

Smart Cameras and Visual Sensor Networks

Prof. Bernhard Rinner

Pervasive Computing
Institut für Vernetzte und Eingebettete Systeme
Alpen-Adria-Universität Klagenfurt
http://pervasive.uni-klu.ac.at

Visual Information

- ... is the primary sensory input for humans, but also for many technical systems such as
 - Machine vision
 - Robotics
 - Medical diagnostic
 - ...
- ... capturing and processing has become ubiquitous and "natural" for many applications
 - Digital still cameras, mobile phones, automotive
 - Facebook, YouTube etc.
- ... has gained importance for pervasive computing applications

Revolution in Cameras

- Ongoing technological advances
 - lenses
 - image sensors
 - onboard processing
 - networking
 - ...

transform camera as box delivering images into spatially distributed that generate data and events

Smart Cameras are one aspect of this revolution

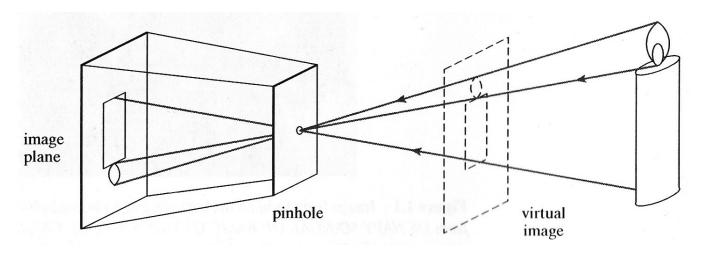
Agenda

1. Single and Multi-Camera Systems
Some fundamentals

2. Distributed Smart Cameras Distribution of sensing & processing

3. Visual Sensor Networks

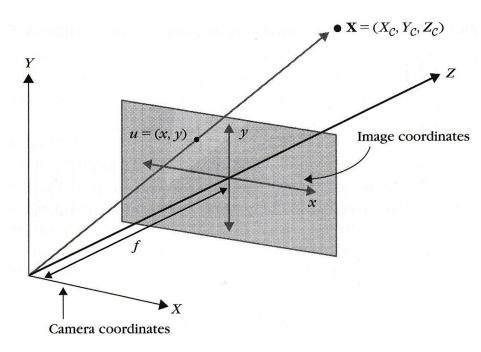
Network services
Applications & case studies



Camera Basics

Simple Camera

- Imaging device transforms light from 3D scene onto
 2D image plane
- Pinhole cameras represent idealized model for such transformation



[] Forsyth, Ponce. Computer Vision – a modern approach. Prentice Hall. 2003

Perspective Projection

 Modeling of pinhole camera center of projection C, focal length f, orientation matrix R

Transformation from world to camera coordinate system

$$\mathbf{X} = \begin{bmatrix} Xc \\ Yc \\ Zc \end{bmatrix} = R \begin{bmatrix} Xo \\ Yo \\ Zo \end{bmatrix} - C$$

Projection onto image plane

$$x = f \frac{Xc}{Zc} \qquad y = f \frac{Yc}{Zc}$$

[] Aghajan, Cavallaro. Multi-Camera Networks. Elsevier. 2009

Camera Matrices

- Homogeneous coordinates
 - Image point $\lambda(x,y,1)$
 - Scene point $\lambda(X,Y,Z,1)$
- Camera can be represented by 3x4 matrix Pc

$$Pc = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R | -RC \end{bmatrix} \qquad u \sim P\mathbf{X}$$

Camera matrix P can be factored

$$P = KR[I|-C] \qquad K = \begin{bmatrix} m_x & & \\ & m_y & \\ & & 1 \end{bmatrix} \begin{bmatrix} f & s/m_x & p_x \\ & f & p_y \\ & & 1 \end{bmatrix} = \begin{bmatrix} fm_x & s & p_x m_x \\ & fm_y & p_y m_y \\ & & 1 \end{bmatrix}$$

