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ABSTRACT
We proposeB-MAC, a carrier sense media access protocol for wire-
less sensor networks that provides a flexible interface to obtain ultra
low power operation, effective collision avoidance, and high chan-
nel utilization. To achieve low power operation, B-MAC employs
an adaptive preamble sampling scheme to reduce duty cycle and
minimize idle listening. B-MAC supports on-the-fly reconfigura-
tion and provides bidirectional interfaces for system services to op-
timize performance, whether it be for throughput, latency, or power
conservation. We build an analytical model of a class of sensor net-
work applications. We use the model to show the effect of chang-
ing B-MAC’s parameters and predict the behavior of sensor net-
work applications. By comparing B-MAC to conventional 802.11-
inspired protocols, specifically S-MAC, we develop an experimen-
tal characterization of B-MAC over a wide range of network con-
ditions. We show that B-MAC’s flexibility results in better packet
delivery rates, throughput, latency, and energy consumption than
S-MAC. By deploying a real world monitoring application with
multihop networking, we validate our protocol design and model.
Our results illustrate the need for flexible protocols to effectively
realize energy efficient sensor network applications.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols; D.4.4 [Operating Systems]: Communications Management

General Terms
Performance, Design, Measurement, Experimentation

Keywords
Wireless Sensor Networks, Media Access Protocols, Energy Effi-
cient Operation, Reconfigurable Protocols, Networking, Commu-
nication Interfaces.
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1. INTRODUCTION
In wireless sensor network deployments, reliably reporting data

while consuming the least amount of power is the ultimate goal.
One such application that drives the design of low power media ac-
cess control (MAC) protocols is environmental monitoring. Main-
waring et. al. [12] and the UCLA Center for Embedded Network
Sensing [2, 6] have deployed wireless sensors for microclimate
monitoring that operate at low duty cycles with multihop network-
ing and reliable data reporting. They show that MAC mechanisms
must support duty cycles of 1% while efficiently transferring var-
ious workloads and adapting to changing networking conditions.
These workloads include periodic data reporting, bulk log transfer,
and wirelessly reprogramming a node. In this paper we discuss the
design of a MAC protocol motivated by monitoring applications.

Nodes in a wireless sensor network do not exist in isolation;
rather they are embedded in the environment, causing network links
to be unpredictable [16]. As the surrounding environment changes,
nodes must adjust their operation to maintain connectivity. For ex-
ample, RF performance may be hindered by a sudden rain storm or
the opening and closing of doors in a building.

Woo [21] and Zhao [24] have studied the volatility in link qual-
ity in wireless sensor networks. Zhao shows the existence of “gray
areas” where some nodes exceed 90% successful reception while
neighboring nodes receive less than 50% of the packets. He shows
that the gray area is rather large–one-third of the total communica-
tion range. Woo independently verified Zhao’s gray area findings.
In designing a reliable multihop routing protocol, Woo shows that
effectively estimating link qualities is essential. Snooping on traf-
fic over the broadcast medium is crucial for extracting information
about the surrounding topology. By snooping, network protocols
can prevent cycles, notify neighboring nodes of unreachable routes,
improve collision avoidance, and provide link quality information.
Since data must ultimately be reported out of the network, the me-
dia access protocol must be flexible to meet changing network pro-
tocol demands.

Not only are the networking conditions different, applications
for wireless sensor networks have different demands than those de-
signed for traditional ad-hoc wireless networks. Intanagonwiwat et.
al. [8] show how 802.11 is inappropriate for low duty cycle sensor
network data delivery. Idle listening in 802.11 consumes as much
energy when the protocol is idle as it does when receiving data. Idle
listening occurs when a node is active, but there is no meaningful
activity on the channel resulting in wasted energy. is no activity. It
is absolutely crucial that the MAC protocol support a duty cycling
mechanism to eliminate idle listening.

For wireless sensor networks to gain acceptance in the scientific
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community, data must flow from the network predictably and reli-
ably. Scientists determine the sample period and physical deploy-
ment of the nodes. The role of the network is to ensure that data
is delivered as expected. A general rule for achieving predictable
operation is to reduce complexity as much as possible from the
application and its services. Since each node executes a single ap-
plication, it is important to optimize communication performance
for that application–not for a generic set of users.

To meet the requirements of wireless sensor network deploy-
ments and monitoring applications, we translate them to a set of
goals for the media access protocol. Our goals for a MAC protocol
for wireless sensor network applications are:

• Low Power Operation

• Effective Collision Avoidance

• Simple Implementation, Small Code and RAM Size

• Efficient Channel Utilization at Low and High Data Rates

• Reconfigurable by Network Protocols

• Tolerant to Changing RF/Networking Conditions

• Scalable to Large Numbers of Nodes

To meet these goals, we propose B-MAC, a configurable MAC
protocol for wireless sensor networks. It is simple in both design
and implementation. It has a small core and factors out higher layer
functionality. Factoring out some functionality and exposing con-
trol to higher services allows the MAC protocol to support a wide
variety of sensor network workloads. This minimalist model of
MAC protocol design is in contrast to the classic monolithic MAC
protocols optimized for a general set of workloads; however this
paper shows the effectiveness of a small, configurable MAC proto-
col that supports low duty cycle applications.

The contributions of this paper are not only the design of a ver-
satile MAC protocol for sensor networks. We propose an adaptive
bidirectional interface for wireless sensor network applications. The
interface allows middleware services to reconfigure the MAC pro-
tocol based on the current workload. We build a model of appli-
cation performance that may be used to reconfigure B-MAC and
maximize a node’s lifetime. We use a comprehensive set of mi-
crobenchmarks to experimentally characterize wireless sensor net-
work (WSN) performance. To validate the model, we built an en-
vironmental monitoring application and show how its performance
matches our model’s predictions. Our model can be used to iden-
tify the best parameters for an arbitrary low power wireless sensor
network application at compile or run time and estimate the ap-
plication’s lifetime. We illustrate the importance of reconfiguration
through simple optimizations that extend network lifetime by 50%.

2. RELATED WORK
Most MAC protocols for wireless sensor networks have been

based on conventional wireless protocols, especially 802.11. These
protocols typically provide a general purpose mechanism that works
reasonably well for a large set of traffic workloads. The previous
efforts serve as building blocks for designing a MAC protocol that
meets our goals.

The DARPA Packet Radio Network (PRNET) [10] was one of
the first ad-hoc multihop wireless networks. PRNET had two me-
dia access protocols–Slotted ALOHA [1] and Carrier Sense Multi-
ple Access [9]. Much of the standard MAC protocol functionality–
including random delays, forwarding delays, link quality estima-
tion, and low duty cycle through node synchronization–were first

executed in PRNET. CSMA is validated as a way to efficiently use
the majority of the channel’s bandwidth while duty cycling nodes.
TDMA and slotted ALOHA solutions in PRNET were ultimately
dismissed due to their inability to scale.

Woo and Culler [20] illustrate the effect of changing the MAC
protocol based on the workload. They show that sensor network
application scenarios and network traffic characteristics differ sig-
nificantly from conventional computer networks. Typically data is
sent periodically in short packets. To achieve fairness and energy
efficient transmission through a multihop network, they design an
adaptive rate control protocol to that is optimized forn-to-1 data
reporting and multihop networking. Existing MAC protocols are
simply not suitable due to their failure to efficiently support sensor
network workloads in low duty cycle conditions.

