmechanism in [34].

On the other hand, clock synchronization under the two-way
message exchange mechanism can also be cast into the LP prob-
lem [35]. From (2) and (3), we can write

1
f
T2, k � h

f
� (sþ Xk) ¼ T1, k,

1
f
T3, k � h

f
þ (sþ Yk) ¼ T4, k:

Assuming Node B replies Node A immediately (see Figure 2)
after receiving the timing message (i.e., T2, k ¼ T3, k), and the
delays s, Xk, and Yk are nonnegative, the above two equations
can be represented in terms of the constraints:
T1, k � fT2, k � h0 � T4, k, where f 0 :¼ 1=f and h0 :¼ h=f . It is
proposed in [35] that the upper limit of the optimal set-valued
estimate of f 0 is given by the following linear program

max
f 0;h0

½f 0h0� 1
0

� �
,

subject to T1,k � f 0T2,k � h0 � T4,k 8 k ¼ 1, 2, . . . ,N ,

ð21Þ

and a lower limit estimate of f 0 is given by a similar linear pro-
gram, but with maximization replaced by minimization. Sup-
pose (f 0, ĥ01) is the solution for (21) and (f 0, ĥ02) is the solution for
the same linear program but with minimization, [35] proves
that ½f 0; f 0�3 ½h0; h0� is a consistent set-valued estimate that mini-
mizes the product (f 0 � f 0)(h0 � h0) where h0 :¼ max (ĥ01, ĥ

0
2) and

h0 :¼ min (ĥ01, ĥ
0
2).

BOOTSTRAP BIAS CORRECTION
Bootstrap is an approach for statistical inference based on build-
ing a sampling distribution for a statistic by resampling from
the data at hand (see, e.g., [36] and [37]). For small sample sizes,
such a method is usually superior to large sample techniques.
On the downside, its computational complexity is considerably
greater than the standard techniques described earlier in this
article. We now discuss the application of bootstrap bias correc-
tion in the context of clock offset estimation.

Bootstrap bias correction typically reduces the bias of an esti-
mator at the expense of increased variance but with an overall
effect of reduced MSE. As explained in [38], suppose that
an unknown probability distribution F assumes the data
x ¼ (x1, x2, � � � , xN ) by random sampling. We want to estimate a
real-valued parameter h. For now, we will assume the estimator

to be any statistic ĥ ¼ s(x). The
bias of ĥ ¼ s(x) is defined to be
the difference between the
expectation of ĥ and the value
of the parameter h, B(ĥ) ¼
EF ½s(x)� � h. In practice, we
may not know the distribution

F or the true value of h, so B(ĥ) cannot be computed. However,
we can approximate the bias with the bootstrap estimate, which
is defined as

B̂(ĥ) ¼ EF̂ ½s(x)� � ĥ, (22)

where F̂ is the empirical distribution constructed from x. To
compute EF̂ ½s(x)�, we generate independent bootstrap samples
x�1, x�2, . . . , x�M from F̂, evaluate the bootstrap replications
ĥ�(m) ¼ s(x�m), and approximate the bootstrap expectation
EF̂ ½s(x�)� by the average

EF̂ ½s(x)� ¼
1
M

XM
m¼1

s(x�m):

Therefore, the bias-corrected estimator is

ĥBC ¼ ĥ� B̂(ĥ) ¼ 2ĥ� 1
M

XM
m¼1

s(x�m):

In the context of clock synchronization, two sensor nodes
exchange timing packets to obtain the data sets fUkgNk¼1 and
fVkgNk¼1, as defined in (5) and (6), and suppose the estimator
under consideration is ĥ ¼ s(fUkgNk¼1, fVkgNk¼1). For the non-
parametric bootstrap method, the empirical distributions of
fUkgNk¼1 and fVkgNk¼1, denoted by F̂ and Ĝ, are constructed.
From F̂ and Ĝ, the samples fU�

1 ,U
�
2 , � � � ,U�

Ng and
fV�

1 , V
�
2 , � � � , V �

Ng, called the bootstrap resamples, are redrawn.
Then, the distribution of ĥ is approximated by the empirical
distribution of ĥ� ¼ s(fU�

k gNk¼1, fV�
k gNk¼1) derived from the boot-

strap resamples.
In case when some partial information about the true distri-

butions of fUkgNk¼1 and fVkgNk¼1, denoted by F and G, is avail-
able, the parametric bootstrap technique can be applied. For
example, if F and G are known to obey a particular distribution
but with unknown mean l, we should draw resamples from that
distribution with mean l̂, where l̂ is estimated from the samples
fUkgNk¼1 and fVkgNk¼1.

