
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 3, JUNE 2008 511

Z-MAC: A Hybrid MAC for Wireless
Sensor Networks

Injong Rhee, Senior Member, IEEE, Ajit Warrier, Mahesh Aia, Jeongki Min, and Mihail L. Sichitiu, Member, IEEE

Abstract—This paper presents the design, implementation and
performance evaluation of a hybrid MAC protocol, called Z-MAC,
for wireless sensor networks that combines the strengths of TDMA
and CSMA while offsetting their weaknesses. Like CSMA, Z-MAC
achieves high channel utilization and low latency under low con-
tention and like TDMA, achieves high channel utilization under
high contention and reduces collision among two-hop neighbors
at a low cost. A distinctive feature of Z-MAC is that its perfor-
mance is robust to synchronization errors, slot assignment failures,
and time-varying channel conditions; in the worst case, its perfor-
mance always falls back to that of CSMA. Z-MAC is implemented
in TinyOS.

Index Terms—CSMA, MAC, TDMA, wireless sensor networks.

I. INTRODUCTION

ARADIO CHANNEL cannot be accessed simultaneously
by two or more nodes that are in a radio interference

range—neighboring nodes may cause “conflict” or signal inter-
ference at some nodes if transmitting at the same time on the
same channel. In wireless sensor networks, controlling access
to the channel, generally known as medium access control
(MAC), plays a key role in determining channel utilization,
network delays, and, more important, power consumption, also
influencing congestion and fairness in channel usage.

Sensor networks serve many diverse applications from
low-data-rate event-driven monitoring applications to
high-data-rate real-time industrial applications. Balakrishnan
[1] reports that some high-data-rate applications can reach
sensing rates of to Hz and consume from a few bytes
per seconds up to 10 or 100 Mbps aggregate bandwidth;
these applications require over five times improvement on the
channel utilization of existing sensor networking technologies.
Notwithstanding high channel utilization, traditional sensor
network requirements such as power efficiency, scalability,
robustness, and small footprints must also not be compromised.

CSMA (carrier sense multiple access) is popular in wireless
networks due to its simplicity, flexibility, and robustness. It does

Manuscript received September 18, 2005; revised August 11, 2006, and Jan-
uary 29, 2007; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Ed-
itor S. Das. This work was supported in part by the National Science Foundation
under Grant NSF-NOSS 0435157.

I. Rhee, A. Warrier, and J. Min are with the Computer Science Department,
North Carolina State University, Raleigh, NC 27695 USA (e-mail: rhee@ncsu.
edu; acwarrie@ncsu.edu; jkmin@ncsu.edu).

M. Aia was with North Carolina State University, and is now with TapRoot
Systems, Inc., Morrisville, NC 27560 USA (e-mail: mgaia@ncsu.edu).

M. L. Sichitiu is with the Department of Electrical and Computer Engi-
neering, North Carolina State University, Raleigh, NC 27695 USA (e-mail:
mlsichit@ncsu.edu).

Digital Object Identifier 10.1109/TNET.2007.900704

not require much infrastructure support: no clock synchroniza-
tion and global topology information are required, and dynamic
node joining and leaving are handled gracefully without extra
operations. These advantages, however, come at the cost of
trial and error—a trial may cost access collision where more
than two “conflicting” nodes transmit at the same time, causing
signal fidelity degradation at destinations. Collision can happen
in any two-hop neighborhood of a node. While collision among
one-hop neighbors can be greatly reduced by carrier sensing
before transmission, carrier sensing does not work beyond one
hop. This problem, called the hidden terminal problem, causes
a serious throughput degradation especially in high-data-rate
sensor applications. Although RTS/CTS can alleviate the
hidden terminal problem, it incurs high overhead (40%–75% of
the channel capacity in sensor networks [2], [3]) because data
packets are typically very small in sensor networks.

TDMA (time-division multiple access), on the other hand,
can solve the hidden terminal problem without extra message
overhead because it can schedule transmission times of neigh-
boring nodes to occur at different times. However, TDMA has
many other disadvantages as documented in [4]. First, finding
an efficient time schedule in a scalable fashion is not trivial.
It often requires a centralized node to find a collision-free
schedule. Furthermore, developing an efficient schedule with
a high degree of concurrency or channel reuse is very hard
(the optimal solution is NP-hard [5]). Second, TDMA needs
clock synchronization. Although clock synchronization is
an essential feature of many sensor applications, tight syn-
chronization incurs high energy overhead because it requires
frequent message exchanges. Third, sensor networks may
undergo frequent topology changes because of time-varying
channel conditions, physical environmental changes, battery
outage and node failures. Handling dynamic topology changes
is expensive, possibly requiring a global change. Fourth, it is
difficult to ascertain the interference relation among neigh-
boring nodes because radio interference ranges are different
from communication ranges, and some interfering nodes may
not be in a direct communication range (this phenomenon is
known as interference irregularity [6]). Therefore, any channel
assignment that uses the communication ranges, in place of
interference ranges, for building the conflict relations does
not necessarily yield an interference-free schedule. Further-
more, as interference ranges and channel conditions are highly
time-varying, it is unlikely that one fixed schedule is sufficient
to prevent collision all of the time. Fifth, during low contention,
TDMA gives much lower channel utilization and higher delays
than CSMA because in TDMA a node can transmit only during
its scheduled time slots, whereas in CSMA nodes can transmit
at any time as long as there is no contention.

1063-6692/$25.00 © 2008 IEEE

512 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 3, JUNE 2008

These difficulties with TDMA suggest that a stand-alone
TDMA scheme is not practical. Even if we have an effi-
cient TDMA schedule, the other factors such as interference
irregularity, time-varying channel conditions, and clock syn-
chronization errors would diminish the benefits of TDMA.
Nevertheless, we posit that the information provided by an
efficient TDMA schedule, in particular, the independent sets of
nodes that can transmit concurrently can be used in curtailing
occurrences of collision especially under high contention. This
position greatly motivates our work.

In this paper, we present a new hybrid MAC scheme, called
Z-MAC (Zebra MAC), for sensor networks that combines the
strengths of TDMA and CSMA while offsetting their weak-
nesses. The main feature of Z-MAC is its adaptability to the
level of contention in the network—under low contention, it be-
haves like CSMA, and under high contention, like TDMA. It is
also robust to dynamic topology changes and time synchroniza-
tion failures commonly occurring in sensor networks.

Z-MAC uses CSMA as the baseline MAC scheme, but uses
a TDMA schedule as a “hint” to enhance contention resolu-
tion. In Z-MAC, a time slot assignment is performed at the
time of deployment—higher overhead is incurred at the begin-
ning. Its design philosophy is that the high initial overhead is
amortized over a long period of network operation, eventually
compensated by improved throughput and energy efficiency.
We use DRAND [7], an efficient scalable channel-scheduling
algorithm. DRAND is a distributed implementation of RAND
[5], a centralized channel reuse scheduling algorithm. After the
slot assignment, each node reuses its assigned slot periodically
in every predetermined period, called frame. We call a node
assigned to a time slot an owner of that slot and the others
the nonowners of that slot. There can be more than one owner
per slot because DRAND allows any two nodes beyond their
two-hop neighborhoods to own the same slot.

Unlike TDMA, a node may transmit during any time slot in
Z-MAC. Before a node transmits during a slot (not necessarily at
the beginning of the slot), it always performs carrier-sensing and
transmits a packet when the channel is clear. However, an owner
of that slot always has higher priority over its nonowners in ac-
cessing the channel. The priority is implemented by adjusting
the initial contention window size in such a way that the owners
are always given earlier chances to transmit than nonowners.
The goal is that, during the slots where owners have data to
transmit, Z-MAC reduces the chance of collision since owners
are given earlier chances to transmit and their slots are sched-
uled a priori to avoid collision, but when a slot is not in use by its
owners, nonowners can steal the slot. This priority scheme has
an effect of implicitly switching between CSMA and TDMA de-
pending on the level of contention. An important feature of this
priority scheme is that the probability of owners accessing the
channel can be adjusted independently from that of nonowners.
We show that this feature contributes to increasing the robust-
ness of the protocol to synchronization and slot assignment fail-
ures while enhancing its scalability to contention.