Hill and Culler [7] demonstrate a form of preamble sampling to
reduce idle listening cost. In Hill’s RF wakeup scheme, the analog
baseband of the radio is sampled for energy every 4 seconds. By
quickly evaluating the channel’s energy, he reduced the duty cycle
of the radio to below 1%. He demonstrated the use of low power
RF wakeup on an 800 node multihop network. The ASK radio
used by Hill allows very brief radio sampling; we develop a related
technique that works on more complex radios.

Published concurrently with Hill’s work, Aloha with preamble
sampling [4] presents a low power technique similar to that used in
paging systems [13]. To let the receiver sleep for most of the time
when the channel is idle, nodes periodically wake up and check for
activity on the channel. If the channel is idle, the receiver goes back
to sleep. Otherwise, the receiver stays on and continues to listen
until the packet is received. Packets are sent with long preambles
to match the channel check period. El-Hoiydi [4] creates a model
for Aloha with preamble sampling and presents the effect of delay
due to long preambles. He proposes using the long preamble for
initial synchronization of nodes; afterwards the nodes transmit and
receive on a schedule with normal sized packets.

WiseMAC [5] is an iteration on Aloha with preamble sampling
specifically designed for infrastructure wireless sensor networks.
The main contribution of WiseMAC is an evaluation of the power
consumption of WiseMAC, 802.11, and 802.15.4 under low traffic
loads. They show that for the same delay, WiseMAC and pream-
ble sampling lowered power consumption by 57% over PSM used
in 802.11 and 802.15.4. WiseMAC meets many of our goals ex-
cept that it has no mechanism to reconfigure based on changing
demands from services using the protocol.

S-MAC [22] is a low power RTS-CTS scheme for wireless sen-
sor networks inspired by PAMAS [15] and 802.11. S-MAC peri-
odically sleeps, wakes up, listens to the channel, and then returns
to sleep. Each active period is of fixed size, 115 ms, with a vari-
able sleep period. The length of the sleep period dictates the duty
cycle of S-MAC. At the beginning of each active period, nodes ex-
change synchronization information. Following the SYNC period,
data may be transferred for the remainder of the active period us-
ing RTS-CTS. In a follow up paper [23], the authors add adaptive
listening–when a node overhears a neighbor’s RTS or CTS packets,
it wakes up for a short period of time at the end of their neighbor’s
transmission to immediately transmit its own data. By changing the
duty cycle, S-MAC can trade off energy for latency. S-MAC uses
fragmentation to deliver each piece of the message. Fragmentation
uses the RTS-CTS scheme to reserve the channel, then transmit
packets in a burst. Although S-MAC achieves low power opera-
tion, it does not meet our goals of simple implementation, scalabil-
ity, and tolerance to changing network conditions. As the size of
the network increases, S-MAC must maintain an increasing num-
ber of schedules of surrounding nodes or incur additional overhead
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interface MacControl {
command result_t EnableCCA();
command result_t DisableCCA();
command result_t EnableAck();
command result_t DisableAck();
command void* HaltTx();

}

interface MacBackoff {
event uint16_t initialBackoff(void* msg);
event uint16_t congestionBackoff(void* msg);

}

interface LowPowerListening {
command result_t SetListeningMode(uint8_t mode);
command uint8_t GetListeningMode();
command result_t SetTransmitMode(uint8_t mode);
command uint8_t GetTransmitMode();
command result_t SetPreambleLength(uint16_t bytes);
command uint16_t GetPreambleLength();
command result_t SetCheckInterval(uint16_t ms);
command uint16_t GetCheckInterval();

}

Figure 1: Interfaces for flexible control of B-MAC by higher
layer services. These TinyOS interfaces allow services to tog-
gle CCA and acknowledgments, set backoffs on a per message
basis, and change the LPL mode for transmit and receive.

through repeated rounds of resynchronization.
T-MAC [19] improves on S-MAC’s energy usage by using a very

short listening window at the beginning of each active period. After
the SYNC section of the active period, there is a short window to
send or receive RTS and CTS packets. If no activity occurs in that
period, the node returns to sleep. By changing the protocol to have
an adaptive duty cycle, T-MAC saves power at a cost of reduced
throughput and additional latency. T-MAC, in variable workloads,
uses one fifth the power of S-MAC. In homogeneous workloads, T-
MAC and S-MAC perform equally well. T-MAC suffers from the
same complexity and scaling problems of S-MAC. Shortening the
active window in T-MAC reduces the ability to snoop on surround-
ing traffic and adapt to changing network conditions.

Many of these protocols have only been evaluated in simulation.
Not only must the protocol perform well in simulation, it must also
integrate well with the implementation of wireless sensor network
applications. Each of the protocols described in this section provide
solutions that meet a subset of our goals. Motivated by monitoring
applications for wireless sensor networks, we build upon ideas from
previously published work to create a reconfigurable protocol that
meets all of the goals from Section 1.

3. DESIGN AND IMPLEMENTATION
To achieve the goals outlined in Section 1, we designed a CSMA

protocol for wireless sensor networks called B-MAC, Berkeley Me-
dia Access Control for low power wireless sensor networks. Al-
though B-MAC is motivated by the needs of monitoring applica-
tions, the flexibility of our protocol allows allows other services
and applications to be realized efficiently. These services include,
but are not limited to, target tracking, localization, triggered event
reporting, and multihop routing.

Classical MAC protocols perform channel access arbitration and
are tuned for good performance over a set of workloads thought
to be representative of the domain. S-MAC is an example of a
wireless sensor network protocol designed using a classical ap-
proach. S-MAC provides an RTS-CTS mechanism for channel ar-
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Figure 2: Clear Channel Assessment (CCA) effectiveness for a
typical wireless channel. The top graph is a trace of the received
signal strength indicator (RSSI) from a CC1000 transceiver. A
packet arrives between 22 and 54ms. The middle graph shows
the output of a thresholding CCA algorithm. 1 indicates the
channel is clear,0 indicates it is busy. The bottom graph shows
the output of an outlier detection algorithm.

bitration and hidden terminal avoidance, synchronization with its
neighbors for low power operation, and message fragmentation for
efficiently transferring bulk data. S-MAC is not only a link proto-
col, but also network and organization protocol. Applications and
services must rely on S-MAC’s internal policies to adjust its op-
eration as node and network conditions change; such changes are
opaque to the application. In contrast, the B-MAC protocol con-
tains a small core of media access functionality. B-MAC uses clear
channel assessment (CCA) and packet backoffs for channel arbitra-
tion, link layer acknowledgments for reliability, and low power lis-
tening (LPL) for low power communication. B-MAC is only a link
protocol, with network services like organization, synchronization,
and routing built above its implementation. Although B-MAC nei-
ther provides multi-packet mechanisms like hidden terminal sup-
port or message fragmentation nor enforces a particular low power
policy, B-MAC has a set of interfaces that allow services to tune its
operation (shown in Figure 1) in addition to the standard message
interfaces1. These interfaces allow network services to adjust B-
MAC’s mechanisms, including CCA, acknowledgments, backoffs,
and LPL. By exposing a set of configurable mechanisms, protocols
built on B-MAC make local policy decisions to optimize power
consumption, latency, throughput, fairness or reliability.

