
Digital Signal Processing on FPGAs

Philipp Huebner1

1Institute of Networked and Embedded Systems
Alpen-Adria Universitaet Klagenfurt

January 14, 2015

P. Huebner (NES) Digital Signal Processing on FPGA January 14, 2015 1 / 23



Introduction

Digital Signal Processing

1965 Discrete Fourier Transform (Cooley and Tuckey)

late 1970s Introduction of programmable DSP

mid 1990s Multi-core DSPs

ca. 2001 GPGPU (General purpose computing on GPUs)

Field Programmable Gate Arrays

1985 First commercially available FPGA

ca. 2000 Soft microprocessors.

ca. 2010 Intel Atom + FPGA in one package (E600C)

ca. 2011 FPGA-centric System on Chip (SoC)

P. Huebner (NES) Digital Signal Processing on FPGA January 14, 2015 2 / 23



Introduction

Digital Signal Processing

1965 Discrete Fourier Transform (Cooley and Tuckey)

late 1970s Introduction of programmable DSP

mid 1990s Multi-core DSPs

ca. 2001 GPGPU (General purpose computing on GPUs)

Field Programmable Gate Arrays

1985 First commercially available FPGA

ca. 2000 Soft microprocessors.

ca. 2010 Intel Atom + FPGA in one package (E600C)

ca. 2011 FPGA-centric System on Chip (SoC)

P. Huebner (NES) Digital Signal Processing on FPGA January 14, 2015 2 / 23



Brief Overview of the OpenCL Standard Page 3

November 2013 Altera CorporationImplementing FPGA Design with the OpenCL Standard

Figure 3. Recent Trend of Programmable and Parallel Technologies

Considering the need for creating parallel programs for the emerging multicore era, it 
was recognized that there needs to be a standard model for creating programs that 
will execute across all of these quite different devices. The lack of a standard that is 
portable across these different programmable technologies has plagued 
programmers. In the summer of 2008, Apple submitted a proposal for an OpenCL 
(Open Computing Language) draft specification to The Khronos Group in an effort to 
create a cross-platform parallel programming standard. The Khronos Group consists 
of a consortium of industry members such as Apple, IBM, Intel, AMD, NVIDIA, 
Altera, and many others. This group has been responsible for defining the OpenCL 
1.0, 1.1, and 1.2 specifications. The OpenCL standard allows for the implementation of 
parallel algorithms that can be ported from platform to platform with minimal 
recoding. The language is based on C programming language and contains extensions 
that allow for the specification of parallelism.

In addition to providing a portable model, the OpenCL standard inherently offers the 
ability to describe parallel algorithms to be implemented on FPGAs, at a much higher 
level of abstraction than hardware description languages (HDLs) such as VHDL or 
Verilog. Although many high-level synthesis tools exist for gaining this higher level of 
abstraction, they have all suffered from the same fundamental problem. These tools 
would attempt to take in a sequential C program and produce a parallel HDL 
implementation. The difficulty was not so much in the creation of a HDL 
implementation, but rather in the extraction of thread-level parallelism that would 
allow the FPGA implementation to achieve high performance. With FPGAs being on 
the furthest extreme of the parallel spectrum, any failure to extract maximum 
parallelism is more crippling than on other devices. The OpenCL standard solves 
many of these problems by allowing the programmer to explicitly specify and control 
parallelism. The OpenCL standard more naturally matches the highly-parallel nature 
of FPGAs than do sequential programs described in pure C.

Brief Overview of the OpenCL Standard
OpenCL applications consist of two parts. The OpenCL host program is a pure 
software routine written in standard C/C++ that runs on any sort of microprocessor. 
That processor may be, for example, an embedded soft processor in an FPGA, a hard 
ARM processor, or an external x86 processor, as depicted in Figure 4.

