
13.01.2015

1

Graphics Processing Units - GPUs

Digital Signal Processors

Winter Term 2014/15

Institute for Networked and Embedded

Systems

Sergei N. Bauer

sergei.bauer@k-ai.at

2

Graphics Processing Unit – History 1

� Before 1980s no dedicated graphics HW in PCs

� All processing was done in SW by CPU

� 1970s: Earliest HW in Arcade system boards

− Fujitsu MB 14241 (60 sprites, RGB)

− Gun Fight (1975), Space Invaders (1978)

� 1980s: foundations for the future

− NEC µPD7220 GDC (1981)

� Drawing lines, circles and arcs to bm display

� First IC containing many ten-thousand transistors (LSI)

− Intel iSBX 275 (1982)

� industrial systems, multibus standard

− Commodore Amiga GPU (1985)

� Co-processor, prim. inst. set without CPU

� Unusual for the time (all drawing in CPU)

13.01.2015

2

3

Graphics Processing Unit – History 2

� 1980s: continued

− Texas Instruments TMS34010

� First uC with on-chip graphics

� Both general purpose but graphics oriented inst. Set

� Led to „TIGA“ (Windows accellerator cards)

� 1990s: expand and accellerate

− S3 Graphics 86C911 (1991)

� 2D accelleration (many imitators)

� API evolve: WinG (Win 3.x), DirectDraw (Win95)

� OpenGL perf. issues

− Nvidia GeForce 256 (1999)

� Pixel shader

� Vertex shader

4

Graphics Processing Unit – History 3

� 2000 - 2006:

− OpenGL advances (model DirectX)

− Add shading to capabillities (Nvidia)

− Floating point math, as flexible as CPUs

− Faster for image-array operations

� 2006 - present:

− Parallel GPUs

− GPGPU (general purpose computing)

− OpenCL supported by Intel, AMD, Nvidia (Heterogeneous PUs)

13.01.2015

3

5

Present GPU Market Allocation

Global Market Share 3rd Quartal 2013

Intel

AMD

Nvidea

62%

22%

16%

� large Intel market share due to on-Chip solutions

22%

6

CPU vs. GPU

� Heterogeneous multi-processor chip (tuned for graphics)

GPU

CPU

13.01.2015

4

7

Compiling Graphics Code

� Picture split into „fragments“

� Fragments processed independantly (no explicit parallelism)

Shader code example:

1 unshaded fragment input record

1 shaded fragment output record

8

Idea: Utilization of Two Cores

� Two fragments processed parallel to each other

13.01.2015

5

9

Idea: Utilization of Four Cores

10

Idea: Utilization of Sixteen Cores

� 16 cores => 16 simultanious inst. streams

13.01.2015

6

11

Idea: Add ALUs

� Improving the cost to complexity ratio

by using one instruction stream across

many ALUs

� SIMD approach:

Single

Instruction

Multiple

Data

12

Idea: Modify the Shader

� Processes one fragment

� Scalar operations

� Scalar registers

� Processes eight fragments

� Vector operations

� Scalar registers

13.01.2015

7

13

Massive Improvement Processing Tiny Tasks

� 128 (!) fragments in prarallel

� 16 cores utilizing 128 ALUs � 16 simultaneous instruction sets

14

Massive Improvement Processing Tiny Tasks

� 128 verticies/fragments/primitives (i.e.: OpenCL work items)

� Primitives - simplest instrutions of a prog. lang

� Verticies – intersection of each optical surface with the optical axis

13.01.2015

8

15

Branch Management

� Not all ALUs permanently doing work

� In the Worst case only 1 of eight is processing

16

Dependancy Issues 1

� If a core unable to run next instruction due to depandancy => STALL!

� Special caches and “fancy” logic of CPU removed now is a benefit (less stalls)

� Apply interleaving of processes to avoid stalls

13.01.2015

9

17

Dependancy Issues 2

� Increase of latency hiding when context partitioned into smaller parts

18

Dependancy Issues 3

� Increase runtime of one group increases the throughput of many groups

� Interleaving between contexts achieved by HW or SW or both (!)

13.01.2015

10

19

Dependancy Issues 4

� Interleaving between contexts achieved by HW or SW or both (!)

� AMD Radeon or Nvidia:

• HW sheduling and on-chip storage for fragment states

� Intel Larrabee:

• HW managing four x86 contexts with fine gaining

• SW sheduling interleaves many fragment groups on each HW context

• L1-L2 cache hold fragment state

Example GPU:

− 16 cores

− 8 ALUs per core

− 16 simul. inst. streams

− 64 concurrent inst. Streams

− 512 concurrent fragments

• This yields: 256 GFLOPS (f = 1GHz)

20

Memory Management in a CPU

� CPU core runs most efficiently when data “lives” in cache (reduce latency)

13.01.2015

11

21

Modern Memory Management in a GPU

� On-chip storage takes load off memory system

� Requirement for high-bandwidth connection to memory

− Over 20 (!) times the performance of a quad-core CPU

− Repack/reorder/interleave memory to maximize the use of mem. Bus

− Still this is only 6 times the bw. Available to a CPU

Sollutions:

� Request data less often (do more calculations instead)

� Fetch data from memory less often (share and re-use data among fragments)

22

Nvidia GeForce GTX 580 SM

� 16 such units on the GTX 580 SM

� Resulting in 24.500 fragments or 24.000 CUDA threads

13.01.2015

12

23

Heterogeneous Cores a Future Perspective

� Integration of CPU and GPU style cores closer togeather

− Reduces memory overhead (copies/transfers)

− Declines offload cost

− Results in better Power management

� Developments in this Direction:

− AMD Fusion APUs

− Nvidia Tegra X1

− Intel Haswell and Broadwell

− Qualcomm Snapdragon 810

− Apple A7 and A8

− ...

24

AMD Fusion APU

13.01.2015

13

25

Nvidia Tegra K1

26

Intel Haswell

13.01.2015

14

Graphics Processing Units - GPUs

Thank you for your attention!

Institute for Networked and Embedded

Systems

Sergei N. Bauer

sergei.bauer@k-ai.at