For effective collision avoidance, a MAC protocol must be able
to accurately determine if the channel is clear, referred to as Clear
Channel Assessment (CCA). Since the ambient noise changes de-
pending on the environment, B-MAC employs software automatic
gain control for estimating the noise floor. Signal strength samples
are taken at times when the channel is assumed to be free–such as
immediately after transmitting a packet or when the data path of
the radio stack is not receiving valid data. Samples are then en-
tered into a FIFO queue. The median of the queue is added to an
exponentially weighted moving average with decayα. The median

1Standard interfaces for message transmission in TinyOS [18] are
BareSendMsg for transmission,ReceiveMsg for reception,
andRadioCoordinator for time stamping and start of frame
delimiter (SFD) information.
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Figure 3: When turning on the radio, the node must perform
a sequence of operations. The node first starts in sleep state
(a), then wakes up on a timer interrupt (b). The node initial-
izes the radio configuration and commences the radio’s startup
phase. The startup phase (c) waits for the radio’s crystal oscil-
lator to stabilize. Upon stabilization, the radio enters receive
mode (d). After the receive mode switch time, the radio enters
receive mode (e) and a sample of the received signal energy may
begin. After the ADC starts acquisition, the radio is turned off
and the ADC value is analyzed (f). With LPL, if there is no
activity on the channel, the node returns to sleep (g).

is used as a simple low pass filter to add robustness to the noise
floor estimate. Anα value of0.06 and FIFO queue size of10 pro-
vided the best results for a typical wireless channel. Once a good
estimate of the noise floor is established, a request to transmit a
packet starts the process of monitoring the received signal from the
radio. A common method used in a variety of protocols, including
802.15.4, takes a single sample and compares it to the noise floor.
This thresholding method produces results with a large number of
false negatives that lower the effective channel bandwidth. Since
noise has significant variance in channel energy whereas packet re-
ception has fairly constant channel energy (as shown in Figure 2),
B-MAC searches for outliers in the received signal such that the
channel energy is significantly below the noise floor. If an out-
lier exists during the channel sampling period, B-MAC declares
the channel is clear since a valid packet could never have an outlier
significantly below the noise floor. If five samples are taken and no
outlier is found, the channel is busy. The effectiveness of outlier de-
tection as compared to thresholding on a trace from a CC1000 [3]
transceiver is shown in Figure 2.

The most basic mechanism allows services to turn CCA on or off
using theMacControl interface in Figure 1. By disabling CCA,
a scheduling protocol may be implemented above B-MAC. If CCA
is enabled, B-MAC uses an initial channel backoff when sending a
packet. B-MAC does not set the backoff time, instead an event is
signaled to the service that sent the packet via theMacBackoff
interface. The service may either return an initial backoff time or
ignore the event. If ignored, a small random backoff is used. After
the initial backoff, the CCA outlier algorithm is run. If the channel
is not clear, an event signals the service for a congestion backoff
time. If no backoff time is given, again a small random backoff
is used. Enabling or disabling CCA and configuring the backoff
allows services to change the fairness and available throughput.

B-MAC provides optional link-layer acknowledgment support.

If acknowledgments are enabled, B-MAC immediately transfers an
acknowledgment code after receiving a unicast packet. If the trans-
mitting node receives the acknowledgment, an acknowledge bit is
set in the sender’s transmission message buffer.

B-MAC duty cycles the radio through periodic channel sampling
that we call Low Power Listening (LPL). Our technique is similar
to preamble sampling in Aloha [4] but tailored to different radio
characteristics. Each time the node wakes up, it turns on the ra-
dio and checks for activity. If activity is detected, the node powers
up and stays awake for the time required to receive the incoming
packet. After reception, the node returns to sleep. If no packet is
received (a false positive), a timeout forces the node back to sleep.
Accurate channel assessment (CCA) is critical to achieving low
power operation with this method. We use the noise floor estima-
tion of B-MAC not only for finding a clear channel on transmission
but also for determining if the channel is active during LPL. False
positives in the CCA algorithm (such as those caused by thresh-
olding) severely affect the duty cycle of LPL due to increased idle
listening.

To reliably receive data, the preamble length is matched to the
interval that the channel is checked for activity. If the channel is
checked every 100 ms, the preamble must be at least 100 ms long
for a node to wake up, detect activity on the channel, receive the
preamble, and then receive the message. Idle listening occurs when
the node wakes up to sample the channel and there is no activity.
The interval between LPL samples is maximized so that the time
spent sampling the channel is minimized. The check interval and
preamble length are examples of parameters exposed through B-
MAC’s LowPowerListening interface in Figure 1. Transmit
mode corresponds to the preamble length and the listening mode
corresponds to the check interval. We provide a selection of 8 dif-
ferent modes (corresponding to 10, 20, 50, 100, 200, 400, 800, and
1600ms for the check interval). Protocols may also set their own
preamble length and check interval through the interface. The ef-
fect of varying the preamble size and check interval is discussed in
more detail in Section 4. Examples of services that use the LPL
interface are given in Subsection 4.3 and Section 8.

A trace of the power consumption while sampling the channel
on a Mica2 mote [17] is shown in Figure 3. The process in Figure 3
applies to essentially any MAC protocol for sensor networks. It
performs initial configuration of the radio (b), starts the radio and
its oscillator (c), switch the radio to receive mode (d), and then per-
form the actions of the protocol. As a result, the cost for powering
up the radio is the same for all protocols. The difference between
protocols is how long the radio is on after it has been started and
how many times the radio is started.

In sensor networks, each node typically runs a single applica-
tion. Since the RAM and ROM available on sensor nodes are ex-
tremely limited, keeping the size of the MAC implementation small
is important. Reducing the complexity of the protocol reduces state
and the likelihood of race conditions We implemented B-MAC in
TinyOS [11] to evaluate its efficacy in meeting our goals. Since B-
MAC does not have the RTS-CTS mechanism or synchronization
requirements of S-MAC2, the implementation is both simpler and
smaller as shown in Table 1. B-MAC does not hinder efficient im-
plementation of network protocols; above B-MAC we implemented
an RTS-CTS scheme and a message fragmentation service using
B-MAC’s control interfaces that have equivalent functionality to
S-MAC RTS-CTS and fragmentation services.

2All tests with S-MAC were performed with the implementation
in tinyos-1.x/contrib/s-mac/ in the TinyOS CVS repos-
itory [18] as of March 30, 2004.
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Protocol ROM RAM
B-MAC 3046 166
B-MAC w/ ACK 3340 168
B-MAC w/ LPL 4092 170
B-MAC w/ LPL & ACK 4386 172
B-MAC w/ LPL & ACK + RTS-CTS 4616 277
S-MAC 6274 516

Table 1: A comparison of the size of B-MAC and S-MAC in
bytes. Both protocols are implemented in TinyOS.