By mixing CSMA and TDMA, Z-MAC becomes more robust
to timing failures, time-varying channel conditions, slot assign-
ment failures and topology changes than a stand-alone TDMA;
in the worst case, it always falls back to CSMA. Since Z-MAC

needs only local synchronization among senders in two-hop
neighborhoods, we devise a simple local synchronization
scheme where each sending node adjusts its synchronization
frequency based on its current data rate and resource budget.

In what follows, we describe the design, implementation, and
performance of Z-MAC in detail.

II. RELATED WORK

S-MAC [4] and T-MAC [8] are a hybrid of CSMA and
TDMA in that they also maintain the synchronized time
slots, but, unlike TDMA, their slots can be much bigger than
normal TDMA slots and synchronization failures do not nec-
essarily lead into communication failure because they employ
RTS/CTS. Nodes maintain periodic duty cycle to listen for
channel activities and transmit data. As these protocols use
RTS/CTS, the overhead of the protocols is quite high because
most data packets in sensor networks are small. T-MAC [8]
improves the energy efficiency of S-MAC by forcing all of the
transmitting nodes to start transmission at the beginning of
each active period.

B-MAC [3] is the default MAC for Mica2. B-MAC allows an
application to implement its own MAC through a well-defined
interface. They also adopt LPL (low power listening) [9] and
engineer the clear channel sensing (CCA) technique to improve
channel utilization. [10] uses the optimal probability
distribution in determining the channel access probability for
CSMA when the number of senders is known. When is
unknown, it provides suboptimal performance. Sift [11] adapts

[10] for a network where is unknown. The result
is high success probability for channel access and reduced colli-
sion probability, thus achieving good throughput under both low
and high contention. However, the optimal probability distribu-
tion works only when senders always have data to transmit and
they are synchronized for the channel access, and, thus, when
data arrivals to a node are highly random and senders cannot
sense each other for data transmission (as in two-hops), its per-
formance degenerates to the case of CSMA with the uniform ac-
cess probability distribution. Sift relies on RTS/CTS to handle
hidden terminals.

TDMA has long been dismissed as an impractical solution for
wireless ad hoc networks for its lack of scalability and adapt-
ability to changing environments. However, it provides a good
energy efficiency and collision-freedom. Recently, several pro-
posals [12], [13] are made for TDMA in sensor networks. How-
ever, these protocols still fail to address the fundamental diffi-
culties that stand-alone TDMA schemes face.

Seamlessly switching between TDMA and CSMA ac-
cording to the level of contention was previously explored
by Ephremides and Mowafi [14] for a wireless LAN (or
one-hop) environment using a scheme called Probabilistic
TDMA (PTDMA). As in TDMA, real time is slotted and
by adjusting the access probability of owners (“a”) and that
of nonowners (“b”), PTDMA adapts the behavior of MAC
between TDMA and CSMA depending on contention. These
probabilities are adjusted by a function ,
where is the number of senders. While PTDMA and Z-MAC
share a common goal, PTDMA, being designed primarily for

RHEE et al.: Z-MAC: A HYBRID MAC FOR WIRELESS SENSOR NETWORKS 513

a one-hop wireless LAN environment, does not deal with
many difficulties that TDMA faces in ad hoc sensor networks
such as time synchronization errors, interference irregularity,
and topology changes. These failures can drastically reduce
the performance of PTDMA. PTDMA also assumes buffered
senders where all nodes experience the same statistical arrival.
In a network where only a subset of nodes is active data sources
(which is a common scenario in sensor networks), PTDMA
exhibits very low channel utilization and does not behave like
CSMA. This is because “b” cannot be arbitrarily set to a high
value without reducing “a” (reducing “a” also causes MAC not
to behave like TDMA) due to the dependency between “a” and
“b”. The effect of probability “a” is also not clear; it seems that
the authors want to adjust “a” for different contention levels but
the paper does not mention how this can be achieved (Z-MAC
does not need to dynamically adjust its parameters to achieve
the desired effect).

III. DESIGN OF Z-MAC

Z-MAC has a setup phase in which it runs the following op-
erations in sequence: neighbor discovery, slot assignment, local
frame exchange, and global time synchronization. These opera-
tions run only once during the setup phase and do not run until
a significant change in the network topology (such as physical
relocation of sensors) occurs. The idea is that the initial upfront
costs for running these operations are amortized by improved
throughput and energy efficiency during data transmission. In
this section, we first describe how we implement these setup
phase operations and then discuss how they are integrated with
transmission control in Z-MAC.

A. Neighbor Discovery and Slot Assignment

As a node starts up, it first runs a simple neighbor discovery
protocol where it periodically broadcasts a ping to its one-hop
neighbors to gather its one-hop neighbor list. A ping message
contains the current list of its one-hop neighbors. In our im-
plementation, each node sends one ping message at a random
time in each second for 30 s. Through this process, each node
gathers the information received from the pings from its one-hop
neighbors, which essentially constitutes its two-hop neighbor
information.

The two-hop neighbor list is used as input to a time-slot
assignment algorithm. The current implementation of Z-MAC
uses DRAND [7], a distributed implementation of RAND [5],
to assign time slots to every node in the network. DRAND
ensures a broadcast schedule where no two nodes within a
two-hop communication neighborhood are assigned to the
same slot. This assignment guarantees that no transmission
by a node to any of its one-hop neighbors interferes with any
transmission by its two-hop neighbors. Note that a broadcast
schedule can handle any routing changes among its one-hop
neighbors.

The performance of DRAND is scalable because it does not
depend on the network size, but on the local neighborhood
size of each node. The protocol produces a very efficient time
schedule where the slot number assigned to a node does not
exceed the size of its local two-hop neighborhood —in
most cases, much less than that. The running time and message

complexity of DRAND is also bounded by . Thus, its
energy cost is linearly proportional to the size of the local
neighborhood. When only a small number of new nodes are
joined late, DRAND can also perform localized time slot
assignment without modifying the time slots already assigned
to the existing nodes. The detailed performance analysis of
DRAND can be found in [7].

B. Local Framing

Once a node picks a time slot, each node needs to decide on
the period in which it can use the time slot for transmission.
This period is called the time frame of the node. The conven-
tional wisdom is that all nodes must keep the same time frame
while all nodes synchronize to have their time slot 0 at the same
time. But this requires to propagate the maximum slot number
(MSN) to the entire network and is also not adaptive to local
time slot changes. When new nodes are added to the network,
DRAND can run local slot assignment while maintaining the
existing assignment. If this assignment causes the MSN to be
changed, that change must be propagated again to the entire net-
work. This could incur high cost for adapting to a small change
in the network topology. (Note that network topology changes
by unstable radio channel conditions are handled by the inherent
operation of Z-MAC so it does not incur new assignment, but
new node joining or node redeployment can cause slot changes.)

We present a new scheme where each node maintains its own
local time frame that fits its local neighborhood size, but avoids
any conflict with its contending neighbors. The main idea is as
follows.

Time Frame Rule (TF Rule): Let a node be assigned to a
slot according to DRAND and the MSN within its two-hop
neighborhood be . We set ’s time frame to be where
a positive integer “a” is chosen to satisfy condition

, that is, uses the th slot in every time frame (’ slots
are , for all). The right-hand-side (r.h.s.)
of the inequality constrains the set of feasible values for to
avoid conflict while the left-hand side (l.h.s.) of the inequality
forces us to pick the minimum of these feasible values. We now
prove why the r.h.s. of the inequality avoids conflict among con-
tending neighbors.

Theorem 3.1: If every node uses only slots , for
all , then no node in the two-hop neighborhood
of uses any slot that uses.

