

FAKULTÄT FÜR TECHNISCHE WISSENSCHAFTEN

Institut für Vernetzte und Eingebettete Systeme

Bernhard Rinner
http://bernhardrinner.com

Ubiquitous Cameras

- We are surrounded by billions of cameras in public, private and business spaces
- Various well-known domains
 - Transportation
 - Security
 - Entertainment
 - Mobile
- Cameras serve a purpose and provide some utility
 - Providing documentation/archiving
 - Increasing security
 - Enabling automation
 - Fostering social interaction

© spiegel.de, givenimaging.com, TU Delft

Paradigma Shifts in Video Processing

- Towards online/onboard processing
- Towards distributed, in-network analysis
- Towards ad-hoc deployment and mobile and open platforms
- Towards user-centric applications

Emergence of Smart Camera Networks!

Smart Cameras as Enabling Technology

- Smart cameras combine
 - sensing,
 - processing and
 - communication

in a single embedded device

on top of RaspberryPI

- perform image and video analysis in real-time closely located at the sensor and transfer only the results
- collaborate with other cameras in the network

[Rinner, Wolf. A Bright Future for Distributed Smart Cameras. Proc. IEEE, 2008]

Autonomous In-Networking Analysis

Self-organizing Camera Network

- Perform autonomous, decentralized and resource-aware network-wide analysis
- Demonstrate autonomous multi-object tracking in camera network
 - Exploit single camera object detector & tracker
 - Perform camera handover
 - Learn camera topology
- Key decisions for each camera
 - When to track an object within its FOV
 - When to initiate a handover
 - Whom to handover

Bid C4

Virtual Market-based Handover

- Initialize auctions for exchanging tracking responsibilities
 - Cameras act as self-interested agents, i.e., maximize their own utility
 - Selling camera (where object is leaving FOV) opens the auction
 - Other cameras return bids with price corresponding to "tracking" confidence
 - Camera with highest bid continues tracking; trading based on Vickrey auction

Camera Control

- Each camera acts as agent maximizing its utility function
- $U_i(O_i) = \sum_{j \in O_i} [c_j \cdot v_j \cdot \Phi_i(j)] p + r$

- Local decisions
 - When to initiate an auction (at regular intervals or specific events)
 - Whom to invite

 (all vs. neighboring cameras)
 - When to trade (depends on valuation of objects in FOV)
- Learn neighborhood relations with trading behavior ("pheromones")
 - Strengthen links to buying cameras
 - Weaken links over time

Learn the Camera Topology

- Artificial pheromones inspired by the ant foraging process
- The selling camera i creates a link $\tau_i x$ to the buying camera x for future trading purpose.
- Local vision graph for each camera representing the local neighborhood.
- Multiple trades with the same camera strengthens the link between cameras.
- Decay pheromone level when no trade occurs

Learn Neighborhood Relationships

- Gaining knowledge about the network topology (vision graph) by exploiting the trading activities
- Temporal evolution of the vision graph

Exploit the Camera Topology

 In addition to broadcast auctions to all cameras, we define two multicast communication policies

STEP

Probability to communicate with another node is based on the strength of the link. All others have only a small probability to get the invitation as well.

$$P_{STEP(i,x)} = \begin{cases} 1 & if \ \tau_{ix} > \varepsilon \\ \eta & otherwise \end{cases}$$

SMOOTH

Probability to communicate with another node is based on the strength of the link relative to strongest link.

$$P_{SMOOTH(i,x)} = \frac{1 + \tau_{ix}}{1 + \tau_{im}}$$

$$m = \underset{y}{argmax} \ \tau_{iy}, \forall y$$

Six Camera Strategies

- Auction initiation
 - "Active": at regular intervals (at each frame)
 - "Passive": only when object is about to leave the FOV
- Auction invitation
 - "Broadcast": to all cameras
 - "Smooth": probabilistic proportional to link strength
 - "Step": to cameras with link strengths above threshold (and rest with low probability)
- Selected strategy influences network performance (utility) and communication effort

Tracking Performance

Tradeoff between utility and communication effort

Scenario 1 (5 cameras, few objects) Scenario 2 (15 cameras, many objects)

Emerging Pareto front

[Esterle et al. <u>Socio-Economic Vision Graph Generation and Handover in Distributed Smart Camera Networks</u>. ACM Trans. Sensor Networks. 10(2), 2014]

Assigning Strategies to Cameras

Identical strategy for all cameras may not achieve best result

- Homogeneous strategies (3 cameras)
- Heterogeneous strategies (3 cameras)
- Strategy depends on various parameters (FOV, neighbors, scene ...)
 - Let cameras learn their best strategy

Decentralized Multi-Agent Learning

- Exploit bandit solver framework to maximize global performance
 - Co-dependency among agents' performance
 - Complex relationship between local reward global performance

[Lewis et al. <u>Learning to be Different: Heterogeneity and Efficiency in Distributed</u> <u>Smart Camera Networks</u>. In Proc. SASO 2013]

Multi-camera Experiment

- Indoor demonstrator with 6 cameras tracking 6 persons
- Each camera performs
 - Color-based tracking
 - Fixed or adaptive handover strategies (bandit solvers)
 - Exchange of color histograms for person re-identification

Conclusion

- Smart cameras process video data onboard and collaborate autonomously within the network
- Our cartooning approach protects image data "at the sensor" but stills provides reasonable utility with low resource usage
- We apply socio-economic techniques to learn control strategies for autonomous multi-camera tracking
 - Global configurations emerge from local decision using local metrics
 - Adaptive strategies extend Pareto front of best static configurations

 Techniques applicable to various decentralized networked systems (e.g., Internet of Things)

Acknowledgements & Further Information

Pervasive Computing group

Institute of Networked and Embedded Systems

http://nes.aau.at

http://bernhardrinner.com