CPUs DSPs Multicores Arrays FPGAs

Single Cores Fine-Grained
Massively

Parallel Arrays

Coarse-Grained
Massively Parallel
Processor Arrays

Multicores
Coarse-Grained
CPUs and DSPs

Figure: Recent Trends of Programmable and Parallel Technologies

P. Huebner (NES) Digital Signal Processing on FPGA January 14, 2015 3 / 23



Modern FPGAs

• Over a million logic elements

• Thousands of 20-Kb
memory blocks

• Thousands of DSP blocks

• High-speed transceivers

P. Huebner (NES) Digital Signal Processing on FPGA January 14, 2015 4 / 23



FPGA-based SoC

Figure: Xilinx Zynq-7000 SoC Figure: Altera Cyclone V SoC

P. Huebner (NES) Digital Signal Processing on FPGA January 14, 2015 5 / 23



ARM Cortex-A9

• 800 MHz dual core processor

• Superscalar pipeline architecture with 2.5 DMIPS per MHz

• 32 KB instruction/32 KB data L1 cache (4-way set-associative)

• Shared 512 KB L2 cache (8-way associate)

• 32-bit timer and watchdog

• Dynamic branch prediction

• NEON media processing accelerator (128-bit SIMD)

• single and double precision floating-point support

• MMU that works with L1 and L2 to ensure coherent data

• Support for many I/O standards (CAN, I2C, USB, Ethernet, SPI &
JTAG)

• configurable 32-, 64- or 128-bit AMBA AXI interface. (Advanced
Microcontroller Bus Architecture Advanced eXtensible Interface)

P. Huebner (NES) Digital Signal Processing on FPGA January 14, 2015 6 / 23



DSP Applications

General :
filtering, detection, correlation, FFT, ...

Audio processing :
coding/decoding, noise cancellation, EQ, ...

Image processing :
compression/decompression, rotation, image recognition,
image enhancement, ...

Control and instrumentation :
servo/engine control, guidance/navigation, ...

Information systems :
modulation/demodulation, encryption/decryption,
waveform generation, beamforming, ...

P. Huebner (NES) Digital Signal Processing on FPGA January 14, 2015 7 / 23



Requirements of DSP systems

• High throughput (real-time)

• Reduction in power-dissipation

• Reduction in size and weight

Efficiency

• Power efficiency: MOPS/mW

• Silicon area efficiency: MOPS/mm2

• Reduced cost
• Device cost
• Development time
• Cost for testing

Efficiency

• Cost effectiveness: MOPS/$

P. Huebner (NES) Digital Signal Processing on FPGA January 14, 2015 8 / 23



Requirements of DSP systems

• High throughput (real-time)

• Reduction in power-dissipation

• Reduction in size and weight

Efficiency

• Power efficiency: MOPS/mW

• Silicon area efficiency: MOPS/mm2

• Reduced cost
• Device cost
• Development time
• Cost for testing

Efficiency

• Cost effectiveness: MOPS/$

P. Huebner (NES) Digital Signal Processing on FPGA January 14, 2015 8 / 23



Requirements of DSP systems

• High throughput (real-time)

• Reduction in power-dissipation

• Reduction in size and weight

Efficiency

• Power efficiency: MOPS/mW

• Silicon area efficiency: MOPS/mm2

• Reduced cost
• Device cost
• Development time
• Cost for testing

Efficiency

• Cost effectiveness: MOPS/$

P. Huebner (NES) Digital Signal Processing on FPGA January 14, 2015 8 / 23



Why Signal Processing on FPGA?

• Most algorithms are multiply and accumulate (MAC) intensive
• DSPs use multi-stage pipelining (MAC rates limited by multiplier)
• Parallelism can only be achieved by replicating the same generic

computation hardware multiple times. (Programmers must explicitly
code their application in a parallel fashion)

P. Huebner (NES) Digital Signal Processing on FPGA January 14, 2015 9 / 23



Example

Finite Impulse Response (FIR) Filter; length L

y[n] = x[n] ∗ f [n] =
L−1∑
k=0

f [k]x[n− k]

Figure: FIR Filter; length L

P. Huebner (NES) Digital Signal Processing on FPGA January 14, 2015 10 / 23



Example: 256-tap FIR Filter

Conventional DSPs FPGAs

P. Huebner (NES) Digital Signal Processing on FPGA January 14, 2015 11 / 23



Why Signal Processing on FPGA?

• Most algorithms are multiply and accumulate (MAC) intensive
• DSPs use multi-stage pipelining (MAC rates limited by multiplier)
• Parallelism can only be achieved by replicating the same generic

computation hardware multiple times. (Programmers must explicitly
code their application in a parallel fashion)

Pro’s & Con’s of FPGAs

Pro’s
• Full parallelism
• Low latency
• High throughput
• Hard real-time behaviour
• Full control over the actual

design implementation

Con’s
• Difficult to design complex

algorithms
• Difficult to test
• High initial cost

P. Huebner (NES) Digital Signal Processing on FPGA January 14, 2015 12 / 23



Why Signal Processing on FPGA?