4. CONCEPTS AND TRADEOFFS
In this section we describe a framework for analyzing the oper-

ation of a wireless sensor network application. We build an ana-
lytical model for monitoring applications. The model allows us to
calculate and set B-MAC’s parameters to optimize the application’s
overall power consumption. Using the model, we illustrate the ef-
fect of different application variables including duty cycle, network
density, and sampling rate. We show how B-MAC’s interfaces may
be used by network services to adapt to current demands.

4.1 Modeling Lifetime
To calculate node duty cycle and lifetime, we examine a periodic

sensing application (such as in [12]) that streams sensor data to a
base station. Table 2 lists the primitive operations performed by
a low power monitoring application and the observed costs when
using a CC1000 transceiver. These operations describe a represen-
tative class of radios for wireless sensor networks. Radios with
similar properties are manufactured by Chipcon, Infineon, and Mo-
torola. We use the notation and values in Table 2 throughout the
remainder of this paper.

The node’s lifetime is determined by its overall energy consump-
tion. If the lifetime is maximized, then the energy consumption
must be minimized. All of the energies,E, are defined in units of
millijoules per second, or milliwatts. Calculating the total energy
usage can be done by multiplyingE by the node lifetimetl. For
wireless sensor network applications, the energy used by a node
consists of the energy consumed by receiving, transmitting, listen-
ing for messages on the radio channel, sampling data, and sleeping.

E = Erx + Etx + Elisten + Ed + Esleep (1)

Sensors are an integral part of wireless sensor networks and must
be considered when calculating a node’s lifetime. Sampling sen-
sors is often expensive and affects the lifetime of the node. The
sampling parameters (shown in Table 2) are based on an applica-
tion deployed by Mainwaring et. al. [12]. In their application, each
node takes 1100 ms to start its sensors, sample, and collect data.
The data is sampled every five minutes, orr = 1/(5 ∗ 60). The
energy associated with sampling data,Ed, is

td = tdata × r

Ed = tdcdataV (2)

The energy consumed by transmitting,Etx, is simply the length
of the packet with the preamble times the rate packets are generated
by the application.

ttx = r × (Lpreamble + Lpacket)ttxb

Etx = ttxctxbV (3)

For a periodic application with a uniform sampling rate, the node
will detect and receive data when each of itsn neighbors transmit

Operation Time (s) I (mA)
Initialize radio (b) 350E-6 trinit 6 crinit

Turn on radio (c) 1.5E-3 tron 1 cron

Switch to RX/TX (d) 250E-6 trx/tx 15 crx/tx

Time to sample radio (e) 350E-6 tsr 15 csr

Evaluate radio sample (f) 100E-6 tev 6 cev

Receive 1 byte 416E-6 trxb 15 crxb

Transmit 1 byte 416E-6 ttxb 20 ctxb

Sample sensors 1.1 tdata 20 cdata

Table 2: Time and current consumption (I) for completing
primitive operations of a monitoring application using the
Mica2 mote and CC1000 transceiver. Identifiers on each op-
eration map back to the activities of acquiring a radio sample
in Figure 3.

Notation Parameter Default

csleep Sleep Current (mA) 0.030
Cbatt Capacity of battery (mAh) 2500
V Voltage 3

Lpreamble Preamble Length (bytes) 271
Lpacket Packet Length (bytes) 36
ti Radio Sampling Interval (s) 100E-3

n Neighborhood Size (nodes) 10
r Sample Rate (packets/s) 1/300
tl Expected Lifetime (s) -

Table 3: Parameters for a monitoring application running B-
MAC. The first three parameters are specific to Mica2 motes;
the next three are default values for B-MAC parameters on
the Mica2; the remaining parameters are application seman-
tics affecting B-MAC’s performance. Each parameter affects
the node’s total energy consumption,E.

a packet, regardless of the packet’s destination. We refer to the
density of neighbors surrounding a node as theneighborhood size
of the node. Although receiving data from neighbors shortens a
node’s lifetime, it allows services to snoop on the channel and make
decisions based on channel activity.

We can bound the total time the node will spend receiving and
calculate an upper bound on the energy consumed by receiving,
Erx.

trx ≤ nr(Lpreamble + Lpacket)trxb

Erx = trxcrxbV (4)

Our analysis is based on a single cell. To analyze a multihop
application, we need to account for the routing traffic through each
node due to its children and its neighbors’ children. Instead ofr
packets per second flowing through a particular node, the traffic
through the node must also include all the packets routed by the
node and its neighbors. The function children(i) is defined by the
multihop routing protocol.

r ×
nX

i=0

(children(i) + 1)

Up to this point, our model has been independent of the MAC
protocol in use. The MAC protocol is responsible for minimiz-
ing idle listening time,tlisten. In B-MAC, idle listening occurs
whenever B-MAC samples the channel for activity but no activity
is present.
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Figure 4: Contour of node lifetime (in years) based on LPL
check time and network density. If both parameters are known,
their intersection is the expected lifetime using the optimal B-
MAC parameters.

In order to reliably receive packets, the LPL check interval,ti,
must be less than the time of the preamble. Therefore we have the
constraint:

Lpreamble ≥ dti/trxbe

Given a check interval and associated preamble length, we can
calculate the time spent sampling the channel. From Figure 3, the
power consumption of a single LPL radio sample is17.3µJ. The
total energy spent listening to the channel is the energy of a single
channel sample times the channel sampling frequency.

Esample = 17.3µJ

tlisten = (trinit + tron + trx/tx + tsr)×
1

ti

Elisten ≤ Esample ×
1

ti (5)

Finally, the node must sleep for the remainder of the time. The
sleep time,tsleep, is simply the time remaining each second that’s
not consumed by other operations.

tsleep = 1− trx − ttx − td − tlisten

Esleep = tsleepcsleepV (6)

The lifetime of the node,tl, is dependent on the total energy
consumed,E, and the battery capacity,Cbatt. We must bound the
lifetime by the available capacity of the battery.

tl =
Cbatt × V

E
× 60× 60 (7)

By solving the system of equations (1 through 6) and entering the
parameters in Table 3, we can find the minimum energy for a given
network configuration. Lifetime may be estimated at compile time,
or computed for a discrete set of values at runtime that provides
reconfiguration feedback to network services.
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Figure 5: The node’s duty cycle is affected by the network den-
sity and LPL check interval. Typically used LPL check inter-
vals in B-MAC’s implementation are depicted. The best check
interval is the lowest line at a given network density.

4.2 Parameters
In a typical deployment, scientists will determine the physical

location of the nodes (which affects each node’s neighborhood size,
n) and the ideal sampling rate,r. With this information, we can
calculate the parameters to attain the best lifetime that B-MAC can
achieve. This also provides the scientist with an estimate for how
long the network will live.

If we fix the sample rate and vary the network density,n, we
can evaluate the affect of neighbors on node lifetime. Solving the
system of equations from this section with the sample rate equal to
once every five minutes yields Figure 4. Taking a few slices across
the figure at realistic check intervals is shown in Figure 5. To find
the best LPL check interval for an application, find the expected
neighborhood size in Figure 5 and move up the y-axis to the low-
est line. The check interval corresponding with this line will yield
the maximum lifetime. For example, a check interval of 50 ms is
optimal for a neighborhood size of 20, but if the neighborhood size
is only 5, a check interval of 100 ms is optimal. The size of the
neighborhood affects the amount of traffic flowing by each node.
B-MAC trades off idle listening for a reduced time to transmit and
receive.