Camera Parameters

Extrinsic Parameters

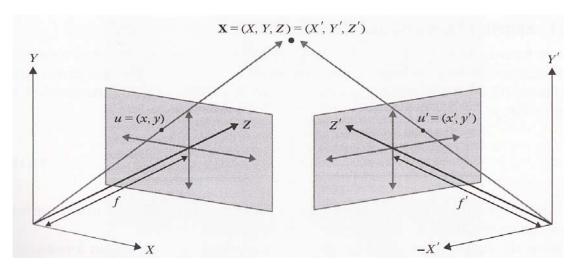
- From 3D world coordinates to 3D camera coordinates
- Rotation and translation (6 degrees of freedom)

Intrinsic Parameters

- From 3D camera coordinates to 2D pixel coordinates
- m_x , m_y pixel resolution (p_x, p_y) coordinates of principal point of the image skew of the pixels
- 5 degrees of freedom

Estimating the Camera Matrix

- Exploiting matched correspondences between
 - 2D Image points
 - 3D Scene points
- Minimizing the reprojection error of 3D points on calibration object
- Planar calibration grid method (checkerboard) very popular
 - Quite accurate but tedious method, Toolboxes available
 - http://www.vision.caltech.edu/bouguetj/calib_doc/


Camera Networks

Multi-Camera Geometry

- Image relationship from the same static scene
 - Two physically separated cameras C and C'
 - Single moving camera at different points in time

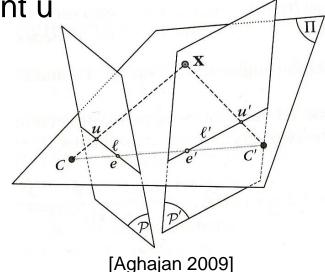
Rigid motion among C and C'

$$\begin{bmatrix} X' \\ Y' \\ Z' \end{bmatrix} = \hat{R} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} + \begin{bmatrix} t_X \\ t_Y \\ t_Z \end{bmatrix}$$

$$\hat{R} = R'R^{-1}$$
$$t = R'(C - C')$$

[Aghajan 2009]

Epipolar Geometry


 Fundamental matrix F describes constraint on point correspondences between 2 images

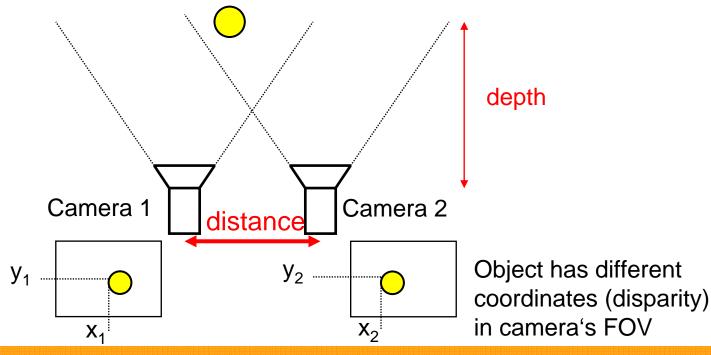
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}^T F \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$$

Epipolar line corresponding to point u

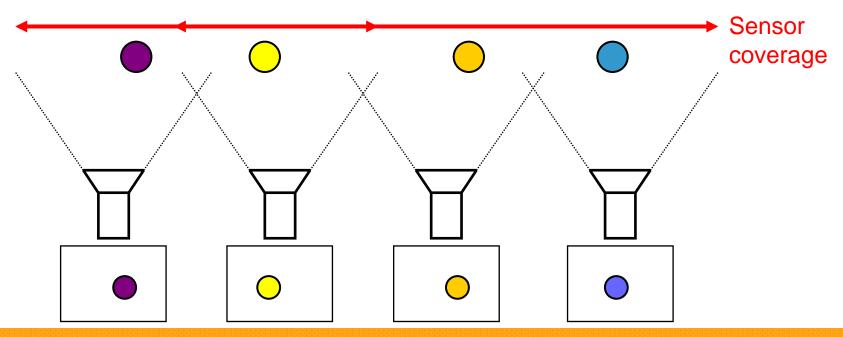
$$\ell u = \left\{ u' = (x', y')^T \in P' \mid \begin{bmatrix} u' \\ 1 \end{bmatrix} F \begin{bmatrix} u \\ 1 \end{bmatrix} = 0 \right\}$$