Proof: We can prove the theorem by contradiction. Let be
a node that is in the two-hop neighborhood of , but it happens to
use one of the slots that is used by . It does that at the -th time
frame of . By the TF rule, is assigned to by DRAND and
’s time frame is for some . Then without loss of generality,

we assume that and . Note that, by DRAND,
, and and are assigned to only one slot within

and , respectively. Then, because of the way that and are
chosen by the TF rule, it is true that uses only one slot within
a time frame, so does within a time frame. Then, for all

, . This means that, whenever
starts its own frame, starts its time frame, and whenever ends
its own frame, ends its time frame (i.e., no time frame of starts
or ends in the middle of ’s). Because and are in conflict,
must be less than or equal to . Because the beginning of ’s

514 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 3, JUNE 2008

Fig. 1. Example of the TF rule. The top figure shows a network topology and
the numbers indicate the slot numbers assigned by DRAND and the numbers
in parenthesis are � . The bottom figure shows the slot schedule of all nodes
(shaded slots are ones where each node transmits, and dark slots are the “empty”
slots that are not used by any one-hop or two-hop neighbors).

time frame is always aligned with that of ’s, and ’s slots occur
always at slots . Then, by way of the contradiction, in
order for and to use the same slot at the th time frame of
, and must be the same since uses only one slot in the

frame and that is , which is a contradiction.
The TF rule allows nodes to pick their own time frame sizes

based on their local two-hop information. This rule makes
DRAND adaptive to dynamic time frame changes (caused by
local topology changes) without incurring any global changes.
Fig. 1 shows an example of a TDMA schedule obtained by
the TF rule. If the global time frame is used, then 6 will be
the time frame size. Then, nodes and can use their slots
only once every 6 slots although their frame sizes are 2 each.
But, if the TF rule is used, we can allow them to use frame
size 4. This increases the concurrency in the channel usage
and reduces the message delays for node and . However,
we find that slots 6 and 7 are not assigned to any node in the
neighborhood. This is a tradeoff; when the network is uniformly
dense, the global time frame would create a smaller number
of empty slots. But, if the network contains many sparse areas
with only a few dense areas, then the local framing would be
more preferable. In Z-MAC, since empty slots are available
for CSMA (more details on Z-MAC’s transmission control are
given next section), they are not necessarily wasted.

Synchronizing on Slot 0: The local framing rule implicitly
assumes that every node starts its time slot 0 at the same time.
This can be achieved without any communication, if clocks are
synchronized, by fixing a predetermined absolute time to syn-
chronize slot 0. For instance, we can set the beginning of the
real time (i.e., when the synchronized clock value is zero) to
be the beginning of slot 0. New nodes can easily synchronize
their slots if they synchronize their clocks to the global clock.
To allow this synchronization, Z-MAC performs global clock

synchronization such as TPSN [15], only once at the beginning.
After the initial synchronization, each node runs a low-cost local
synchronization protocol discussed in Section III-F.

C. Transmission Control of Z-MAC

At the end of the DRAND phase, every node forwards its
frame size and slot number to its two-hop neighborhood. Thus, a
node knows about the slot and frame information of its one-hop
and two-hop neighbors at the beginning of the Z-MAC phase.
At this point, every node synchronizes to slot 0 and then they
are finally ready to run the transmission control of Z-MAC.

In Z-MAC, a node can be in one of two modes: low contention
level (LCL) or high contention level (HCL). A node is in HCL
only when it receives an explicit contention notification (ECN)
message from a two-hop neighbor within the last period.
Otherwise, the node is in LCL. A node sends an ECN when
it experiences high contention. The details on ECN are in next
section.

In LCL, any node can compete to transmit in any slot, but
in HCL, only the owners of the current slot and their one-hop
neighbors are allowed to compete for the channel access. In
both modes, the owners have higher priority over nonowners.
If a slot does not contain an owner or its owner does not have
data to send, nonowners can steal the slot. This feature achieves
high channel utilization even under low contention as a node can
transmit as soon as the channel is available. Z-MAC implements
LCL and HCL using the backoff, CCA and LPL interfaces of
B-MAC.

Transmission Rule: As a node acquires data to transmit, it
checks whether it is the owner of the current slot. If it is the
owner of the slot, it takes a random backoff within a fixed time
period . When the backoff timer expires, it runs CCA and if
the channel is clear, it transmits the data. If the channel is not
clear, then it waits until the channel is not busy and repeats the
above process. If node is a nonowner of the current slot and it
is in LCL, or if it is in HCL and the current slot is not owned
by its two-hop neighbors, then it waits for and then performs
a random backoff within a contention window . When
the backoff timer expires, it runs CCA and, if the channel is
clear, then it starts transmission. If the channel is not clear, then
it waits until the channel is clear, and repeats the above process.
If node is a nonowner of the current slot and is in HCL (this
means that a two-hop neighbor of has sent an ECN in the last

), postpones its transmission (it may sleep) until it finds a
time slot that either: 1) is not owned by a two-hop neighbor or
2) is its owner. After waking up, it repeats the above process.

According to the above transmission rules, in the LCL mode,
a node can compete in any slot, albeit with different priorities.
In HCL mode, it can compete in the current slot only if it is the
owner of the slot or a one-hop neighbor to the owner of that slot.
Note that it is possible that a transmission started in the previous
slot crosses over to an HCL slot causing collision with the owner
of the slot. One way to prevent this is to restrict a transmission
not to cross over an HCL slot. We opt not to support this because
this restriction makes the system design more complicated espe-
cially in a network where tight time synchronization is difficult
to achieve. Besides packets do not come at a regular interval
and may not be of the same size. Another reason for allowing

RHEE et al.: Z-MAC: A HYBRID MAC FOR WIRELESS SENSOR NETWORKS 515

slot “crossing” is due to the following tradeoff in channel uti-
lization. If such a crossing is not allowed, then even when there
is some remaining time in a slot, that time may be unused if a
packet transmission by the owner cannot be finished within that
time slot. On the other hand, if we allow the crossing, then it
is possible that a packet transmission by the next owner (which
could act as a hidden terminal to the current owner) could cause
a collision, thus wasting the time for transmitting the packet.
Now the tradeoff is whether we proactively prevent such a col-
lision by not transmitting during that remaining time in the slot
and thus wasting that time or we make the transmission during
that time but possibly risking channel wastage due to a packet
collision at the next slot. Both cases waste some amount of slot
time but in the first case, we always waste that time, but in the
second case we waste the time only when a collision happens.
Our initial test result is consistent with our intuition in that the
second case results in more channel utilization.

Specific values of and have performance impact. The
choice of determines the robustness of Z-MAC in the face of
time synchronization errors or slot assignment failures which
cause some slots to have more than one owner. If the synchro-
nization error is no more than one TDMA slot size, then there
can be at most two to three conflicting owners at any time. We
can analytically obtain the optimal size of to handle con-
tention among two to three owners. Based on this, we set to
eight contention window slots (also a power of 2 for efficient
implementation). We set to 32 slots (which is also the ini-
tial contention window size in B-MAC).

Slot sizes also have a performance implication. If the slot
size is too small, clock synchronization errors will have higher
performance impact because it will allow more nodes to
overlap over slot boundaries. For slot size ms, as long as
the synchronization error is less than ms, a slot will have
no more than two conflicting owners. Another way to look at
the problem is that, since the effect of clock synchronization
errors will likely occur around the boundaries of slots, as the
slot size increases, the performance impact of such errors
asymptotically reduces (because within a unit time, the number
of boundaries gets smaller). On the other hand, increasing the
slot size tends to increase the transmission delay because it
increases the frame size. If a node misses its time slot, it takes
one frame size before it becomes an owner again. Therefore,
the choice of the slot size should be a function of the accuracy
of clock synchronization and also the desired network delay in
the network. In our system, the slot size is a system parameter
tunable depending on the application.

The transmission rule of Z-MAC is different from that of
PTDMA. Unlike PTDMA, the owner and non-owner access
probabilities of Z-MAC (“a” and “b” in [14, eq. (1)]) are in-
dependently adjusted by and since nonowners cannot
compete during . This enhances the ability to increase the ro-
bustness of the protocol without affecting the general behavior
of the protocol. For instance, increasing does not change
the priority between owners and nonowners, thus preserving the
performance swing between TDMA and CSMA depending on
contention. In PTDMA, this is not possible due to dependency
between “a” and “b.”