It must be emphasized that not all bootstrap bias-corrected
estimators have to be evaluated via resampling methods. It is
interesting to observe that [39] derives a closed-form expres-
sion for the bootstrap bias corrected estimator for clock offset
in the two-way message exchange scenario. From (5) and (6),
the marginal distributions of Uk and Vk are defined as
F(u) :¼ F(u� h� s) and G(v) :¼ G(vþ h� s), respectively,
and it is assumed that F(u) and G(v) are nonnegative such that
Uk � hþ s and Vk�� hþ s hold. Moreover, their joint distri-
bution is H(u, v) ¼ F(u)G(v) due to the independence of the

THEMAXIMUM LIKELIHOODMETHOD
IS OVERWHELMINGLY ONE OF THE
MOSTWIDELY USED APPROACHES
FOR PARAMETER ESTIMATION.
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transmission delays in both
directions. The nonparametric
estimator of H(u, v) is
Ĥ(u, v) ¼ F̂(u)Ĝ(v), where
F̂(u) and Ĝ(v) are the empirical
probability distributions based
on the observations fUkgNk¼1

and fVkgNk¼1, respectively.
Assume that the bias of the

MLE ĥML ¼ (U(1) � V(1))=2
when applied to unknown distributions F andG is of interest

B(ĥML) ¼ 1
2
EH(U(1) � V(1))� h

¼ 1
2

Z1
0

1� F(u)½ �Ndu�
Z1
0

1� G(v)½ �Ndv
0
@

1
A� h:

The bootstrap estimate of this bias is

B̂(ĥML) ¼ 1
2

Z1
0

1� F̂(u)
h iN

du�
Z1
0

1� Ĝ(v)
h iN

dv

0
@

1
A� ĥML:

Now defining U(0) ¼ V(0) ¼ 0 and U(Nþ1) ¼ V(Nþ1) ¼ 1, we can
write

1� F̂(u) ¼
XNþ1

k¼1

N � kþ 1
N

I U(k�1) �u�U(k)
� �

,

1� Ĝ(v) ¼
XNþ1

k¼1

N � kþ 1
N

I V(k�1) � v�V(k)
� �

:

From the above three equations, it can be shown that

B̂(ĥML) ¼ 1
2

XN
k¼1

N � kþ 1
N

� �N

� N � k
N

� �N
( )

3 (U(k) � V(k))� ĥML:

Finally, a bias-corrected estimator can be expressed as

ĥBC ¼ ĥML� B̂(ĥML)

¼U(1)�V(1)�1
2

XN
k¼1

N�kþ1
N

� �N

� N�k
N

� �N
( )

(U(k)�V(k)):

In general, the MSE performance of bootstrap-bias corrected
estimate is better than the exponential MLE ĥML when they are
applied to nonexponential delays [39]. Figure 7 compares the
performance of the MLE of clock offset derived under exponen-
tial delay and its corresponding bootstrap bias-corrected estima-
tor when applied to Gamma distributed delays with two degrees
of freedom and the means for uplink and downlink are one and

five, respectively. It can be seen
that the bootstrap estimator
performs consistently better
than the original MLE. Notice
that for clock offset estimation
only, the LP approach will gen-
erate an estimator identical to
the MLE, so its performance is
not presented here.

