

Bernhard Rinner

FAKULTÄT FÜR TECHNISCHE WISSENSCHAFTEN

Institut für Vernetzte und Eingebettete Systeme

Unmaned Aerial Vehicles (UAV)

- Multi-copter platform with onboard sensors
- Attached cameras for sensing the environment
- GPS receiver for autonomous waypoint flights
- Constrained onboard processing and networking
- Limitations on payloads, flight time, weather conditions

B. Rinner

Multi-UAV Systems

- Deploy a team of UAVs and coordinate them
- Scientific goals
 - Establish reliable aerial networking
 - Investigate multi-UAV coordination (tasks and movement)
 - Provide adaptive multimedia streaming
- Application scenarios
 - Large area observation
 - Search and rescue

Example: UVA-based Observation

Multi-UAV Observation

Reliable Aerial Networking

- Exploit/enhance off-the-shelf communication technology, considering the following issues
 - Influence of vehicle movement
 - 3D motion; tilting
 - Air-to-ground & air-to-air links
 - Available communication system
 - Onboard wireless interface
 - External antennas
 - Hardware limitations
 - Payload, mounting
 - Application dependent requirements
 - Mission demands, terrain, topology
- Experimental research to answer technological questions
 - How far can we deliver data? At what rate? How do we adapt to changes?

802.11 Networking Modes

- Experimental evaluation of different networking modes
 - Single-hop (AP)
 - Two-hop (AP)
 - Mesh

Impact of network architecture

IEEE Communications Magazine, 2014]

[Andre et al. Application-driven design of aerial communication networks.

Multi-UAV Coordination

- Framework for information merging and decision making among UAVs
 - Considering uncertain observations and communication limitations
 - Probabilistic analysis of target detection
 - Comparison of centralized and distributed algorithms

Adaptive Multimedia Delivery

- Dynamic adaptation of video content in FANET [MoVid'15]
 - Based on queuing delays of MAC/PHY packets
 - Change video rate using predefined quality levels
- Demonstrated in multi-UAV search&rescue scenario

Summary

- · Joint research of four research groups with funding from
 - Lakeside Labs
 - Erasmus Mundus Doctoral School
- Strong synergies with newly founded JR Robotics Institute
- Stephan Weiss (NASA-JPL) new Professor of Control of Networked Systems at AAU focusing on "Collaborative mobile robot autonomy in 3D space"
- · Good media coverage, e.g., Standard, WIRED-Germany