If we assume we have a network with approximately 10 neigh-
bors per node, the optimum LPL check interval changes with sam-
ple rate. Increasing the sample rate increases the amount of traffic
in the network (just as increasing the neighborhood size also in-
creases the traffic in a periodic application). As a result, each node
overhears more packets. We must find the optimal check interval
ti such that we maximize the lifetimetl. Loweringti also lowers
the preamble length. The time to transmit and receive a packet is
shorter and the radio is sampled more often.

The tradeoff of more frequently checking the radio in order to
shorten the packet transmission time is shown in Figure 6. Notice
that the penalty for more idle listening than required by the traffic
pattern, left of the maximum lifetime point in Figure 6, is much
more severe than the penalty for sending packets that are longer
than necessary.
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4.3 Adaptive Control
Our model shows that it is advantageous to change the parame-

ters of the MAC protocol based on changing network conditions.
Since sensor networks consist of low power volatile nodes, it is
likely that links will appear or disappear over time [21, 24]. Nodes
may join and leave the network, or the size of the neighborhood
will change due to changes in the physical environment. The MAC
protocol must be able to adjust for these changes and optimize its
power consumption, latency, and throughput to support the services
relying on it. The analytical model allows the node to recompute
the check interval and preamble length. To address reconfiguration,
we chose not to implement the functionality in the MAC protocol
as Woo and Culler [20] have done. Instead, we created a set of bidi-
rectional interfaces that allow services to change the MAC protocol
based on their current operating conditions.

By factoring out more complex parts of conventional MAC pro-
tocols, services can decide which situations warrant the use of addi-
tional control. For example, B-MAC’s link layer acknowledgment
support may be selected on a per-packet basis. When an acknowl-
edgment fails, services may choose to retransmit the packet, change
the packet’s destination, or reconfigure the LPL parameters.

One scheme implemented above B-MAC is an RTS-CTS channel
acquisition protocol. On each packet transmission, an RTS packet
is sent. A CTS response is sent if the destination node is idle and
not delaying due to other transmissions. The RTS and CTS pack-
ets are sent using LPL. Once the channel is acquired, data and ac-
knowledge packets are sent immediately with CCA and LPL dis-
abled. After acknowledgment, both nodes reenable LPL and CCA,
then they return to sleep.

5. EXPERIMENTAL METHOD
To illustrate the effectiveness of a lightweight, configurable MAC

protocol, we compare B-MAC to existing MAC protocols, specif-
ically S-MAC and T-MAC. Each protocol is run through a set of
simple workloads forming an empirical characterization of pro-
tocol performance. The purpose of these microbenchmarks is to
show how WSN protocols react to typical wireless sensor network

Length (bytes) B-MAC S-MAC
Preamble 8 18
Synchronization 2 2
Header 5 9
Footer (CRC) 2 2
Data Length 29 29
Total 46 60

Table 4: B-MAC and S-MAC as implemented in TinyOS have
different protocol overhead when sending a data packet. S-
MAC has a larger header to accommodate timestamp infor-
mation. The data payload is the default payload for TinyOS
applications; however, both B-MAC and S-MAC send only the
length specified by higher level services.

conditions–high contention, low to high throughput, low to high la-
tency, and their correlation with power consumption. We contrast
the use of RTS-CTS and message fragmentation services imple-
mented using B-MAC’s interfaces to the same mechanisms that are
part of the S-MAC protocol. These microbenchmarks build an un-
derstanding of how a real application would perform. To validate
the model in Section 4, we look in detail at the performance of a
deployed monitoring application that uses B-MAC. We compare
the actual node duty cycles with those predicted by our model and
show that our empirical characterizations apply to real world appli-
cations.

Both B-MAC and S-MAC were implemented in TinyOS. We
used the Mica2 [17] wireless sensor nodes to perform our tests.
All tests occurred in an unobstructed area with line of sight to ev-
ery other node. To enable multihop networking, we reduced the
RF output power of the node to its minimum value and placed the
nodes with 1 meter spacing. Nodes were elevated 15 centimeters to
reduce near-field effects.

To determine the power consumption of each protocol, we im-
plemented counters in the MAC protocol that keep track of how
many times various operations were performed. For B-MAC, this
includes receiving a byte, transmitting a byte, and checking the
channel for activity. For S-MAC, we count the amount of time that
the node is active, number of bytes transmitted and received, and
the additional time the node spent awake due to adaptive listening.
Since the S-MAC implementation does not actually put the node
into sleep mode, we had to measure the power consumption in-
directly by multiplying the cumulative time of each operation with
the expected power to operate in that mode. All of our data assumes
that S-MAC actually enters sleep mode even though the implemen-
tation does not. The power consumption of each operation is taken
from Table 2.

In addition to tests on real sensor network hardware, we simu-
lated T-MAC [19] in Matlab. We calculated the time of each opera-
tion and multiplied by the current consumption in Table 2 to get the
overall expected power consumption of the T-MAC protocol. At
the time of our experiments, there was no TinyOS implementation
of T-MAC available to do a direct comparison between B-MAC,
S-MAC, and T-MAC.

To measure latency, each node is connected to an oscilloscope.
Upon submission of a packet to the MAC protocol, we toggle a
hardware pin. When a packet is received, a different pin is tog-
gled. Using an oscilloscope, we capture the time between each pin
toggling to yield the total latency.

In some graphs we show the optimal solution. Found by com-
puting a perfect schedule, the optimal solution is the minimum to-
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Figure 7: Measured throughput of each protocol with no duty
cycle under a contended channel. The throughput of each pro-
tocol is affected by the amount of nodes contending for the
channel and the protocol’s overhead. B-MAC achieves over 4.5
times the throughput of the standard S-MAC unicast protocol
through lower per-packet processing and effective CCA.

tal transmit and receive costs possible. In this solution, all nodes
are perfectly synchronized with no additional overhead. This met-
ric serves to show the effect of overhead in sensor network MAC
protocols. To calculate the power consumption, the transmit and
receive times are multiplied by the power to perform those opera-
tions.

In all cases, we measure thedata throughputof the network. This
factors out the protocol-specific overhead to evaluate the amount of
data that can be delivered by each protocol and the cost of deliver-
ing that data. In all tests where we mention “packet size”, we are
referring to the size of the data payload only, not the header infor-
mation. The overhead attributed to each protocol is shown in Ta-
ble 4. S-MAC uses a longer preamble and contains time stamping
information in the header. Note that control and synchronization
packets in S-MAC are 10 bytes long plus preamble and synchro-
nization (total 30 bytes). For some tests, we vary the data length.
Table 4 shows the default data lengths; however both B-MAC and
S-MAC only transmit the data length specified by the application
on a per packet basis.

6. MICROBENCHMARK ANALYSIS
In this section we use a variety of microbenchmarks to show how

B-MAC’s functionality may be used effectively. These benchmarks
show the effect of a wide array of network conditions on the energy
consumption of B-MAC, S-MAC, and T-MAC. We show the po-
tency of B-MAC’s interfaces for building efficient applications and
communications protocols. The results of the microbenchmarks
empirically characterize the performance of B-MAC, providing in-
sight on B-MAC’s expected behavior in real world applications.