COMPOSITE PARTICLE FILTERING
We now turn our attention toward a robust approach, which
works extremely well in networks where the delay distribu-
tions are non-Gaussian and nonexponential, and even time-
varying. The idea is to model the clock estimation problem in
state-space form and make use of the optimal Bayesian frame-
work for state estimation. First, notice that, from (5) and (6),
we can write

Uk
Vk

� �
|fflffl{zfflffl}
:¼yk

¼ 1 1
1 �1

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

:¼B

s
h

� �
|ffl{zffl}
:¼xk

þ Xk
Yk

� �
|fflffl{zfflffl}
:¼nk

, (23)

where nk can assume any distribution. Since xk is fixed or vary-
ing only very slowly, the unknown state can be modeled as obey-
ing a Gauss-Markov dynamic model of the form

xk ¼ xk�1 þ vk�1 , (24)

where the additive process noise component vk�1 can be mod-
eled as Gaussian with zero mean and covariance matrix
E½vk�1vTk�1� ¼ Qk�1. Now (23) and (24) form the state-space
model. The objective is to derive the MMSE estimator of the
unknown state xk, which is the conditional mean state estimator
x̂k ¼ Efxkjy1:kg, where y1:k ¼ ½y1y2 � � � yk�T denotes the set of
observed samples up to time k [41].
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[FIG7] MSE performance of MLE derived for exponential delay
and its bootstrap bias-corrected version applied to Gamma
delay distribution.

EXTENSION TO NETWORK-WIDE
SYNCHRONIZATION CAN BE DIRECTLY

ACHIEVED BY BUILDING A
HIERARCHICAL STRUCTURE

(SPANNING TREE) AND PAIRWISE
SYNCHRONIZATION IS PERFORMED

BETWEEN ADJACENT LEVELS.
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The optimal state estimation
consists of two main steps: time
update andmeasurement update.
Suppose at time k� 1, the poste-
rior distribution p(xk�1jy1:k�1) is
known, the time update step
resumes to obtain the predictive
distribution

p(xkjy1:k�1) ¼
Z

p(xkjxk�1)p(xk�1jy1:k�1)dxk�1, (25)

where the transition density p(xkjxk�1) is related to the state
transition equation (24). On the other hand, in the measure-
ment update step, based on the new observation yk and the
predictive distribution p(xkjy1:k�1), the marginal posterior
distribution of state at time k is obtained as

p(xkjy1:k) ¼ Ckp(xkjy1:k�1)p(ykjxk) , (26)

where

Ck ¼
Z

p(xkjy1:k�1)p(ykjxk)dxk
� ��1

(27)

is a normalization constant and p(ykjxk) is the likelihood of the
observation yk given xk and is related to the observation equation
(23). In general, when the model is linear with Gaussian noise
and the prior knowledge about the initial state x0 is Gaussian, the
Kalman filter provides the mean and covariance update sequen-
tially and is the optimal Bayesian solution. If the noise is not
Gaussian, there may not be closed-form expression to (25) and
(26), and particle filtering [40], in which a set of particles with

weights are used to approximate
the shape of the distribution,
becomes an attractive alterna-
tive to the closed-form solution.

In the composite particle fil-
tering, the predictive and poste-
rior distributions are modeled
by Gaussian mixture models
[40], and each component is

updated using the Kalman filter or particle filter. This solution
presents a smaller computational complexity than a pure particle
filter solution, as the procedure called resampling is avoided [40].
More specifically, let the posterior distribution at time k� 1
assume the following decomposition

p(xk�1jy1:k�1) �
XG
g¼1

w(k�1)gN (xk�1;l(k�1)g,P(k�1)g), (28)

where G is the number of mixing components, w(k�1)g is the
mixing weight, andN (x;l,P) denotes the Gaussian distribution
with mean l and covariance P. Plugging (28) into the time
update step (25), the predictive distribution takes the form

p(xkjy1:k�1
) ¼XG

g¼1

w(k�1)g

Z
p(xkjxk�1)N (xk�1; l(k�1)g,P(k�1)g)dxk�1: (29)

Since the state transition (24) is linear and the noise vk�1 is
Gaussian distributed, the predictive distribution can be obtained
by a bank ofGKalman filters and the result is [40]

p(xkjy1:k�1) �
XG
g¼1

�wkgN (xk; �lkg, �Pkg), (30)

where �wkg ¼ w(k�1)g, �lkg ¼ l(k�1)g and �Pkg ¼ P(k�1)g þ Qk�1.
After obtaining the predictive distribution and plugging it

into the measurement update equation (26), it follows that

p(xkjy1:k) ¼ Ck

XG
g¼1

�wkgp(ykjxk)N (xk; �lkg, �Pkg): (31)

