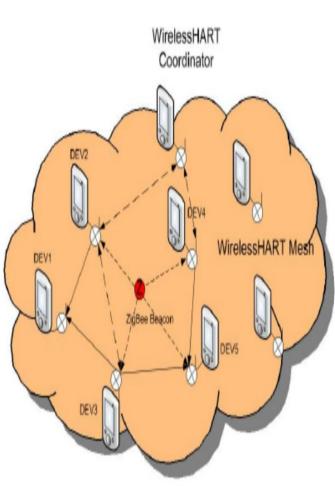
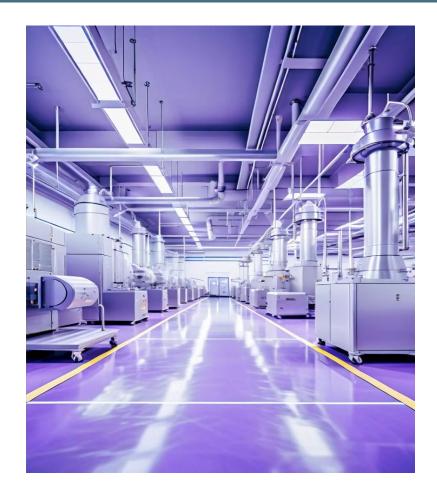
WirelessHART: Overview and PHY layer

Sensor Networks


Anwesha Ghosh Emad Ali

- WirelesHART Designed for industrial process automation applications.
- Builds upon the HART protocol adding wireless capabilities.
- Uses mesh networking technology for self-healing and reliable communication.
- IEEE 802.15.4 standard (PHY and MAC layers for low-power, short-range wireless networks)
- Offers multiple messaging modes for flexibility and reduced power consumption.



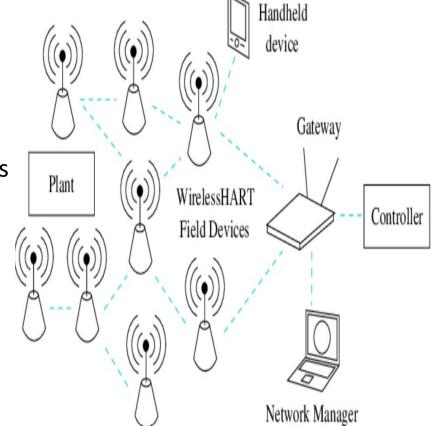
Historical Context

Historical Context

- Developed in 2007 by the HART Communication Foundation.
- Aimed to address limitations of wired communication in process automation.

Historical Context

Architecture


Architecture

Gateway: Acts as a bridge between the wireless network and the host system, managing network traffic and security.

Network Manager: Responsible for network formation, maintenance, routing, and scheduling of communication slots.

Field Devices: Instruments and sensors that collect and transmit process data.

Repeater: Extends the range of the network by forwarding messages between devices.

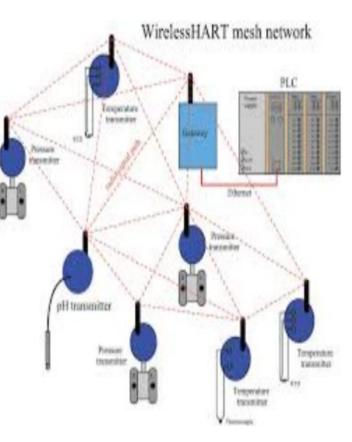
Introduction

Historical Context

Architecture

Network Topology

Network Topology


Mesh Network: Each device can act as a router.

Allowing for redundant communication paths and improved reliability.

The network can self-heal by rerouting messages if a path becomes unavailable.

"Hops" across channels to avoid interference.

Delivers high reliability in challenging radio environments.

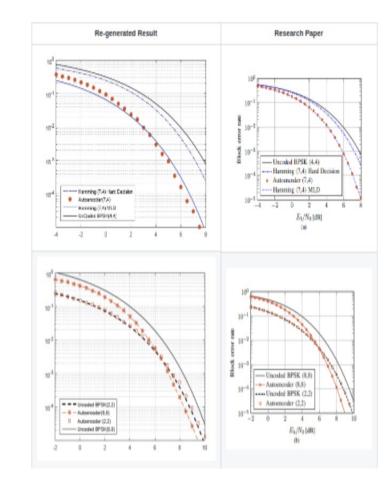
NIVERSITÄ

Introduction

Historical Context

Architecture

Network Topology


WirelessHART physical layer

WirelessHART Physical Layer

Focused on reliable data transmission using:

- Packet creation and formatting
- Radio wave transmission and reception
- Doesn't define communication protocols (data content, timing, triggers)