D. Explicit Contention Notification

ECN messages notify two-hop neighbors not to act as hidden
terminals to the owner of each slot when contention is high.
Each node makes a local decision to send an ECN message
based on its local estimate of the contention level. There are two
ways to estimate two-hop contention. One is to receive acknowl-
edgment from the one-hop receiver and measure the packet loss
rate. Since two-hop contention causes collision, it is highly re-
lated to the loss rate. However this technique requires the re-
ceiver to send feedback and incurs extra overhead. Unless the
acknowledgment feature is enabled by the application, this over-
head can unduly reduce the channel utilization. The other tech-
nique is to measure the noise level of the channel. When high
contention occurs, it tends to increase the noise level. This tech-
nique does not require any extra overhead as the noise level can
be measured passively at the time of data transmission. In order
to measure the noise level passively without actively sampling
the channel, we measure the average number of noise backoffs
that a sender takes before transmitting a packet. A noise backoff
is the backoff taken by a transmitter when it senses the channel
using CCA before packet transmission (it transmits only when
the channel is clear). When the noise level is higher than the
CCA threshold, the node takes backoff. In order to see the cor-
relation between the noise backoff and two-hop contention, we
took a Mica2 experiment where two clusters of nodes transmit
to a common receiver called sink. The nodes in different clus-
ters are in a two-hop distance to each other and the nodes in the
same cluster are one-hop away from each other. In one cluster,
we fix one sender, called measurement node, and in the other
cluster, we vary the number of senders. We measure the corre-
lation between two-hop contention at the sink and the noise level
at the measurement node as we vary the number of senders in
one cluster and their transmission rate. The two-hop contention
is measured by the number of times per second that the sink
leaves the idle state into the receiving state but fails to receive
the data because of corrupted data or high noise in sampled data
(including loss of sync, CRC fail, and preamble fail).

Under low transmission rates, even if we increase the number
of senders, the average noise level and two-hop contention are
very low, below 0.1 per packet and 5 per second respectively.
However, we increase the transmission rate to the full rate (all
senders always have data to send), the noise level increases
beyond 0.2. Fig. 2 shows the correlation between the average
noise level and two-hop contention under the full data rate. The
simple correlation coefficient [16], the ratio of covariance of
the two metrics over the product of the variances of individual
metrics, is 0.68 (1 and 1 indicate the maximum positive and
negative correlations and 0 indicates no correlation), indicating
high correlation. The exponentially moving average value (with
weight 0.5) of the noise level when the two-hop contention is
higher than 20 per second increases beyond 0.3 backoffs/packet.
We repeated the experiment many times and confirmed that av-
erage 0.3 noise backoffs per packet consistently indicates high
two-hop contention. However, this is only a conservative metric
because even one-hop contention can cause high noise backoffs
as well, but it is clear that low noise indicates low contention.

516 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 3, JUNE 2008

Fig. 2. Correlation between noise level and two-hop contention.

As a transmitting node detects high contention, the node
sends a unicast message, one-hop ECN, to a destination to
which the node is experiencing contention. If multiple des-
tinations experience contention, it sends one broadcast with
information about the multiple destinations. Typically, in sensor
networks, since each node has one parent to transmit data to,
a node has one destination. When a node receives a one-hop
ECN message triggered by its one-hop neighbor , it first
checks whether is the destination of the ECN message. If so,
it then broadcasts the ECN to its one-hop neighbors (these ECN
messages are called two-hop ECN). If is not the destination,
it simply discards the one-hop ECN. When a node receives a
two-hop ECN, then it sets its HCL flag.

The HCL flag is only a soft state, meaning that, unless an-
other two-hop ECN message is received within the last
period, the flag is reset. Thus, if node continually experiences
contention, it needs to transmit the ECN message periodically.
This refresh period is set by the system.

Typically, when a node detects contention, it is likely that its
neighboring senders will do so at the same time. Therefore, we
will have many duplicate ECN messages forwarded to routing
nodes. To prevent ECN implosion, we use overhearing to sup-
press ECN. When a node detects high contention, it takes
random backoffs before the transmission of a one-hop ECN
message. In the mean time, if it receives a one-hop ECN in-
tended for another node that has the same destination as ’s
ECN, then node suppresses its ECN and cancels the transmis-
sion of the ECN. After , if it still experiences high con-
tention, it schedules another ECN by taking a random backoff
and repeats the above process. The same suppression rule ap-
plies to routing nodes. If a routing node receives a one-hop ECN
and it has forwarded an ECN within period, it does not for-
ward a two-hop ECN.

ECN is similar to RTS/CTS in CSMA/CA. However, the dif-
ference is that HCL uses topology information (i.e., slot infor-
mation) to avoid two hop collision. The cost of ECN is also far
less than RTS/CTS since it is triggered only when contention
is high. Using ECN suppression, only a small number of ECN

messages need to be forwarded. Since the HCL state may last
for a much longer term than a single packet transmission, its cost
is amortized over many packet transmissions. ECN can also be
viewed similar to the suppression message in CODA [17]. How-
ever the difference is that ECN suppresses two-hop neighbors
only for the time slot of the ECN originator whereas a suppres-
sion message suppresses all receivers except the one designated
in the message.

E. Receiving Schedule of Z-MAC

DRAND defines only the transmission schedule of nodes.
In Z-MAC, a node can transmit in any slot. On the other
hand, Z-MAC does not define a receiving schedule for nodes.
Instead, it relies on the LPL mode of B-MAC for receiving
packets. Therefore, the energy consumption of Z-MAC for idle
listening especially under low duty cycles is comparable to that
of B-MAC.

The check period is also a factor in determining the slot size
because a slot must be big enough to transmit one packet. Thus,
the slot size must be larger than the sum of the check period, ,

, the CCA period and one packet propagation time. There
is a tradeoff between the slot size and the network delay, espe-
cially under high contention. Under low contention, the slot size
does not affect the delay since a node can transmit at any time.
But under high contention, a node is in HCL and transmits only
during a few designated slots. Therefore, a large slot size can
incur a large delay. We leave the choice of the slot size to the
application designers who has to evaluate the tradeoffs and find
the slot size that fits their needs.

F. Local Time Synchronization

Z-MAC requires clock synchronization under high con-
tention to implement HCL. However, note that synchronization
is required only among neighboring senders and when they are
under high contention. This offers us an excellent opportunity
to optimize the overhead of clock synchronization because
synchronization is required only locally among neighboring
senders, and the frequency of synchronization can be adjusted
according to the transmission rates of senders so that senders
with higher data rates transmit more frequent synchronization
messages. In this scheme, receivers passively synchronize their
clocks to the senders’ clocks and do not have to send any
synchronization messages.

To implement the local clock synchronization among senders,
Z-MAC adopts a technique from RTP/RTCP (real-time trans-
port protocol) [18]. In this protocol, the control message trans-
mission rate is limited to a small fraction of session bandwidth
and each session member adjusts its sending rate of control mes-
sages according to the allocated session bandwidth. In Z-MAC,
each data sender limits its bandwidth consumed by synchroniza-
tion messages to a predetermined fraction of its data sending
rate, (e.g., one synchronization packet per every 100 data
packets). In fact, each sender can independently determine this
fraction by some function of its energy and bandwidth budget.
We currently set to 1% of the sending rate.

In our local synchronization protocol, each data sender
transmits a synchronization message containing its current

RHEE et al.: Z-MAC: A HYBRID MAC FOR WIRELESS SENSOR NETWORKS 517

clock value periodically. When a node receives a synchroniza-
tion message, it updates its clock value by taking a weighted
moving average of its current value and the newly received
value. Because only senders transmit synchronization mes-
sages, it is possible that some nodes located in a low traffic
area might have clock values drift far away from the other
synchronized nodes. When those nodes start transmission, their
clock values are unsynchronized (note that the maximum clock
drift rate of Mica2 is around 40 s [15] per second). Thus,
their clock values must not be trusted. To avoid honoring clock
values from unsynchronized senders, we adjust the averaging
weight by applying a trust factor that reflects the frequency
of synchronizations of the message senders. is computed
by the frequency of transmitted and received synchronization
messages as below.