Sine p(xkjy1:k) is eventually approximated by a mixture of
Gaussian pdfs, each term on the right-hand side of (31) given by
p(ykjxk)N (xk;�lkg, �Pkg) is approximated with a Gaussian with
mean and covariance calculated using samples obtained from
importance sampling. Suppose the J samples generated from
each p(ykjxk)N (xk;�lkg, �Pkg) are x(j)kg with the corresponding
weighting factors c(j)kg(j ¼ 1, . . . , J). Then, the updated mean and
covariance of each of the G components are given by

lkg ¼
XJ
j¼1

c(j)kgx
(j)
kg=
XJ
j¼1

c(j)kg , (32)

Pkg ¼
XJ
j¼1

c(j)kg(x
(j)
kg � lkg)(x

(j)
kg � lkg)

T=
XJ
j¼1

c(j)kg: (33)
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exponential delays, and the composite particle filter, applied
to Gamma delay distribution.
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Then, the posterior distribution is given by

p(xkjy1:k) �
XG
g¼1

wkgN (xk; lkg,Pkg) , (34)

where wkg ¼ ~wkg=
PG

g¼1 ~wkg and ~wkg ¼ �wkg
PJ

j¼1 c
(j)
kg=

(
PG

g¼1
PJ

j¼1 c
(j)
kg).

Finally, the conditional mean state estimate and the corre-
sponding error covariance are calculated as follows:

x̂k ¼
XG
g¼1

wkglkg, P̂k ¼
XG
g¼1

wkg(Pkg þ (x̂k � lkg)(x̂k � lkg)
T �:

It should be noted that the composite particle filter-
ing approach allows tracking of time-varying clock off-
set, which represents a more realistic model than a
constant phase.

Figure 8 compares the performance of the MLEs of clock off-
set derived under symmetric Gaussian and exponential delays
and the composite particle filter. The message delivery delay is
Gamma distributed with two degrees of freedom, and the means
for uplink and downlink are two and one, respectively. For the
composite particle filter, Q ¼ 10�4I, the number of particles and
Gaussian mixture model components are 100 and three, respec-
tively. It can be seen that the composite particle filter performs
much better than the MLEs derived under the symmetric Gaus-
sian or exponential delay assumption. This comes at the expense
of increased computational complexity and knowledge of the
observation noise.

FROM PAIRWISE SYNCHRONIZATION TO
NETWORK-WIDE SYNCHRONIZATION
All of the techniques discussed so far focus on synchronization
between a pair of neighboring nodes. Extension to network-wide
synchronization can be directly achieved by building a hierarch-
ical structure (spanning tree) and pairwise synchronization
is performed between adjacent levels. Representative clock

synchronization protocols that employ such approach are TPSN
[17], LTS [19], and FTSP [5].

Figure 9 illustrates this approach. One (or more) node with
accurate time is elected as the reference node, and a spanning
tree is built with the reference node as the root. Clock synchro-
nization is then carried out through the spanning tree from the
root to leaves, one level at a time. Since the synchronization
error accumulates along the tree, the accuracy of each pairwise
synchronization is important. However, statistical signal
processing techniques can help to design optimal clock synchro-
nization algorithms and to mitigate error accumulation. Fur-
thermore, spatial averaging in each layer is proposed in [16] to
improve synchronization performance in large-scale networks.
On the other hand, by exploiting MSE analysis and performance
bounds (such as CRB), the synchronization accuracy at any node
in the network can be predicted and used to determine how
many data samples are necessary to achieve a certain synchroni-
zation accuracy. This might be an important feature for applica-
tions that require tight synchronization accuracy as is the case
with localization and tracking of targets.