6.1 Channel Utilization
Channel utilization is a traditional metric for MAC protocols that

illustrates protocol efficiency. High channel utilization is critical
for delivering a large number of packets in a short amount of time.
In sensor networks, quickly transferring bulk data typically occurs
in network reprogramming or extracting logged sensor data. By
minimizing the time to send packets, we can also reduce the net-
work contention. In network reprogramming, the network is woken
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Figure 8: The measured power consumption of maintaining
a given throughput in a 10-node network. As the throughput
increases, the overhead of S-MAC’s SYNC period causes the
power consumption to increase linearly. The throughput is the
average node bitrate (number of data bytes sent in a 10 second
time period) in the 10 node network.

up and reprogrammed as quickly as possible. To find the channel
utilization under congestion, we placedn nodes equidistant from
a receiver. Each node transmitted as quickly as possible with the
MAC protocol providing collision avoidance. We increased the of-
fered load by adding transmitters. There is no node or radio duty
cycling in this test. The throughput achieved by B-MAC and S-
MAC is shown in Figure 7.

In general, better throughput is attained with fewer nodes trying
to saturate the channel. With one transmitter, B-MAC outperforms
S-MAC broadcast mode (RTS-CTS disabled) by 2.5 times and S-
MAC unicast mode (RTS-CTS enabled) by 4.5 times. B-MAC out-
performs S-MAC for broadcast traffic due to more sophisticated
CCA and lower preamble overhead. For unicast traffic, S-MAC
suffers from the overhead of RTS-CTS exchanges. Instead of us-
ing control messages like RTS-CTS for hidden terminal support,
B-MAC’s relies on higher layer services to send data in accordance
with their traffic pattern. These services implement the appropri-
ate hidden terminal support for their workloads. For example, after
sending a multihop message, all nodes in the cell should refrain
from transmitting until one packet time has elapsed to allow the
parent to retransmit up the tree as proven to be more efficient than
control messages for multihop traffic in [20]. By allowing the ser-
vice to decide, many costly control message exchanges are elimi-
nated.

B-MAC exceeds the performance of S-MAC, but does not trade
off fairness in the process. The test in Figure 7 uses a short ini-
tial random backoff proven in [20] to provide fair channel utiliza-
tion. By analyzing our dataset, we found that each node in the test
achieves no more than 15% more bandwidth than any other node.
To yield even higher throughput with B-MAC, we can discard fair-
ness as a requirement. Each transmitter can set its backoff to zero
and take control of the channel. As the number of nodes increases,
channel contention and the capture effect3 causes B-MAC’s perfor-

3The capture effect occurs when overlapping packets are sent due
to one node sensing that the channel is clear while another node is
in the process of switching to transmit mode [10, 14].
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0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fragment size (bytes)

E
ne

rg
y 

pe
r b

yt
e 

(m
J/

by
te

)

B−MAC w/ no frag control
B−MAC w/ frag control
S−MAC
T−MAC (simulated)
Optimal Schedule

(b) 100 second message generation rate

Figure 9: The effective energy consumption per byte at node C for a network as shown in Figure 10. Each node generates a message
every10seconds (left) and every100seconds (right) consisting of 10 fragments of the size given on the x-axis.

mance to converge to S-MAC’s performance. Since S-MAC uses
a longer preamble, a larger portion of the channel is dedicated to
incoming signal synchronization by the receiver. Using B-MAC’s
control interfaces, the preamble may be set to the same length as
S-MAC or scale up as the channel contention increases.

To illustrate the effectiveness of a configurable MAC protocol for
sensor networks, we implemented the RTS-CTS scheme described
in Subsection 4.3. This scheme illustrates one method a service
may employ to mitigate the hidden node problem and increase fair-
ness with B-MAC. Since B-MAC can utilize 2.5 times more of
the channel using the CCA algorithm from Section 3, the RTS-
CTS implementation using B-MAC actually provides double the
throughput of S-MAC. When many nodes compete for the channel,
B-MAC with RTS-CTS support provides identical performance to
S-MAC. This test illustrates that system services, like RTS-CTS,
built using B-MAC’s interfaces does not hinder protocol perfor-
mance.

6.2 Energy vs. Throughput
We designed B-MAC to run at both low and high data rates con-

figured by services relying on it. Low duty cycle applications have
extremely low network throughput; however some application ser-
vices, such as bulk data transfer, stress the high throughput func-
tionality of the MAC protocol. To evaluate how increased through-
put affects power consumption, we vary the transmission rate of
10 nodes in a single cell. We bound the latency such that the data
must arrive within 10 seconds. For B-MAC, the optimal check in-
terval ti is calculated for the traffic pattern, the test is run, and the
energy consumption is calculated. For S-MAC, the optimal duty
cycle is calculated for the traffic pattern such that the data arrives
within the 10 second period. The results are shown in Figure 8.

At low data rates, S-MAC can use an extremely low duty cycle to
transmit and receive the data. As the amount of data increases, so
must S-MAC’s duty cycle. When the duty cycle increases, there are
more active periods each with a dedicated SYNC period. Due to the
overhead of the SYNC period at the beginning of each wakeup, the
S-MAC energy consumption increases linearly. In B-MAC, at low

throughput we send long preambles with a long check intervalti.
Because of the tradeoff between idle listening and packet length,
the overhead dominates the energy consumption. The overhead
of LPL is mitigated by a more frequent check interval when the
throughput exceeds 45 bits per second. Note that B-MAC’s power
consumption below 45 bits per second is within 25% of S-MAC’s
power consumption; however, B-MAC has significantly less state
and no synchronization requirements. Services using B-MAC may
easily reconfigure the link protocol to change the check interval
based on the network bandwidth whereas services using S-MAC
must force it to create a new schedule and resynchronize.

6.3 Fragmentation
Small periodic data packets are the most common workload in

sensor networks, but certain cases arise where larger transfers are
needed. S-MAC supports large message fragmentation within the
MAC protocol using an RTS-CTS exchange for channel reserva-
tion. To compare B-MAC directly to S-MAC’s design goal of ef-
ficient message fragmentation, we devised an experiment to match
those done by the authors of S-MAC in [23]. Using the network
configuration in Figure 10, we transmitted packets from sources A
and B to sinks D and E by routing through C.

A

B

C

D

E

Figure 10: X network configuration used for packet fragmen-
tation tests.

As in [23], our test sent 10 fragments per message. We var-
ied the fragment size and measured the energy consumed for that
transfer. C is the energy bottleneck node in the test network–C will
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Figure 11: The end-to-end latency is a linear function of the
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cease operation before any other node since it must both receive
and relay packets. We evaluate the energy required to deliver the
fragments with S-MAC running at 10% duty cycle with adaptive
listening. B-MAC is configured with the default parameters from
Table 3. Figure 9(a) shows the energy cost per byte at node C when
a message (consisting of 10 fragments) is sent every 10 seconds.
Figure 9(b) show the energy cost per byte when the message gen-
eration interval is once every 100 seconds.