Let be the maximum clock drift rate of each sensor and
be the maximum acceptable clock error. Then

determines the minimum synchronization interval
required to achieve the maximum clock error or less. Let be
the average rate at which a node receives or sends synchro-
nization messages, and be the maximum weight that ap-
plies to the new clock value received. Then the of the node
can be computed by . The
weighted moving average value of a clock can be com-
puted by taking a weighted moving average of a newly received
clock value and .

In Mica2, to maintain 1-ms clock accuracy with 40- s per
second maximum drift rate and one synchronization packet per
every hundred packets (packet size 49 bytes), a node needs to
maintain its sending and/or receiving data rate to 1.5 kbps or
higher. At that rate, the trust factor of the node becomes ,
consuming only 1% of the sending rate, 150 bps (or 1/3 packets
per second with 49 byte packets), for synchronization. If the data
rate (sum of sending and receiving rates) goes below this, then
the trust factor of that node gets discounted. But this does not
pose any threat to throughput because it is likely that the node
does not experience much contention below that data rate and
CSMA works effectively under low contention.

In the above scheme, the nodes that send and receive syn-
chronization messages more often tend to have a higher trust
factor and their values will be reflected more heavily in updating
clock values. Typically, these nodes on routing paths tend to
have higher trust factors because they tend to send more packets
than the others. Similarly, source nodes that infrequently send
data have lower trust factors. When a source starts sending data
again after a long hibernation, its clock could be drifted far apart
from other more synchronized clocks. But as it increases its rate
and its data being routed to the sink, its clock value will come
closer to the clock values of other routing nodes. In our experi-
ment, we find that even if an island of 30 nodes is not synchro-
nized, it resynchronizes with the rest of the network within 10
synchronization messages.

IV. ANALYSIS OF CHANNEL UTILIZATION

Here, we formulate the closed-form expression of channel
utilization for various existing MAC schemes for wireless
sensor networks, namely B-MAC, Sift, PTDMA, and Z-MAC

in a one-hop environment where all nodes can sense the
transmission of the other nodes. We do not analyze S-MAC
and T-MAC as [3] shows that these protocols perform much
worse than B-MAC. These expressions are validated in the next
section by the simulation and experiment.

A. Model and Definitions

nodes are in the system and they are all in a radio range of
each other, i.e., a transmission by a node can be sensed by all
other nodes. out of nodes are sources and the remaining
nodes do not send any packets. Sources always have packets to
send, i.e., applications are continually transmitting. We assume
that all packets are of the same size. As we increase , we vary
the level of contention in the system. poses as the maximum
potential number of contenders in a neighborhood. We assume
that is the time taken to sense the radio. We call a con-
tention slot. Assuming negligible propagation delay, collision
always occur at the beginning of a packet transmission. Note
that under no delay, collision cannot occur in other times be-
cause it can be sensed by all other transmitting nodes. Thus, the
time wasted because of collision is the same as the transmis-
sion time of a packet which is denoted by . Out of , let
the time spent to transmit the payload of a packet excluding the
time taken to send its header. In our analysis, we measure the
effective channel utilization expended to transmit data payload,
considering the header transmission to be overhead. We assume
a slotted-time model where real time is divided in the unit of a
slot time and all transmissions occur at the boundary of a slot.

B. B-MAC

We approximate the performance of B-MAC by slotted
CSMA with one backoff window size. In this model, a node
takes a random backoff time before a transmission. When the
backoff timer expires, it senses the channel. If the channel is not
busy, it starts transmission. If not, it waits until the transmission
is over and then take another backoff and repeat the above
process. The backoff time value is randomly set in the unit of
slots within the backoff contention window. This scheme only
approximates B-MAC because B-MAC is implemented as a
non-slotted CSMA protocol and also uses two different backoff
windows: the initial backoff before the transmission of a packet
and the backoff after sensing the channel are taken from two
different window sizes. Despite these differences, we shall see
that our analysis is fairly close to its simulation result.

Nodes pick a random backoff uniformly over .
Hence, the average window size observed by a node would be

. Now, consider a contention time slot .
Since all nodes pause their backoff timer as soon as they detect
that the channel is busy, from the viewpoint of the nodes, the
duration of an entire packet transmission (whether successful
or collided) is counted as a single contention slot. Seen this
way, contention slot can be in one of three states: Collision(s)
occurred during , successful data transmission occurred during
, or was idle. Let the probability that is in each of these

states be , , and , respectively. Hence,

(1)

518 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 3, JUNE 2008

Given contending nodes, we can calculate utilization
achieved as follows:

(2)

The probability that a contention slot is idle is the probability
that none of the nodes selected that slot. Given contending
nodes, each with an average backoff window size of , the
probability of a node selecting a slot is . Hence,

(3)

Along the same lines, the probability of a contention slot
being used for successful data transmission is the probability
of a node selecting a contention slot, and all others choosing
different slots. Hence,

(4)

This system of equations can be solved for , , and to
get the utilization .

C. Sift

Sift [11] is a slotted fixed window CSMA protocol. Backoff
values are randomly chosen based on the following probability
distribution where is the contention slot number in range

, and is the probability that contention slot is
chosen as a backoff value

(5)

Once the slot is chosen, the node transmits at that slot. If
a node finds the channel busy, it waits till the channel is idle
and tries again as before by choosing a new slot. This behavior
is different from B-MAC where the backoff timers are paused
when the channel is found to be busy and later resumed again
from the last values before the pause. This makes our analysis
for Sift a little different from that for B-MAC.

Let the probability of a successful transmission in a slot be
as

(6)

which is the probability that any one node chooses slot , all
other nodes do not select any slot from 1 to , and, since
any of the nodes could be the winner, we multiply this prob-
ability by to get the desired probability.

Let the probability of collision in slot be

(7)

Here, we are counting the probabilities of collisions occur-
ring in slot . Thus, literally, the probability is that any nodes
select the same slot , and the remaining do not select
slots from 1 to . Since any out of the nodes can be the

nodes involved in the collision, we need to multiply this prob-
ability by . Finally, we need to sum up probabilities due to

collisions, all occurring in slot .
Let the total probability of success and collision for one trial

be and , respectively. Hence,

Let the expected lengths of successful and collided transmis-
sions be and , respectively. Hence,

(8)

(9)

We can hence calculate the utilization as

(10)

D. PTDMA

Consider a TDMA time slot whose owner is . Note that
TDMA time slots are different from contention slots and in
PTDMA, there is no contention slots and all transmissions are
done once at the beginning of each TDMA slot. It does not per-
form any carrier sensing either. If is a source, then it transmits
in slot with probability while the remaining sources
transmit in slot with probability . If more than two nodes
transmit during the same slot, the TDMA slot is wasted with
collision.

Let and be the probabilities that successful packet
transmission occurs in a slot of an active source and a nonsource,
respectively, as

(11)

(12)

is calculated as the probability that the owner of the slot
wins, all other sources lose, OR the owner of the slot
loses, one of the nonowners of the slot wins, and all other
sources lose (we multiply this by , since there can be
such winners. is obtained as the probability that one source
wins with probability , and all other sources lose—we
again multiply by since there can be such winners. Given
these probabilities, the utilization is

(13)

The factor accounts for the fraction of bandwidth lost
due to the header.

RHEE et al.: Z-MAC: A HYBRID MAC FOR WIRELESS SENSOR NETWORKS 519

E. Z-MAC

Owners of a slot pick a random backoff uniformly over
, while nonowners do so within . Hence, the

average window size of owners and nonowners would be
and , respectively.

Assuming strict time synchronization between nodes, the owner
grabs the channel every time because of its smaller backoff
window. Hence, in slots out of slots, the corresponding
owners will always succeed. Z-MAC behaves like a slotted,
memory-less CSMA scheme with just one contender. We can
apply the analysis in Section IV-C to this case, with one small
modification—the probability of choosing a slot is governed
by a uniform distribution, hence,

(14)

Let utilization obtained by owners be denoted by .
In the remaining slots, all sources contend with a
fixed window of size . Z-MAC behaves like a slotted, fixed-
window memory-less CSMA scheme with contenders. Ap-
plying the analysis in Section IV-C again, with

(15)

We denote the utilization obtained in the slots as
. Given and , the average utilization,

is a weighted average on the and
slots, respectively, as

(16)

F. Discussion

Our goal for this analysis is to ascertain the best performance
achievable by a given protocol under idealized channel condi-
tions when factors such as channel losses and noise are factored
out. We shall show in Section V-B and Figs. 6 and 7 that the
analysis closely follows the simulation results and that Z-MAC
performs well compared to other protocols. With this valida-
tion of our design, we proceed to implement Z-MAC in the real
network environment and present the corresponding results in
Section V.