Instead of building a tree structure and constraining each
node to communicate with one parent only, [42] proposes to
model the whole network as a directed graph with nþ 1 nodes,
where each edge represents a pair of nodes that can communicate
with each other. The main idea of the global synchronization
algorithm in [42] is based on the observation that for each closed
loopL in the network, the relative clock offset must sum to zero

X
i, j2L

hij ¼ 0: (35)

With these constraints, the relative offsets hij can be translated into
absolute nodal offset nj with respect to a reference node using

h ¼ ATn, (36)

where h is a vector containing all the relative offsets hij, A stands
for the incidence matrix containing the connection information
between different nodes, and n ¼ ½n0, n1, . . . , nn�T . Therefore, if
an estimate of relative offset hij for each pair of directly con-
nected nodes i and j is obtained using pairwise synchronization,
the absolute nodal offset vector can be determined in the LS
sense. This technique is known as LS spatial smoothing. A dis-
tributed algorithm based on coordinate descent has also been
developed in [42] such that only local connectivity information
is required, and it takes the expression

ni ¼
1
Di

X
j$i

(nj þ ĥji) , (37)

where Di represents the number of direct neighbors of Node i,
and

P
j$i stands for the summation with respect to all the nodes

that can directly communicate with Node i. The above iterative
solution admits a very simple interpretation: each node com-
putes its update by averaging all its neighbors’ absolute nodal
offset estimates and relative offset estimates. Error variance and

Reference Node

Level 1

Level 2

Level N

. . . . .

[FIG9] Level-by-level clock synchronization.
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convergence analysis of this approach are reported in [43]. Inci-
dentally, this distributed spatial smoothing algorithm coincides
in spirit with the diffusion algorithms proposed in [44]. Recently,
a distributed synchronization technique based on coupled phase-
locked loops (PLLs) [15] also assumes the interpretation of spatial
averaging. Furthermore, in the terminology of PLLs, the clock
synchronization algorithms proposed herein could be interpreted
as the optimal way of deriving the time error detector.

In addition to building a tree and spatial smoothing, more
recently, a new approach called pairwise broadcast synchroniza-
tion (PBS) was introduced in [45]. This approach allows a sensor
to synchronize itself by overhearing timing messages from a
neighboring two-way message exchange without sending out
any packet itself. In a one-hop sensor network where every node
is a neighbor of each other, a single PBS message exchange
between two nodes would facil-
itate all nodes to synchronize,
thus significantly reducing the
communication overhead for
achieving clock synchroniza-
tion. Further extensions of PBS
to multihop scenarios were also
discussed in [46] and [47].

On the other hand, in RBS
[9], the concept of gateway
node is used to extend adjacent
nodes synchronization to synchronization between two nodes
that cannot directly communicate with each other. This idea is
illustrated in Figure 10. Nodes P1 and P2 send out synchroniza-
tion beacons, and they create two overlapping neighborhoods,
where Node B lies in the overlapping area. Since Node A and
Node B lie within the same neighborhood, their clock relation-
ship (i.e., clock offset and skew) can be established from the
Node P1’s reference broadcast. Similarly, the clock relationship
between Node B and Node C can be established from the Node
P2’s reference broadcast. Therefore, the clock relationship
between Node A and Node C can be computed with Node B act-
ing as a gateway.

More specifically, assuming only clock offset is estimated and
there is only one round of synchronization beacons from P1 and
P2, the clock offset difference between Node A and Node C is
given by

ĥCA ¼ TP2!C
2 � TP2!B

2 þ TP1!B
2 � TP1!A

2 , (38)

where TP2!C
2 is the arrival time of P2’s beacon recorded at Node

C, and the other notations are defined similarly. In case the
message delivery delay is Gaussian distributed and assuming
the propagation delays are negligible, it follows quickly that
(38) is an unbiased estimator for hC � hA [25]. With more than
two gateway nodes, this concept can be further extended to
multihop scenarios. That is, an unbiased estimate of the pair-
wise offset between two nodes hij :¼ hi � hj can be obtained
from any appropriate path between the two nodes, which in
general is composed of the nodes i, P1, i1, P2, i2, . . . ,

ik�1, Pk, j. Therefore, the corresponding unbiased estimator can
be expressed as

ĥij ¼ TP1!i
2 � TP1!i1

2 þ TP2!i1
2 � TP2!i2

2 � � � � þ TPk!ik�1
2 � TPk!j

2 :

(39)

Improved accuracy can be achieved by taking into account
properly weighted combinations of alternating paths between the
two nodes. Building on such a concept, it is argued in [25] that find-
ing the MVUE of hi � hj is related to the problem of determining
the effective resistance between two nodes of a resistive network. A
desirable feature of such an approach is that it produces globally
consistent estimates in the sense that for any triple (n, p, q), the
MVUEs of hn � hp, hp � hq, and hq � hn sumup to zero.