• Most algorithms are multiply and accumulate (MAC) intensive
• DSPs use multi-stage pipelining (MAC rates limited by multiplier)
• Parallelism can only be achieved by replicating the same generic

computation hardware multiple times. (Programmers must explicitly
code their application in a parallel fashion)

Pro’s & Con’s of FPGAs

Pro’s
• Full parallelism
• Low latency
• High throughput
• Hard real-time behaviour
• Full control over the actual

design implementation

Con’s
• Difficult to design complex

algorithms
• Difficult to test
• High initial cost

P. Huebner (NES) Digital Signal Processing on FPGA January 14, 2015 12 / 23



DSP-Benchmarks for FPGAs

DSP-Benchmarks for FPGAs

• Berkley Design Technology Inc. (BDTi): Single algorithms not well
suited to compare massively parallel chips.1

• Full System benchmarking

• Orthogonal Frequency Division Multiplex (OFDM)

Figure: Simplified Block Diagram of the BDTI OFDM Receiver Benchmark

Representative?
1“The Art of Processor Benchmarking,” Berkley Design Technology Inc.,

Tech. Rep., 2006.
P. Huebner (NES) Digital Signal Processing on FPGA January 14, 2015 13 / 23



Figure: BDTI Benchmark Results on OFDM System



Figure: Maximum number of supported BDTIchannels on the device



Figure: $/BDTIchannel



Programming Models

since 1987 Register transfer level (RTL) design using Hardware
Description Languages (HDLs).

Hardware Description Languages (VHDL, Verilog)

• Specialized computer language to describe structure, design and
operation of digital logic circuits.

P. Huebner (NES) Digital Signal Processing on FPGA January 14, 2015 17 / 23



Programming Models

since 2000 Electronic system-level (ESL) and Transaction-level modeling
(TLM). SystemC or SystemVerilog.

SystemC, SystemVerilog

• Set of C++ classes and macros to provide an event-driven simulation
interface.

• Applied to system-level modelling, functional verification and
high-level synthesis

P. Huebner (NES) Digital Signal Processing on FPGA January 14, 2015 18 / 23



OpenCL

Open Computing Language (OpenCL)

Framework for parallel heterogeneous computing.

• Designed by Apple (2008); Now developed by Khronos
(www.khronos.org)

• Adopted by Intel, Qualcomm, AMD, Nvidia, Samsung, etc.

• since May 2013: SDK for Altera FPGAs

• since Nov 2014: Xilinx SDAccel Dev Environment.

P. Huebner (NES) Digital Signal Processing on FPGA January 14, 2015 19 / 23



OpenCL

• Includes a language based on C99 (OpenCL C).
• Provides application programming interface (API) for data-based and

task-based parallelism.

Figure: OpenCL Programming ModelP. Huebner (NES) Digital Signal Processing on FPGA January 14, 2015 20 / 23



OpenCL

Figure: OpenCL Design Flow

P. Huebner (NES) Digital Signal Processing on FPGA January 14, 2015 21 / 23



Towards Resource Optimization
in Parallel Heterogeneous Computing

Open Research Questions

• How can we use SoC and OpenCL to optimize the resource
allocation...

• ...on a single parallel heterogeneous computing platform?
(e.g. Smart Camera)

• ...on connected devices?
(e.g. dedicated FPGAs in WSN)

P. Huebner (NES) Digital Signal Processing on FPGA January 14, 2015 22 / 23



References

[1] U. Meyer-Baese, Digital Signal Processing with Field Programmable
Gate Arrays. Springer, 2014.

[2] “The Evolving Role of FPGAs in DSP Applications,” Berkley Design
Technology Inc., Tech. Rep., 2007.

[3] “The Art of Processor Benchmarking,” Berkley Design Technology
Inc., Tech. Rep., 2006.

[4] R. Njuguna. (Nov. 2008). A Survey of FPGA Benchmarks, [Online].
Available:
http://www.cse.wustl.edu/~jain/cse567-08/ftp/fpga/.

P. Huebner (NES) Digital Signal Processing on FPGA January 14, 2015 23 / 23

http://www.cse.wustl.edu/~jain/cse567-08/ftp/fpga/

	Introduction
	Pro's & Con's of FPGAs
	Hardware Design