 Epipoles e and e' projections of camera centers to image plane

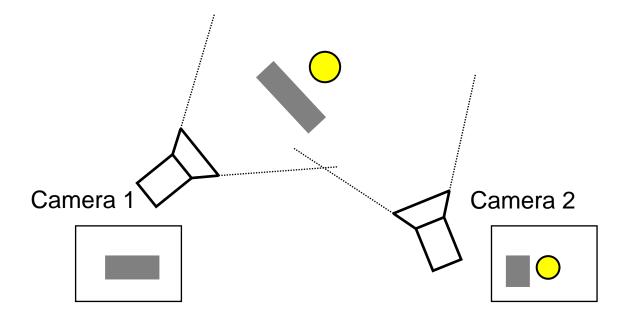
Advantages & Challenges



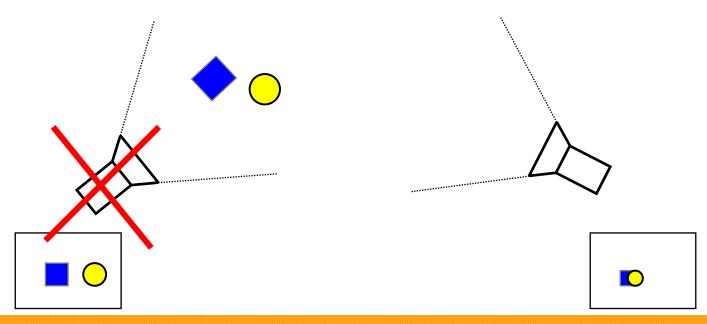
Advantage: 3D Information


- When we know the camera geometry
 - compute depth information based on different perspectives
 - stereo camera setup

Advantage: Enlarged Field of View (FOW)


- Enlarge the sensor coverage
 - setup with overlapping or non-overlapping FOVs
 - at "constant" resolution

Advantage: Resolve Occlusions

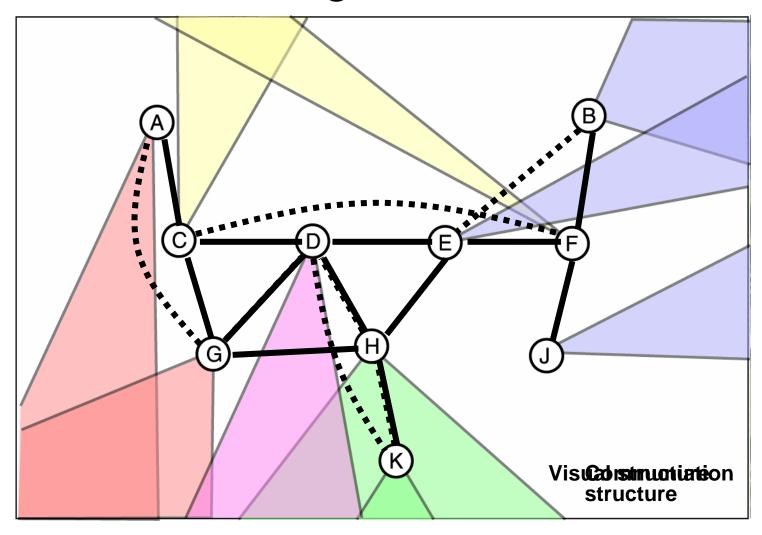

- Alternate FOV may help to resolve occlusions
 - often in dynamic environments with moving objects

Advantage: Redundancy

- If a camera breaks down we may get useful information from another camera, typically with
 - different FOV
 - different resolution

