Pervasive Agriculture
IoT-Enabled Greenhouse for Plant Growth Control

Univ.-Prof. Dipl.-Ing. Dr. Bernhard Rinner
Abdullah Alakhras
Xhemal Pengili
Overview

• Introduction.
• Objectives and applied IoT technologies.
• Greenhouse system/subsystems.
• System challenges
• Subsystems in detail
 - Wireless sensor network (WSN)
 - Cloud computing: software and data storage
 - Deployment
 - 2-D Imaging and growth prediction
 - Online monitoring
 - Reinforcement learning (machine learning)
Introduction

• Earth population will increase to 8.5 Billion by 2030 this will lead to problems regarding food:
 ➢ Quantity
 ➢ Quality
 ➢ Price

• Pervasive computing will replace growers and allow the greenhouse manager to:
 ➢ Increase the yield of the greenhouse.
 ➢ Efficiently use the available resources (water, energy, fertilizer).
 ➢ Decrease the dependency on pesticides.
 ➢ Determine the ideal harvesting time.
 ➢ Better manage the costs of the entire greenhouse.
 ➢ Predict the productivity of the greenhouse.
Objectives and applied IoT technologies

• Objectives
 ➢ Monitor plants.
 ➢ Monitor and control greenhouse conditions.
 ➢ Predict the growth rate of plants.

• IoT(Internet of things) technologies applied in the greenhouse
 ➢ Wireless sensor networks
 ➢ Cloud computing.
 ➢ Artificial intelligence techniques by machine learning.
The IoT subsystem is composed of four subsystems

1. Sensing and actuation (supported by WSN)
 • Monitoring of greenhouse and plants condition.
 • Plant growth rate monitoring.
 • Greenhouse environment control (humidity actuators, ventilation).
 • Actuators control for plants watering and fertilization.

2. System management and data storage, includes:
 • System management software for interaction with the WSN and control devices.
 • Web server with the database for data storage, retrieval and visualization.
3. Modeling and optimal planning, includes:
 • The mathematical model
 ➢ describes the dynamics of plant grows.
 ➢ perform optimal control using RL approach.
 • Cloud-Based software for resource-intensive simulation.

4. Monitoring and visualization
 • Is the option to guarantee the 24/7 monitoring of the greenhouse.
Figure 1: Greenhouse system [1]
System challenges

Sensing process can be effected by

- Watering and feeding
- Pests and diseases.
- Feeding of plants create dust and dirt.
- Growing plants

The packaging of sensors must meet general requirements:

- Waterproof
- Dustproof
Wireless sensor network (WSN)

- Waspmote nodes
 - Atmega microcontroller.
 - Communication frequency 2.4 GHz
 - Transmitted power: -0.77 dBm
 - Powered by 3.7V, 6600 mAh battery.

- Sensor nodes are equipped with the following sensors:
 - pH
 - Electric conductivity (EC)
 - Solution flow
 - Temperature
 - Photosynthetically active radiation (PAR)
 - Humidity
 - CO₂
Wireless sensor network (WSN)

- Measurements are taken at room of plants and sent every 30 minutes to a gateway.
- Extra sensors sense the environment conditions (air temperature, light intensity, humidity) and send them to the gateway.
- Collected data at the gateway will be then sent to the cloud for planning and modelling process.
- Greenhouse heating and ventilation system.

- Wireless actuator blocks:
 1. Power management
 2. Control unit
 3. Set of 12V relays to turn on/off actuators

- Audio alarm system defined by a threshold.

Figure 4: Waspmote hardware [5]
Cloud computing: software and data storage

- Measurements are time series data.

- Different types of measured data (images, voltage)
 - Additional storage and retrieval requirements
 - Preprocessing before actual analysis.

- Storage/retrieval system components:
 - Open-source database management system, MongoDB (allows the storage of unstructured data)
 - Open-source platform, InfluxData (efficient storage and visualization of time-series data)
Artificial intelligence technique

• Reinforcement Learning (RL)

➢ Agent with no information about environment structure.
➢ Except for its observations (states).
➢ Agent can be trained to perform optimal actions given the state.
➢ Each action is rewarded (positively or negatively).
➢ Agent learns optimal behavior by trial and error.
➢ Goal to maximize cumulative gain.
➢ For plant growth:
 ✓ Positive reward for good growth arte, final crop yield.
 ✓ Negative reward for resources consumption.
Artificial intelligence technique

• Markov decision process (RL math model)

 ➢ Environment state space (states: air temp. & humidity, solution content, plant type and size)
 ➢ Actions set (light on/off, irrigate and harvest)
 ➢ Reward function generates +/- reward value after an action.
 ➢ Each state transition depends only on the current state and action taken by the agent.
Deployment

- Two zones for different climate and nutrition conditions
 - Zone A (720 m²)
 - For initial speed plants growing
 - Equipped with:
 - Sensors for environment control.
 - High pressure sodium bulbs (600 W)
 - Hydroponic system for constant feeding
 - Water-heating system
 - Ventilation system
 - Zone B (2700 m²)
 - Generation process take place
 - Sensors
 - Only the Sun as light source.
 - Rockwool substrate in hydroponic system
 - Drip irrigation at a rate of 2 liters per hour

Figure 5 : Zone A [1]

Figure 6 : Zone B [1]
2-D Imaging and Growth Prediction

- 2-D high resolution images of plant leaves every 2 days.
- It needs a reference object (1cm² red square).
- Calculate the leave area by:
 - Setting up an RGB palette boundary for green color.
 - Counting the pixels that have the RGB value defined in the boundary.
 - Allows us to predict the dynamics of plant growth.
- Evaluating the growth rate:

![Figure 7: growing leaf images](image1)

![Figure 8: growth dynamics](image2)
Online Monitoring

- Web interface for online monitoring
- Advantages:
 - Accessing stored data anytime, anywhere.
 - Better flexibility.
 - Better scalability.

Figure 9: Real time monitoring [3]

Figure 10: a) Leaf area, b) Electronic connectivity, c) Humidity
d) Pump flow rate, e) pH level, f) Temperature [1]
Reinforcement Learning

• Goal: optimal light policy
 ➢ Q-learning technique [2].
 ➢ Decreasing electricity costs.
 ➢ Maintaining production rate.

• Compare 3 different policies:
 1. Light is always on.
 2. Random on/off every 3h.

• RL simulator components:
 2. Action: turning electricity on/off for 3 hours.
 3. Reward result from the action of the agent:
 a) Positive: increased biomass.
 b) Negative: electricity wasting.
 c) Negative: not achieving expected leaf area after 28 days.
Results:

- Final leaf area: no significant difference.
- Light hours: RL 50% less than random policy.

Figure 11: Cumulative reward

Figure 12: Probability leaf area

Figure 13: Probability leaf area

Thanks for your attention