Another approach to achieve global clock synchroniza-
tion is to estimate the clock
synchronization parameters
of the whole network directly
from the time stamps and at
the same time. This was dis-
cussed in the context of the
one-way timing message dis-
semination scheme in [25].
Assuming that only clock off-
sets need to be estimated, we
generalize (10) for the trans-

mission from a master Node Pk to a Node i

TPk!i
2 ¼ TPk

1 þ hi þ XPk!i , (40)

where TPk
1 is the transmission time at master Node Pk, and XPk!i

denotes the variable portion of delays from master Node Pk to
Node i. Treating TPk

1 as unknown and assuming XPk!i as zero
mean independent Gaussian RVs with variances Vki, the joint
pdf of TPk!i

2 takes the expression

ANOTHER APPROACH TO ACHIEVE
GLOBAL CLOCK SYNCHRONIZATION IS

TO ESTIMATE THE CLOCK
SYNCHRONIZATION PARAMETERS OF
THEWHOLE NETWORK DIRECTLY
FROM THE TIME STAMPS AND

AT THE SAME TIME.

P1
A

P2

C

B

Gateway Node
RBS Based On

Reference
Broadcast from P1 

RBS Based On
Reference

Broadcast from P2

[FIG10] Extension of RBS to network-wide synchronization.
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L(TPk!i
2 jTPk

1 , hi) ¼
Y
k, i

1ffiffiffiffiffiffiffiffiffiffiffi
2pVki

p exp � 1
2Vki

TPk!i
2 � TPk

1 � hi

 �2� �

:

Differentiating the likelihood function with respect to each
TPk
1 and hi, we can obtain two sets of coupled equations. Finally,

a two-step iterative process can be employed to find the solution
to the system of equations

TPk
1 ¼

P
i TPk!i

2 � hi

 �

=VkiP
i 1=Vki

for each k,

hi ¼
P

k TPk!i
2 � TPk

1


 �
=VkiP

k 1=Vki
for each i:

It is claimed in [25] that the iterative process converges to a
solution. However, the major
drawback of this approach is
that the variances of the trans-
mission delays Vki need to be
known for each (k, i) pair,
which is extremely difficult to
know in advance in a practical
setting.

CONCLUDING REMARKS
AND OPEN PROBLEMS
The fundamental role of signal processing techniques was dem-
onstrated in the context of clock synchronization in WSNs. This
article explains many existing intuitive clock synchronization
protocols and gives some directions to the necessary ingredients
for devising an optimal estimator operating under an unconven-
tional environment. However, centralized signal processing
techniques can only help solving the problem of node-to-node
synchronization and possible ad hoc extensions to network-wide
synchronization. The next important step is the application of
decentralized signal processing techniques (e.g., distributed esti-
mation and detection) to the clock synchronization problem, and
this naturally results in desirable distributed clock synchroniza-
tion algorithms. Furthermore, distributed signal processing tech-
niques will reveal the optimal way of information passing, thus
saving unnecessary communication overhead.

On the other hand, the techniques presented in this article
assume the transmissions are line of sight, and the reference
node is perfectly accurate. Unfortunately, these two assumptions
may not be valid in practice. The effects and mitigation of non-
line-of-sight transmissions and imperfect anchors, which have
been researched in localization applications, are largely unat-
tended currently in clock synchronization. One possible solu-
tion is the use of robust estimation schemes such as the
M-estimator [48]. In fact, the clock synchronization and the
localization problem are two closely related areas. The propaga-
tion delay s in this article is actually related to the distance
between transmitter and receiver. Based on this observation, the
joint synchronization and localization under line-of-sight trans-
mission has been recently studied in [49], and it is found that

the two problems are coupled and it is beneficial to jointly solve
the two problems in the same time. Furthermore, the problem
of devising joint synchronization and localization algorithms
assuming nonline-of-sight transmission is also currently under
investigation. With these promising results, it is believed that
the signal processing techniques exploited in localization appli-
cations could be further applied in the context of clock synchro-
nization and vice versa.
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