Challenge: Amount of Data

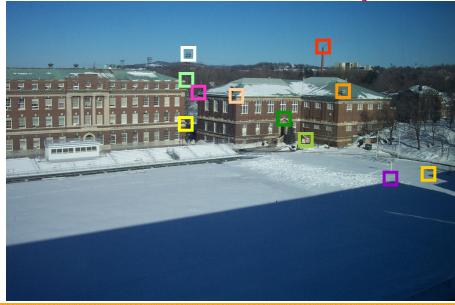
- A camera network produces a huge amount of data which has to be
 - transferred
 - stored
 - analyzed, processed, and "observed", respectively
- Example: Subway in London with 40.000 cameras
 - single camera "generates" approx. 260 Mbit/s (uncompressed)
 - requires extremely powerful network, storage and server!
- Video compression does not really help
 - compression rates in the range of 10 100
 - loss of image quality and large computational effort at camera

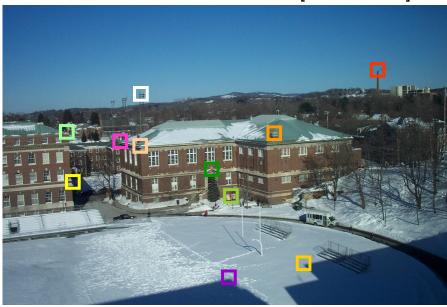


Challenge: Energy and Data Distribution

- Each camera requires energy and delivers data. Setting up the infrastructure for energy & data distribution is
 - tedious
 - expensive
 - and limits the applicability of multi-camera networks
- Reducing energy consumption and data transfer
 - battery-powered, energy harvesting
 - local processing, reduced bandwidth in wireless networks
- Dependency between energy consumption and data transfer
 - transferring data (much) more expensive than processing it

Challenge: Structure




Challenge: Spatial & Temporal Calibration

- Images of (overlapping) cameras must be "calibrated" in space and time
 - complex procedure only required during initialization (stationary cameras)

at different accuracy

[Radke 2007]

Camera

Server

10

Camera

Example: Video Surveillance Systems

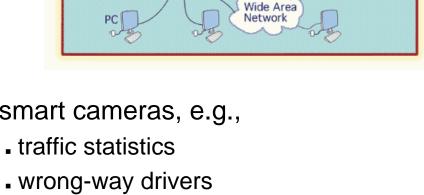
- 1st and 2nd generation
 - primarily analog frontends
 - backend systems are digital
- 3rd generation
 - all-digital systems
- 3+ generation
 - smart cameras
 - surveillance tasks run on-site on smart cameras, e.g.,
 - video compression

accident detection

wrong-way drivers

The Digital Wave

PC Running DVR Software


Headless'

IP Network

Switch - 9

Box of Disks

- stationary vehicles (tunnels)
 - vehicle tracking

Powered Ethernet

[] Regazzoni, Ramesh, Foresti. Special Issue on Video Communications, Processing and Understanding for Third Generation Surveillance Systems. Proceedings of the IEEE. October 2001

Smart Cameras

Basic Principle of Smart Cameras

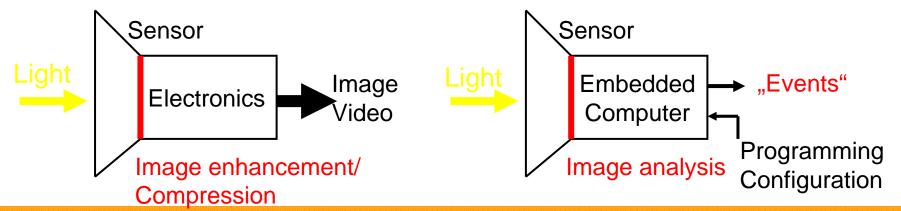
- Smart cameras combine
 - sensing,
 - processing and
 - communication

in a single embedded device

- perform image and video analysis in real-time closely located at the sensor and transfer only the results
- collaborate with other cameras in the network

Differences to traditional Cameras

Traditional Camera

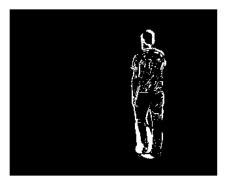

- Optics and sensor
- Electronics
- Interfaces

delivers data in form of (encoded) images and videos, respectively

Smart Camera

- Optics and sensor
- onboard computer
- Interfaces

delivers abstracted image data is configurable and programmable


Smart Cameras look for important things

- Examples for abstracted image data
 - compressed images and videos
 - features
 - detected events