V. EXPERIMENTAL EVALUATION

Here, we validate the analytical results in the previous section
experimentally and test the performance of the MAC protocols
in more diverse but realistic environments.

A. Experimental Method

To evaluate the performance of Z-MAC, we implemented
Z-MAC in both ns-2 and Mica2/TinyOS. We use ns-2 simula-
tion to compare the performance with existing protocols whose
TinyOS implementation does not exist at the time of preparing
this work. We compare the performance of Z-MAC with that of
PTDMA (ns-2), Sift (ns-2), and B-MAC (ns-2 and TinyOS). We
do not run S-MAC and T-MAC as [3] shows that these protocols
perform much worse than B-MAC. Although our performance

TABLE I
DEFAULT SETTINGS OF Z-MAC PARAMETERS

evaluation does not cover all the available sensor MAC proto-
cols, we believe that the evaluated protocols constitute a good
representation of existing protocols.

Unless specified otherwise, we use the default settings of
B-MAC as described in [3]. Since Z-MAC is implemented
on top of B-MAC, we use the same packet format as B-MAC
(shown in [3, Table 4]). The default initial and congestion
backoff window sizes of B-MAC are 32 and 16 slots, respec-
tively (each slot is 400 s). Except for the throughput tests
where we vary the backoff window sizes to see the impact
of window sizes on channel utilization, we keep the default
window sizes. The default values of Z-MAC parameters are
shown in Table I.

We use three benchmark setups in our experiment: one-hop,
two-hop, and multi-hop benchmarks.

One-Hop Benchmark: This benchmark is reproduced from
[3]— nodes placed equidistant from a receiver in a circle
transmit transmit as quickly as possible with full transmission
power. Before each run, we ensured that all nodes are in a
one-hop distance to each other so that there are no hidden
terminals. This benchmark is used to measure the achievable
throughput of different MAC protocols for different levels
of contention within a one-hop neighborhood. All nodes are
placed at least 2 feet apart and the distance to the receiver was
approximately 2 m. The setup is placed in an open conference
room without any obstruction. ns-2 one-hop simulation follows
the same setup.

Two-Hop Benchmark: We create this benchmark to test the
performance of different protocols when hidden terminals are
present. We organize nodes into two clusters where seven and
eight sending nodes are located in each cluster respectively.
The two clusters are placed approximately 5 m apart in a house
with drywall. A receiver node (or routing node) is placed in the
middle of the two clusters. Nodes within the same cluster are
placed about 2 feet apart. In this environment, we cannot get a
sharp boundary of interference but we ensure that all senders
find the receiver as a one-hop neighbor and all nodes are reach-
able by two-hop communications. We also reduce the transmis-
sion power of senders to 1 dBm (1.3 mW) to control the number
of hidden terminals. Since the number of hidden terminals varies
with the transmission power, we get more hidden terminals with
a low transmission power. On the other hand, ns-2 simulation of

520 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 3, JUNE 2008

Fig. 3. NCSU testbed with 42 Mica2 nodes.

the two-hop benchmark can define a clear separation of the two
clusters so that they become always two-hop to each other.

Multihop Benchmark: We consider two multihop topolo-
gies—a 10-hop chain topology and a full-fledged wireless
sensor network testbed comprising of 42 Mica2 nodes.

The 10-hop chain experiment is reproduced from [3] to mea-
sure the latency of different protocols where 11 nodes are lined
up side by side to create a line topology. The source and sink
are placed at the two different ends of the topology. The source
sends 20 messages with a payload of 100 bytes without any frag-
mentation. The intermediate nodes forward the messages to the
sink.

For a realistic multihop scenario, we construct a network of
42 Mica2 nodes, each placed in faculty offices and classrooms
of our computer science building. Fig. 3 shows the testbed and
wireless communication links among nodes. In this testbed, the
maximum two-hop neighborhood size of all nodes is 27 and the
maximum local frame size is 32 (many nodes have smaller local
frame sizes). To remove any effect of routing differences, we use
fixed routing paths for all tests. The paths are taken from one
run of Mint [19], the default routing protocol of TinyOS. Fig. 4
shows the routing paths we used for 30 nodes in the testbed with
node node 36 as the sink. Thicker lines indicate links with more
traffic.

B. Throughput

In this experiment, we measure and compare the effective
channel utilization of each MAC protocol. We measure only
data throughput as done in [3], where the data portion of each
packet consists of 36 bytes (29 bytes for the data payload, 5
bytes for the header, and 2 bytes for CRC).

One-Hop Benchmark: In this test, all senders are transmitting
at their full transmission power and the receiver has its radio
on always (i.e., no duty cycle). The effective maximum data
throughput on Mica2 is 15.6 kbps (excluding preamble and sync
bytes). Fig. 5 shows the data throughput of B-MAC and Z-MAC
from Mica2 one-hop benchmark. Unfortunately, we are not able
to reproduce the same performance of B-MAC as shown in [3].
Our result is significantly less than what they report ([3] reports
approximately the maximum throughput of 13 kbps with one
sender). We conjecture this discrepancy could be due to a higher

Fig. 4. Routing paths used in the multihop Mica2 benchmark.

Fig. 5. Data-throughput comparison in the one-hop Mica2 benchmark.

noise floor level in our experiment environment. B-MAC with
congestion window size 64 performs much better than that with
congestion backoff window size 16. This happens because the
larger congestion window size reduces the contention among
senders.

For the Z-MAC tests, we fix the frame size to 20 for all exper-
iments and vary the number of senders. HCL is disabled because
the performance of HCL and LCL is the same when all nodes are
in a one-hop distance to each other. Before running Z-MAC, we
run DRAND and TPSN to get slot assignments and to synchro-
nize the clocks of the senders. The data throughput is obtained
after these protocols finish. The data throughput of Z-MAC with
one sender is about 40% less than that of B-MAC with window
sizes (0,16) and (32,16). This happens because Z-MAC uses
a larger congestion backoff window size. With one source, it
sends as nonowners at most times except for its own slot. There-
fore, it incurs the cost of waiting for for the nonowner slots.
The throughput of Z-MAC is almost independent of the number
of senders. When the number of senders is small, most senders
are sending as nonowners. Thus, they can utilize the unused slots
that belong to the other nodes. As the number of senders in-
creases, so does the number of senders transmitting during their
own slots. Thus, when contention is high, it can maintain good
throughput since it works more like TDMA. The throughput

RHEE et al.: Z-MAC: A HYBRID MAC FOR WIRELESS SENSOR NETWORKS 521

Fig. 6. Data throughput comparison in the one-hop ns-2 benchmark.

Fig. 7. Analytical data-throughput comparison in the one-hop benchmark.

with 20 senders is much higher than that of B-MAC (in fact,
higher than that shown in [3].

We also run Z-MAC with no clock synchronization. At the be-
ginning of the run, we randomize the clock values of all nodes.
We turn off the local clock synchronization protocol as well.
This allows some slots to be overlapped with each other so that
several nodes consider themselves as owners at the same time.
Thus, this scenario essentially emulates slot assignment fail-
ures as well. We observe that although the Z-MAC performance
drops in the presence of time synchronization errors, it does no
worse than CSMA, and under high contention gives comparable
performance to Z-MAC with synchronized clocks. This is be-
cause is sufficiently large to handle multiple owners within a
slot. This shows that when the information about interference re-
lation and synchrony are inaccurate, the performance of Z-MAC
gracefully degrades to that of CSMA. When this information is
accurate, Z-MAC performs really well under high contention.