Introduction

Historical Context

Architecture

Network Topology

WirelessHART physical layer

Communication modes

Communication Modes

WirelessHART's physical layer communication modes are designed to ensure reliable and efficient data transmission in industrial environments. Here are the key communication modes and their functionalities:

- 1. Periodic communication
- 2. Event-Driven communication
- **3.** Ad-Hoc Communication

Detailed Mechanisms and Techniques:

Time Division Multiple Access (TDMA)

Channel Hopping

Direct Sequence Spread Spectrum

Modulation Techniques

Introduction

Historical Context

Architecture

Network Topology

WirelessHART physical layer

Communication modes

WirelessHART PHY layer key features

WirelessHART PHY layer key features

Operating frequency – 2.4 GHz ISM band

Modulation – Uses offset Quadrature phase shifting key (QPSK) with Direct sequence spread spectrum (DSSS)

Transmit power – Around 10 dbm

Data rate – Maximum 250 kbps

PHY protocol data unit – payload sizes 127 bytes

Time division multiple Access - Communication is organized into 10 ms time slots with collision free

Introduction

Historical Context

Architecture

Network Topology

WirelessHART physical layer

Communication modes

WirelessHART PHY layer key features

Security

Security

Protects Valuable Information – It's Automatic

Protects Wireless Network

Risk Assessment / Reduction

Wireless Sensor Network Security – 2 types

a) Data security

b) Network security

Introduction

Historical Context

Architecture

Network Topology

WirelessHART physical layer

Communication modes

WirelessHART PHY layer key features

Security

HART Implementation

HART Implementation

Step 1: Hardware Selection

Transceivers: Select IEEE 802.15.4 compliant transceivers.

- Ensure they support DSSS and O-QPSK modulation.
- Examples: TI CC2420, Atmel AT86RF230.

Step 2: Firmware Development

Frequency Hopping: Implement Frequency Hopping Spread Spectrum (FHSS) algorithms.

- Pseudo-random sequence hopping.
- Reduces interference and enhances security.

Error Handling:

- CRC (Cyclic Redundancy Check): Integrate for error detection.
- Forward Error Correction: Implement to correct errors without retransmission

HART Implementation

Step 3: Network Configuration

Channel Plans: Set up channel plans to optimize frequency usage.

• Allocate channels to minimize interference.

Power Settings: Configure transmission power to 10 dBm (10 mW) or as per regulatory limits.

• Balance between range and power consumption.

Step 4: Testing and Validation

Range Testing: Verify communication range in different environments.

• Indoor vs. outdoor, presence of obstacles.

Error Detection: Validate CRC and error correction mechanisms.

• Ensure data integrity and reliability.

- Introduction
- **Historical Context**
- Architecture
- Network Topology
- WirelessHART physical layer
- Communication modes
- WirelessHART PHY layer key features
- Security
- HART Implementation
- Applications

APPLICATIONS

Key Application

Industrial Process Control:

Sensors: Monitor pressure, temperature, flow, and level.

Actuators: Control valves and actuators.

Asset Management:

Condition Monitoring: Track equipment health.

Predictive Maintenance: Early failure detection.

ام میں الم م	
Introd	luction

Historical Context

Architecture

Network Topology

WirelessHART physical layer

Communication modes

WirelessHART PHY layer key features

Security

HART Implementation

Application

Key Benefits of HART Implementation

Key Benefits of HART Implementation

Dual Communication: Supports both analog (4-20 mA) and digital communication on the same wiring.

Remote Monitoring: Enables remote configuration and monitoring of field devices, reducing maintenance costs.

Enhanced Diagnostics: Provides detailed device diagnostics for proactive maintenance and troubleshooting.
Backward Compatibility: Integrates seamlessly with exiting analog system, preserving investment.
Industry Standard: Widely adopted international standard (IEC 61158), ensuring compatibility and support.

Historical Context
Architecture
Network Topology
WirelessHART physical layer
Communication modes
WirelessHART PHY layer key features
Security
HART Implementation
Installation, Configuration, and Integration
Commissioning – Monitoring
Application
Key Benefits of HART Implementation

Conclusion & future trends

Conclusion & future trends

- Leverages IEEE 802.15.4 standard for reliable data transmission.
- Potential for coexistence with other wireless technologies in industrial environments (e.g., 5G) requiring careful channel management.
- Continued focus on security and robustness to address evolving cyber security threats in industrial automation.

Reference

- https://ieeexplore.ieee.org/abstract/document/6895027
- <u>https://www.sciencedirect.com/science/article/pii/S0045790614001311</u>
- <u>https://instrumentationtools.com/wireless-hart-communication-protocol-overview/</u>

THANKS FOR ATTENTION!