B-MAC without fragmentation control is simply the B-MAC pro-
tocol with the default parameters. Each fragment is an independent
packet with a long preamble. But, the middleware service could
adjust the MAC protocol to minimize the energy consumed during
bulk transfer. In the measurements with fragmentation control, a
message fragmentation service is built using B-MAC’s interfaces
provided in Figure 1. The first fragment of the message is sent with
LPL enabled and extra bytes to inform the receiver of the number
of fragments. The remaining fragments are sent with LPL disabled.
After the last fragment, the sender and receiver reenable LPL. With
this flexibility, we achieve significant power savings and efficiency
essentially identical to S-MAC without the additional overhead, in-
cluding RAM and ROM usage. When the message transmission
period is large (as in Figure 9(b)), the overhead of S-MAC is read-
ily apparent; the energy consumption per byte of both S-MAC and
T-MAC is greater at all fragment sizes than B-MAC with fragmen-
tation support. The naı̈ve B-MAC approach with long preambles
for each fragment yields the same power consumption as S-MAC
without the additional complexity. When there is no activity on
the channel, T-MAC removes the overhead incurred by S-MAC by
using adaptive active periods to return to sleep much quicker. Fig-
ure 9 shows that the energy cost of breaking up a short message
into even shorter fragments is so high in all of our protocols that it
is simply not a viable option in sensor networks.

6.4 Latency
The authors of S-MAC argue that when the MAC protocol is

permitted to increase latency, S-MAC can reduce the node’s duty
cycle and conserve energy. A test for evaluating end-to-end latency
was devised in [23]. We have reproduced their tests to provide a
direct comparison between B-MAC and S-MAC. The test is run
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Figure 12: As the latency increases, the energy consumed by
both B-MAC and S-MAC decreases. The point illustrated on
the B-MAC line is the default configuration as shown in Table 3.
The point on the S-MAC line is the default S-MAC configura-
tion at 10% duty cycle with adaptive listening.

Source Sink

11 10 9 3 2 1

Figure 13: 10 hop configuration used for multihop end-to-end
latency tests.

on a 10-hop network shown in Figure 13. In each test, the source
node sends 20 messages with a payload of 100-bytes. There is no
fragmentation on any message.

The latency at each hop of the network is measured with the
method described in Section 5. S-MAC is tested at a 10% duty
cycle with adaptive listening. B-MAC is tested with the default
parameters. The results are shown in Figure 11. We are able to
reproduce the latency data from [23] and it fits the previously pub-
lished results.

The latency of B-MAC and S-MAC increase linearly. When duty
cycling is disabled, the effect of RTS-CTS exchanges in S-MAC
result in a much steeper slope than B-MAC. For low power com-
munications, B-MAC has a slope almost identical to S-MAC with
adaptive listening, however the y-intercept is much lower. Since
the first packet cannot be sent until an S-MAC active period, it is
delayed by at most 1150 milliseconds. Through adaptive listening,
S-MAC does not incur an expected 1150 milliseconds additional
delay at each hop. One protocol feature of B-MAC, link layer ac-
knowledgments, increases latency by an insignificant amount.

To better evaluate the effect of increasing the latency to reduce
power consumption, we fixed the throughput to one 100 byte packet
per 10 second interval. We measured the end-to-end latency of the
10 hop network and varied the duty cycle of S-MAC. We also chose
the optimalti for B-MAC given the latency and throughput. The
results are shown in Figure 12.

For latencies under 6 seconds, B-MAC performs significantly
better than S-MAC. As S-MAC approaches the 10 second latency
limit, its power dips below B-MAC. When the latency exceeds
3 seconds, B-MAC’s power consumption is bounded by the cost
of idle listening. In contrast, the best case performance of S-MAC
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shown in Figure 12 relies on S-MAC synchronizing the entire 10-
hop network and using adaptive listening to transmit the data through
the network in one active period. Figure 12 shows the importance
of reconfiguration in wireless sensor networks. If the application’s
required latency is relaxed, S-MAC could achieve lower energy
consumption than B-MAC; however S-MAC operates at a single
setting, is not reconfigurable, and thus cannot realize these energy
savings.

7. MACROBENCHMARK ANALYSIS
The application model in Section 4 predicts the performance of

a monitoring application for wireless sensor networks using the B-
MAC protocol. In this section, we examine the behavior of a real-
world monitoring application called Surge. We examine Surge’s
duty cycle and compare the results to predictions from the ana-
lytical model. The empirical characterizations from Section 6 are
evaluated with the networking results from Surge. We also examine
the use of B-MAC’s interfaces for simple optimizations that have a
large impact on the network’s lifetime.

Surge is a periodic data collection application that acquires sam-
ples from the node’s sensors, sends the readings, and sleeps. It was
deployed by placing 14 nodes throughout a 30 meter by 20 me-
ter home. The nodes automatically configured themselves into an
ad-hoc routing network. Surge collects data from each node once
every three minutes. Instead of collecting sensor data, we acquired
statistical information from B-MAC about its performance (see Sec-
tion 5 for the energy indicators implemented in B-MAC). Each
node transmits its energy usage, battery voltage, estimated link
quality to surrounding nodes, and its current parent. Data from
Surge is used to verify that the network performance matches the
microbenchmarks from Section 6.

Using our estimate of lifetime versus check interval for a given
sample period (see Figure 6), we selected a 100ms check inter-
val ti. By evaluating the node communication range and overall
size of the network, we expected a maximum neighborhood size
of 5 nodes. To be conservative, we calculated the preamble length
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Figure 15: The position in the network dictates the amount of
traffic flowing through that level. As we approach the base sta-
tion, nodes handle an increasing number of packets. The av-
erage duty cycle is computed by finding the average for nodes
at a given hopcount. Fractional hopcounts are correlated with
nodes that oscillated between two levels of the network. Note
that nodes one-hop away from the base station can achieve a
lower duty cycle because the base station is always on. By re-
configuring B-MAC to use short packets, nodes one-hop from
the base station survive up to 50% longer.

and check interval with a neighborhood size of 10. Using a larger
neighborhood may cause us to overshoot the optimal configuration,
but Section 4 and Figure 5 show that using a longer check interval
is less detrimental to the overall lifetime than checking the channel
too often.

Since the most important thing in a monitoring network is re-
liably reporting the data, we must confirm that B-MAC success-
fully supports multihop data reporting. Our implementation uses
the default multihop routing protocol from the TinyOS distribution,
called MintRoute. After integrating B-MAC with MintRoute, the
routing layer enables B-MAC’s link layer acknowledgments. Upon
a failed acknowledgment, MintRoute retransmits the message up to
five times. The Surge application was run for a period of 8 days.
We collected over 40,000 data packets profiling the performance of
a real world wireless sensor network.

During the Surge deployment, the network yielded over 98.5%
packet delivery while some nodes achieved an astounding 100%
success rate. In our deployment, there were a total of 71 times
where a node decided to change its parent–and consequently changed
the routing tree–as a result of environmental changes altering the
communication topology. In confirmation of Woo and Zhao’s iden-
tification of gray areas, high-quality links that were stable for hours
were intermittently broken due to environmental changes.

