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Introduction

Digital Signal Processing

1965 Discrete Fourier Transform (Cooley and Tuckey)
late 1970s Introduction of programmable DSP
mid 1990s Multi-core DSPs
ca. 2001 GPGPU (General purpose computing on GPUs)
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Introduction

Digital Signal Processing

1965 Discrete Fourier Transform (Cooley and Tuckey)
late 1970s Introduction of programmable DSP
mid 1990s Multi-core DSPs
ca. 2001 GPGPU (General purpose computing on GPUs)

Field Programmable Gate Arrays

1985 First commercially available FPGA
ca. 2000 Soft microprocessors.
ca. 2010 Intel Atom + FPGA in one package (E600C)
ca. 2011 FPGA-centric System on Chip (SoC)
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CPUs DSPs Multicores Arrays FPGAs

Single Cores Multicores Coarse-Grained Fine-Grained
Coarse-Grained Massively Parallel Massively
CPUs and DSPs Processor Arrays Parallel Arrays

Figure: Recent Trends of Programmable and Parallel Technologies

P. Huebner (NES) Digital Signal Processing on FPGA January 14, 2015



Modern FPGAs

Over a million logic elements

Thousands of 20-Kb
memory blocks

Thousands of DSP blocks

High-speed transceivers
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FPGA-based SoC
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Figure: Xilinx Zyng-7000 SoC Figure: Altera Cyclone V SoC
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ARM Cortex-A9

e 800 MHz dual core processor

e Superscalar pipeline architecture with 2.5 DMIPS per MHz

e 32 KB instruction/32 KB data L1 cache (4-way set-associative)
e Shared 512 KB L2 cache (8-way associate)

e 32-bit timer and watchdog

e Dynamic branch prediction

e NEON media processing accelerator (128-bit SIMD)

e single and double precision floating-point support

e MMU that works with L1 and L2 to ensure coherent data

e Support for many /0 standards (CAN, I1°C, USB, Ethernet, SPI &
JTAG)

e configurable 32-, 64- or 128-bit AMBA AXI interface. (Advanced
Microcontroller Bus Architecture Advanced eXtensible Interface)
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DSP Applications

General :

filtering, detection, correlation, FFT, ...

Audio processing :
coding/decoding, noise cancellation, EQ, ...

Image processing :
compression/decompression, rotation, image recognition,
image enhancement, ...

Control and instrumentation
servo/engine control, guidance/navigation, ...

Information systems :
modulation/demodulation, encryption/decryption,
waveform generation, beamforming, ...
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Requirements of DSP systems
e High throughput (real-time)
e Reduction in power-dissipation

e Reduction in size and weight
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Requirements of DSP systems

High throughput (real-time)

Reduction in power-dissipation

Reduction in size and weight

Power efficiency: MOPS/mW
Silicon area efficiency: MOPS/mm?
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Requirements of DSP systems

High throughput (real-time)

Reduction in power-dissipation

Reduction in size and weight

Power efficiency: MOPS/mW
Silicon area efficiency: MOPS/mm?

Reduced cost

e Device cost
e Development time
e Cost for testing

e Cost effectiveness: MOPS/$
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Why Signal Processing on FPGA?

e Most algorithms are multiply and accumulate (MAC) intensive

e DSPs use multi-stage pipelining (MAC rates limited by multiplier)

e Parallelism can only be achieved by replicating the same generic
computation hardware multiple times. (Programmers must explicitly
code their application in a parallel fashion)
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Finite Impulse Response (FIR) Filter; length L
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Figure: FIR Filter; length L
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Example: 256-tap FIR Filter

Conventional DSPs FPGAs

Loop

Algarithm i
256 fimes MAC unit

Data Qut

Example
256 Tap FIR Filler = 256 mulliply and accumulate (MAC)
operations per data sample

All 256 MAC operations
in 1 clock cycle

Example
256 Tap FIR Filler = 256 muliply and
accumulate (MAC) operalions per dala sample
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Why Signal Processing on FPGA?

e Most algorithms are multiply and accumulate (MAC) intensive

e DSPs use multi-stage pipelining (MAC rates limited by multiplier)

e Parallelism can only be achieved by replicating the same generic
computation hardware multiple times. (Programmers must explicitly
code their application in a parallel fashion)
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Why Signal Processing on FPGA?