Fig. 6 shows ns-2 simulation results for one-hop involving
PTDMA, Sift, B-MAC and Z-MAC—which agree closely with
the analytical utilization shown in Fig. 7. For PTDMA and
Z-MAC, we set the number of stations to be 21. For PTDMA,
we report utilization for access probability(“a”) values of 0.5,
0.8 and 1. The slot size for PTDMA is set to 20 ms which is
enough to send one packet. For Sift, the probability distribution
parameter is set to 0.9 and the contention window size is
set to 24 slots. PTDMA, for any value of “a,” shows very low
utilization under a small number of sources. As the number of

Fig. 8. Data-throughput comparison in the two-hop Mica2 benchmark.

senders increases to , it shows its maximum channel utiliza-
tion. But under lower values of “a,” its performance becomes
close to that of CSMA (which is B-MAC in this figure). Only
when the number of senders is equal to , it becomes closer
to TDMA as “a” increases (these data points can be verified
from the results in [14] as well). The B-MAC simulation result
closely follows that in [3]. The good performance of Sift is
because all nodes are one-hop and data are always available for
transmission so the senders are synchronized with each other
to the boundary of packet transmissions.

Two-Hop Benchmark: In the two-hop benchmark, we mea-
sure the data throughput when hidden terminals are present.
We vary the number of senders while fixing the number of
neighbors. As in the one-hop benchmark, all senders always
have data to send. Each additional sender is chosen from
the alternating clusters. For Z-MAC tests, we set the frame
size to 16. In this test, we run Z-MAC with HCL disabled
(marked as Z-MAC-LCL) and with HCL enabled (marked
as Z-MAC-HCL). Both cases run along with the local clock
synchronization protocol in which each sender sends one syn-
chronization packet in every 100 packets transmitted. The data
throughput reported by Z-MAC includes the overhead of the
clock synchronization and ECN.

Fig. 8 shows the results of the two-hop Mica2 benchmark.
Since the transmission power is low (1.3 mW), the maximum
achievable throughput also gets lower. As the number of hidden
terminals increases along with more senders, the throughput of
LCL drops more than that of HCL. On the other hand, HCL
performs relatively well maintaining around 6 kbps even under
high contention. According to [3], the protocols with RTS/CTS
(S-MAC and B-MAC with RTS/CTS) achieve around 2 kbps
when more than 15 nodes (even when no hidden terminals are
present). This confirms that the overhead of ECN is much lower
than that of RTS/CTS. B-MAC shows high sensitivity to hidden
terminals as its throughput drops to 1 kbps under high con-
tention. Z-MAC-HCL, when run under unsynchronized clocks,
shows a drop in performance but is still better than B-MAC.

Fig. 9 shows the results of the two-hop ns-2 benchmark
tests. We make sure that the two node clusters do not sense
each other, thus maximizing the number of hidden terminals.
To be fair, we add RTS/CTS and data acknowledgment for the
CSMA techniques (B-MAC and Sift). The size of RTS and CTS

522 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 3, JUNE 2008

Fig. 9. Data-throughput comparison in the two-hop ns-2 benchmark.

Fig. 10. Data-throughput in the two-hop ns-2 benchmark as we add clock drifts.
The figure reports throughput when the number of senders is 18 as we vary the
drift rate (shown in a logarithmic scale).

including the TinyOS default preamble and synchronization
bytes is set to 15 bytes and the acknowledgment size is 5 bytes.
The throughput of B-MAC and Sift immediately dropped to
zero without RTS/CTS because of hidden terminals so we
did not plot them. The utilization of B-MAC and Sift with
RTS/CTS reaches around 10%–12% as RTS/CTS/ACK incur
high overhead. These results are similar to the result of B-MAC
with RTS/CTS in [3]. The performance of PTDMA does not
change much from the one-hop benchmark result since time
is completely synchronized and they use DRAND time slots
(note that in PTDMA, senders always send at the beginning of a
slot without sensing the channel). Z-MAC-HCL shows a good
sustained performance independent of the number of senders.
Its performance degrades slightly from that in the one-hop ns-2
benchmark because nodes can compete only during their own
slots and the slots of their one-hop neighbors and also because
of the overhead of ECN messages.

To see more effect of time synchronization errors to the per-
formance of PTDMA and Z-MAC, we add some clock drift in
our two-hop ns-2 benchmark. A randomized clock drift value
is added at every 1 s and the average throughput of PTDMA
and Z-MAC measured over 600 s is plotted in Fig. 10 as we
increase the drift rate. We fix the number of senders to 18. For
Z-MAC, we turn off the local clock synchronization feature. The
results are that PTDMA shows high sensitivity to even a small

Fig. 11. Data throughput in the multihop Mica2 benchmark as we vary the
transmission rate of each sender. In this experiment, all nodes except the sink
(node 36) are sending.

clock drift rate (1 s/s), losing its throughput down to 38% of
the channel capacity. As we increase the drift rate, the channel
utilization of PTDMA quickly drops to 25%. This is because
PTDMA relies on a high value of “a” to get the effect of TDMA
under high load and with a high “a” value, any overlapping with
neighboring slots increases the chance of collision among the
owners of neighboring slots. In contrast, Z-MAC shows good
robustness to the synchronization errors as it sustains its supe-
rior performance until the drift error becomes larger than 1 ms/s
even without its local clock synchronization.

Multihop Benchmark: Fig. 11 shows data throughput
of Z-MAC-HCL and B-MAC under the multihop Mica2
benchmark of 42 nodes. Under transmission rate less
than 3.12 packets/s, both protocols deliver all the packets
and achieve about the same throughput. B-MAC shows
slightly better throughput than Z-MAC. This is because the
backoff congestion window value of Z-MAC for nonowners

is larger than B-MAC (16). The
backoff value make difference because contention is low and
most transmissions in Z-MAC are done as nonowners. As the
transmission rate increases beyond 3 packets/s, we observe
that Z-MAC achieves about 20 to 30% higher throughput
than B-MAC. Under the full data rate (50 packets/s), Z-MAC
achieves about 7.2 kbps while B-MAC achieves about 5.2 kbps.
These figures are slightly higher than the values from the
two-hop benchmark under low contention. This is because, as
the network is so densely populated, nodes can sense each other
very well so one-hop contention dominates two-hop contention.

C. Fairness

We measure the fairness index [20] of delivered packets of all
of the senders. As the number of packets delivered to the sink is
more uniformly distributed among all of the senders, the index
approaches one. We compute fairness index from the average
number of packets delivered per sender within 10-s intervals.

Fig. 12 shows the fairness index from the multihop Mica2
experiment. Under low transmission rates, both Z-MAC-HCL
and B-MAC show high fairness. However, as the transmission
rate increases, their fairness indexes drop (more precipitously
for B-MAC). This is because in the testbed some links are so
unreliable that, under high load, we see high packet losses from

RHEE et al.: Z-MAC: A HYBRID MAC FOR WIRELESS SENSOR NETWORKS 523

Fig. 12. Fairness index from the multihop Mica2 benchmark.

Fig. 13. End-to-end latency on the 10-hop chain topology.

the links. Z-MAC still shows about 40% higher fairness index
than B-MAC, under the full rate.

D. Latency

We replicate the same latency experiment in [3] using the
multihop benchmark. Ref. [3] uses the sending rate of one
packet in every 10 s to measure the latency. We perform the
same experiment with Z-MAC with HCL enabled (but at this
source rate, ECN is never sent; the result is the same as Z-MAC
LCL). We run TPSN at the beginning to synchronize the
clocks of all the nodes in the line topology and take the latency
measurement of each packet using the timestamps taken at the
source and sink. Both B-MAC and Z-MAC are tested under
LPL with 100-ms check interval and with full duty cycle.

Our result is very similar to that in [3]. Both protocols show
very similar latency in all tests. This indicates that the protocol
overhead of Z-MAC is quite comparable to B-MAC’s.

E. Energy Efficiency

Table II shows the itemized energy cost of the Z-MAC setup
phase operations in the multihop benchmark. We run the setup
phase for 30 times and report the average values and standard
deviations. Total 7.22 J/node on average is consumed for the
setup phase which constitutes about 0.03% of the total energy
available per node with 2500 mAh and 3 V battery (the same
battery used in [3, Table 3]). Although DRAND and the other

TABLE II
AVERAGE ENERGY CONSUMPTION (IN JOULES) DURING THE SETUP

OPERATIONS IN THE MULTIHOP MICA2 TESTBED

Fig. 14. Power efficiency in low-data rate applications with low duty cycle.

operations are not optimized for energy saving, this is still a
substantial amount of energy consumption compared to the per-
transmission energy cost. However, the idea is that this upfront
energy cost is later compensated by increased energy efficiency
during the regular transmission of Z-MAC. In this section, we
summarize our energy efficiency result from the Mica2-based
benchmarks.