The base station was placed at a convenient location to install in-
frastructure in a corner of the network. From the data collected by
the Surge application, we can determine the actual duty cycle of our
deployed network. Surge reports the values of our instrumented op-
eration counters. These counters translate into a duty cycle based
on a 12mA constant current consumption while active. From the
duty cycle, we can extrapolate the network lifetime. Figure 14
shows the measured duty cycles of each node in the network. The
worst case duty cycle of 2.35% indicates that the first node should
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Figure 16: The average latency of packets being delivered by
the Surge application is dependent on the traffic in the network
and reliability of each link. The average exceeds the expected
latency because retransmissions add additional latency to each
packet.

exhaust its battery supply approximately 369 days (1.01 years) into
the deployment.

Our data shows that each node has an average of 5 neighbors,
less than our maximum estimate of 10. Additionally, some nodes
on the edge of the network have less than a 1% duty cycle. We
attribute the lower duty cycle to the significant reduction in traffic
at the edges of the network as compared to central nodes routing a
large amount of data. The variance in leaf node duty cycle is due to
differences in local neighborhood size.

Although the network is homogeneous, we can exploit that the
base station runs with a different duty cycle (since it is always on)
than the data collection network. Instead of sending packets with
long preambles, nodes one hop away send packets with only an
8 byte preamble to the base station. Figure 14 shows the node duty
cycle versus number of packets routed through the node. There
was one node that despite forwarding almost 35,000 packets (about
85% of all data packets), had a duty cycle equal to nodes forward-
ing less than 10,000 packets. This node was critical to reliable
data delivery–by forwarding most of the packets, it would have ex-
hausted its battery supply first and caused a network partition. Fig-
ure 15 shows the duty cycle vs. multihop level in the routing tree.
The node routing 35,000 packets one hop from the base station was
able to alter its MAC behavior (send short preambles) based on its
position in the network and optimize performance.

To validate our model, we calculated the expected lifetime based
on the parameters of our deployment. For the functionchildren(i)
in our model, we performed two calculations: the first assumes
that the routing algorithm produces a balanced binary tree, the sec-
ond assumes the worst case routing tree–a line topology where all
traffic must be forwarded by the node one hop from the base sta-
tion. With a balanced tree and no routing protocol reconfigura-
tion of B-MAC, the first node should exhaust its battery supply in
385 days (1.06 years). For a line, the worst case lifetime is 256 days
(0.71 years).

In the presence of the one-hop optimization and a balanced tree,
we expect that nodes one-hop from the base station will exhaust
their battery supply 549 days (1.49 years) into the deployment,

nodes two-hops exhaust their supply in 542 days (1.48 years). For
a line, the expected lifetime of the node one hop from the base
station is 391 days (1.07 years). Unfortunately the nodes in our
deployment did not form a balanced tree, nor did they form a line.
Our measured power consumption data shows that a node one hop
away will survive for 1.13 years, slightly higher than our 1.07 year
estimate for a line. At two hops in the Surge application, the worst
case lifetime of 1.01 years is directly between our estimates of
1.48 years for a balanced tree and 0.71 years for a line. This
data validates the model; however, protocol designers must care-
fully build network services that uniformly distribute routing (and
thereby uniformly distribute energy consumption) throughout the
network.

Without the one-hop to base station optimization, worst case
power consumption is up to 50% higher. The powered base station
is a simple example of network heterogeneity; one could imagine
much more heterogeneity with a hierarchy of devices. The dif-
ferences between devices dictate other optimizations that may be
implemented through bidirectional communication with the MAC
protocol.

In addition to predicting the power consumption of the network,
our empirical model also predicts the network latency that is intro-
duced by the B-MAC protocol illustrated in Figure 11. Since Surge
is a periodic application, message latency was measured by evalu-
ating the variations in packet delivery rates. The latencies measured
in our Surge deployment along with the predicted values are plotted
in Figure 16. The average latency is slightly higher than the predic-
tion. However the minimum latency for each network level exactly
matches the predicted value. The difference between the average
and minimum latencies is due to unexpected network congestion
and packet loss. Surge retransmits messages to increase reliability
when B-MAC indicates an acknowledgment failed. Upon retrans-
mission, the message incurs additional latency.

8. DISCUSSION
Our benchmarks have shown that a small amount of information

from services using B-MAC can provide significant power savings.
Additional power savings can be achieved through more informa-
tion about the application and its operation. In this section, we
discuss the implications and other uses of these ideas.

Because B-MAC is lightweight and configurable, many sensor
network protocols may be implemented efficiently using its prim-
itives. S-MAC and T-MAC may be implemented as services that
use B-MAC as the underlying link protocol. S-MAC and T-MAC
are more than just link protocols; they perform synchronization, or-
ganization, fragmentation, and hidden terminal support and could
benefit from B-MAC’s flexibility. These protocols could be built on
B-MAC in a modular way to allow applications and other services
to use only necessary subsets of the mechanisms they provide.

To mitigate the cost of reception incurred with B-MAC with
LPL, a packet could be sent cyclically with a short preamble. Al-
though this does not reduce the transmission cost, it reduces the
time of receiving a packet to:

trx ≤ 2× (Lpreamble + Lpacket)× trxb

Note thatLpreamble is reduced from the long LPL preamble to only
8 bytes. The node can return to sleep for the check interval after
receiving a packet or can perform early rejection much quicker than
packets sent with the long preambles.

We showed in Section 7 that using the node’s level in the tree
can assist in reducing the duty cycle. To reduce transmission en-
ergy consumption, each node may learn the offset of the check in-
tervalti that their parent wakes up to sample the channel. Knowing
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the point at which the parent wakes up allows the node to create a
communication schedule to its parent without any message over-
head. By starting transmission at the parent’s sample time, the
preamble can be significantly reduced in size. This optimization
reduces both the transmission and reception costs. A similar opti-
mization is proposed by the authors of WiseMAC [5]. Broadcast
packets would still be sent using the long preambles such that other
nodes can snoop on a significant portion of the network traffic. If
the schedule fails due to a change in link quality or parent node fail-
ure, retransmission of the data can fall back to the long preamble
method.

9. CONCLUSION
In this paper we presented a flexible MAC protocol that features

a simple, predictable, yet scalable implementation and is tolerant
to network changes. B-MAC effectively performs clear channel
estimation. At its core, B-MAC exceeds the performance of other
protocols though reconfiguration, feedback, and bidirectional inter-
faces for higher layer services. B-MAC may be configured to run at
extremely low duty cycles and does not force applications to incur
the overhead of synchronization and state maintenance.

We presented an analytical model for predicting an application’s
lifetime and setting B-MAC’s parameters. Using microbenchmarks
we showed that B-MAC can outperform existing wireless sensor
network media access protocols with only a small amount of in-
formation from the services using it. With the default B-MAC pa-
rameters and no additional information, B-MAC surpasses existing
protocols in terms of throughput, latency, and often energy con-
sumption. The performance of B-MAC under various workloads
gave us enough information to make accurate predictions of how a
real world application runs. The Surge application operated within
the realm of our model and reported a significant amount of data
with over 98.5% packet delivery.

Media access reconfiguration is essential for dynamic systems
like wireless sensor networks. Interfacing with services using the
MAC protocol is necessary to meet the demands of protocols and
applications. Optimizing protocol performance for system services
application in a predictable manner proves the feasibility of this
technology for long-term deployments.
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