e Most algorithms are multiply and accumulate (MAC) intensive

e DSPs use multi-stage pipelining (MAC rates limited by multiplier)

e Parallelism can only be achieved by replicating the same generic
computation hardware multiple times. (Programmers must explicitly
code their application in a parallel fashion)

Pro’s & Con’s of FPGAs

e Full parallelism o Difficult to design complex
e Low latency algorithms
e High throughput o Difficult to test
e Hard real-time behaviour e High initial cost
e Full control over the actual
design implementation
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DSP-Benchmarks for FPGAs

DSP-Benchmarks for FPGAs

e Berkley Design Technology Inc. (BDTi): Single algorithms not well
suited to compare massively parallel chips.!

e Full System benchmarking
e Orthogonal Frequency Division Multiplex (OFDM)

FIR . -
KN I K3 B3 e

Figure: Simplified Block Diagram of the BDTI OFDM Receiver Benchmark

Representative?
1“The Art of Processor Benchmarking,” Berkley Design Technology Inc.,
Tech. Rep., 2006.
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BDTIchannels/$
- Higher is Better -

BDTI Communications Benchmark (OFDM)™
BDTI-Certified Low-Cost Optimized Results
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Figure: BDTI Benchmark Results on OFDM System




BDTICertified Performance Results
for Performance-Optimized Implementations
(BDTIchannels—higher is better)
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Figure: Maximum number of supported BDTlIchannels on the device



BDTICertified Cost/Performance Results
for Cost-Optimized Implementations
($ / BDTIchannel,based on 1,000-unit pricing—lower is better)
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Programming Models

since 1987 Register transfer level (RTL) design using Hardware
Description Languages (HDLs).

Hardware Description Languages (VHDL, Verilog)

e Specialized computer language to describe structure, design and
operation of digital logic circuits.

-- import std logic from the IEEE library
library IEEE;
use IEEE.std logic_ll64.all;

-- this is the entity
entity ANDGATE is
port (
Il : in std logic;
I2 : in std logic;
0 : out std logic);
end entity ANDGATE;

-- this is the architecture
architecture RTL of ANDGATE is
begin

0 <= Il and IZ;
end architecture RTL;
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Programming Models

since 2000 Electronic system-level (ESL) and Transaction-level modeling
(TLM). SystemC or SystemVerilog.

SystemC, SystemVerilog

e Set of C++ classes and macros to provide an event-driven simulation
interface.

e Applied to system-level modelling, functional verification and
high-level synthesis

#include "systemc.h”

5C_MODULE (adder) // module (class) declaration
1{

sc_in<int> a, b; /! ports
sc_out<int> sum;

void do_add() // process

: sum.write(a.read() + b.read()); //or just sum = a + b
}

5C_CTOR (adder) // constructor

¢ SC_METHOD(do_add) ; // register do_add to kernel

sensitive << a << b; // sensitivity list of do_add
}
¥
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Open Computing Language (OpenCL)

Framework for parallel heterogeneous computing.

e Designed by Apple (2008); Now developed by Khronos
(www.khronos.org)

e Adopted by Intel, Qualcomm, AMD, Nvidia, Samsung, etc.
e since May 2013: SDK for Altera FPGAs
e since Nov 2014: Xilinx SDAccel Dev Environment.
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e Includes a language based on C99 (OpenCL C).
e Provides application programming interface (API) for data-based and

task-based parallelism.

Host l % Accelerator
main( ) {
read_data ... ); @
maninpulate( ... ) g
clEnqueueWriteBuffer( ... ); D
clEnqueueNDRange( ..., sum, ...); ==
clEnqueueReadBuffer( ... ) g
display_result( ... J; =]
} <2
__ kernel void
Host Program sum{_j'zgﬂllgogi fi
al float ™
__global float *y)
{
int gid = get_global_id(0);
: ylgid] = algid] + blgid];

Kernel Program

20 / 23

2 A [ 2 A/
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Figure: OpenCL Design Flow
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Towards Resource Optimization

in Parallel Heterogeneous Computing

Open Research Questions

e How can we use SoC and OpenCL to optimize the resource
allocation...

e ..on a single parallel heterogeneous computing platform?
(e.g. Smart Camera)

e ...on connected devices?
(e.g. dedicated FPGAs in WSN)
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