Z-MAC uses the CCA and LPL features of B-MAC. Thus, its
energy efficiency is no better than B-MAC’s under low-data ap-
plications. We run the same energy efficiency test described in
[3, Sec. 6.2] using the one-hop Mica2 benchmark and plot the
results in Fig. 14. As we vary the transmission rate, we compute
the optimal check interval for the traffic pattern. The power con-
sumption of Z-MAC is slightly worse than that of B-MAC. This
is because in Z-MAC: 1) nodes tend to wake up longer for trans-
mission since their backoff window sizes are larger and 2) clock
synchronization messages are periodically sent. In this test, as
data rates are low, all nodes are in LCL and no overhead for
ECN is incurred.

We measure the energy efficiency of Z-MAC and B-MAC
in the multihop Mica2 benchmark. For each sending rates, we
vary the duty cycle from 20% to 60% and measure the energy
efficiency in terms of throughput over power. Fig. 15 presents
the best ratio of throughput over power for a given sending
rate among all duty cycle runs. As we observe in the multihop
throughput test, under low data rates, B-MAC has slightly
higher throughput. Also, we observe in the energy efficiency
test, that B-MAC also has slightly less power consumption (up
to 10%) under low transmission rates. This is again because, as
B-MAC has a smaller contention window size than Z-MAC, its
idle time is less under low transmission rates. However, as the
transmission rate increases beyond three packets per second,
Z-MAC’s energy efficiency improves and beats that of B-MAC
by about 40% under the full rate. This higher energy efficiency

524 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 3, JUNE 2008

Fig. 15. Power efficiency in the multihop Mica2 benchmark.

under high transmission rates is attributable to the efficiency in
the contention resolution of Z-MAC-HCL.

VI. CONCLUSION

This paper presents Z-MAC, which is a new MAC protocol
for sensor networks that can dynamically adjust the behavior
of MAC between CSMA and TDMA depending on the level
of contention in the network. The protocol uses the knowledge
of topology and loosely synchronized clocks as hints to im-
prove MAC performance under high contention. Under low con-
tention, and when these hints are not reliable, the protocol be-
haves like CSMA. Z-MAC is useful for applications where ex-
pected data rates and two-hop contention are medium to high.

REFERENCES

[1] H. Balakrishnan, “Opportunities in high-rate wireless sensor net-
working,” in Proc. NSF NOSS Principal Investigator and Informa-
tional Meetings, Oct. 2004 [Online]. Available: http://toilers.mines.
edu/noss/Infoagenda.html

[2] A. Woo and D. E. Culler, “A transmission control scheme for media
access in sensor networks,” in Proc. ACM MobiCom, New York, 2001,
pp. 221–235.

[3] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access
for wireless sensor networks,” in Proc. ACM SenSys, New York, 2004,
pp. 95–107.

[4] W. Ye, J. Heidemann, and D. Estrin, “Medium access control with co-
ordinated adaptive sleeping for wireless sensor networks,” IEEE/ACM
Trans. Netw., vol. 12, no. 3, pp. 493–506, Jun. 2004.

[5] S. Ramanathan, “A unified framework and algorithms for (T/F/C)DMA
channel assignment in wireless networks,” in Proc. IEEE INFOCOM,
1997, pp. 900–907.

[6] G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic, “Impact of
radio irregularity on wireless sensor networks,” in Proc. ACM MobiSys,
New York, 2004, pp. 125–138.

[7] I. Rhee, A. Warrier, J. Min, and L. Xu, “DRAND: Distributed random-
ized TDMA scheduling for wireless ad hoc networks,” in Proc. ACM
MobiHoc, New York, 2006, pp. 190–201.

[8] T. van Dam and K. Langendoen, “An adaptive energy-efficient mac
protocol for wireless sensor networks,” in Proc. ACM SenSys, New
York, 2003, pp. 171–180.

[9] J. Hill and D. Culler, “A wireless embedded sensor architecture for
system-level optimization,” Univ. California, Berkeley, Tech. Rep.,
2001.

[10] Y. Tay, K. Jamieson, and H. Balakrishnan, “Collision-minimizing
CSMA and its applications to wireless sensor networks,” IEEE J. Sel.
Areas Commun., vol. 22, no. 6, pp. 1048–1057, Aug. 2004.

[11] K. Jamieson, H. Balakrishnan, and Y. C. Tay, “Sift: A MACprotocol
for event-driven wireless sensor networks,” in Proc. EWSN, 2006, pp.
260–275.

[12] J. Li and G. Y. Lazarou, “A bit-map-assisted energy-efficient MAC
scheme for wireless sensor networks,” in Proc. IPSN, New York, 2004,
pp. 55–60.

[13] V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves, “Energy-ef-
ficient, collision-free medium access control for wireless sensor net-
works,” Wireless Netw., vol. 12, no. 1, pp. 63–78, 2006.

[14] A. Ephremides and O. A. Mowafi, “Analysis of a hybrid access scheme
for buffered users-probabilistic time division,” IEEE Trans. Software
Eng., vol. SE-8, no. 1, pp. 52–61, Jan. 1982.

[15] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol
for sensor networks,” in Proc. ACM SenSys, New York, 2003, pp.
138–149.

[16] A. L. Edwards, “The correlation coefficient,” in An Introduction to
Linear Regression and Correlation. San Francisco, CA: W. H.
Freeman, 1976, pp. 33–46.

[17] C.-Y. Wan, S. B. Eisenman, and A. T. Campbell, “CODA: Congestion
detection and avoidance in sensor networks,” in Proc. ACM SenSys,
New York, 2003, pp. 266–279.

[18] Audio-Video Transport Working GroupH. Schulzrinne, S. Casner, R.
Frederick, and V. Jacobson, “RTP: A transport protocol for real-time
applications,” RFC 1889, Jan. 1996.

[19] A. Woo, T. Tong, and D. Culler, “Taming the underlying challenges of
reliable multihop routing in sensor networks,” in Proc. ACM SenSys,
New York, 2003, pp. 14–27.

[20] R. Jain, D.-M. Chiu, and W. Hawe, “A quantitative measure of fairness
and discrimination for resource allocation in shared computer system,”
Digital Equipment Corp., Tech. Rep., 1984.

Injong Rhee (SM’89) received the Ph.D. degree
from the University of North Carolina at Chapel Hill.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
North Carolina State University, Raleigh. His areas
of research interests include computer networks,
congestion control, wireless ad hoc networks, and
sensor networks. He works mainly on network pro-
tocol designs optimizing the transport performance
of networks.

Ajit Warrier received the B.E. degree from Nirma Institute of Technology,
Ahmedabad, India, and the M.S. degree from North Carolina State University,
Raleigh, where he is currently working toward the Ph.D. degree in the Depart-
ment of Electrical and Computer Engineering.

His research interests are in multihop wireless networks.

Mahesh Aia received the M.S. degree from North Carolina State University,
Raleigh.

He is now with TapRoot Systems, Morrisville, NC. His research interests are
mobile wireless networks and multimedia networks.

Jeongki Min received the B.S. degree from Hanyang University, Seoul, South
Korea, and the M.S. degree from North Carolina State University, Raleigh,
where he is currently working toward the Ph.D. degree.

His research interests are in multihop wireless networks.

Mihail L. Sichitiu (M’98) received the B.S. and M.S. degrees from the Poly-
technic University of Bucharest, Bucharest, Romania, in 1995 and 1996, re-
spectively, and the Ph.D. degree in electrical engineering from the University of
Notre Dame, Notre Dame, IN, in 2001.

He is currently an Assistant Professor with the Department of Electrical and
Computer Engineering, North Carolina State University, Raleigh. His research
is focused in the area of wireless networking.