Architectural Issues

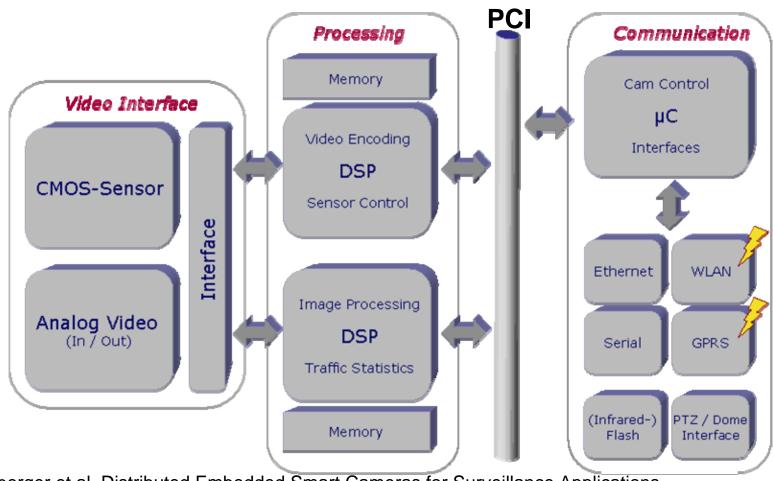
- Embedded processing of image pipeline
 - low-level operations (regular patterns on many pixels)
 - high-level analysis (irregular on few objects)
- Memory often bottleneck in streaming applications
 - capacity
 - bandwidth
 - standard techniques (caches etc.) may not be sufficient
- Processing platforms
 - FPGAs, DSPs, specialized processors (SIMD)
 - microcontroller, g-p processors
- Power consumption!

Various Prototypes

- Prototypes differ in various aspects
 - computing power, energy consumption
 - wired and wireless communication
 - optics and sensors

Rinner et al. (multi-DSP) 10 GOPS @ 10Watt

WiCa/NXP (Xetal SIMD) 50 GOPS @ 600mWatt


CMUcam3 (ARM7) 60 MIPS @ 650mW

CITRIC (PXA270) 660 MIPS @ 970mW

Scalable SmartCam Architecture

[] Bramberger et al. Distributed Embedded Smart Cameras for Surveillance Applications. IEEE Computer 2006

(Selected) Smart Camera Systems

System	Year	Platform	Distribution/Proc.	Autonomy
[Moorhead&Binni]	1999	ASIC	local	static
VISoc [Albani]	2002	SOC	local	static
[Wolf et al.]	2002	DPS (PC)	local	static
[Bramberger&Rinner]	2004	DSP	local	rem. conf.
[Dias&Berry]	2007	FPGA	local	active vis.
[Bauer]	2007	DSP	local	static
GestureCam [Shi]	2007	FPGA	local	static
[Bramberger et al.]	2006	multi-DSP	cooper. tracking	dyn. conf.
[Micheloni et al.]	2005	(PC)	MC-tracking	PTZ
[Fleck&Strasser]	2007	PowerPC	MC-tracking	static

(Selected) Smart Camera "Sensors"

System	Year	Platform	Distribution	Radio
Cyclops [Rahimi]	2005	ATmega128	coll. tracking	via Mica2
CMUcam 3 [Rowe]	2007	ARM7	local proc.	-
Meerkats [Margi]	2006	StrongARM	coll. tracking	ext. 802.11b
MeshEye [Hengstler]	2006	ARM7	local	via CC2420
WiCa [Kleihorst]	2006	Xetal (SIMD)	coll. gesture rec	via CC2420
CITRIC [Chen]	2008	PXA	tracking	via Tmote

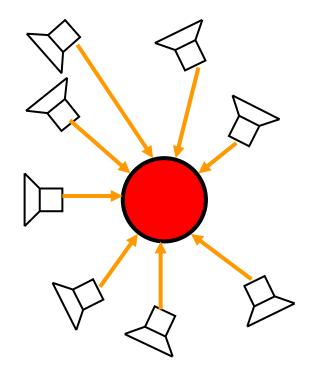
More details

- [] Akyildiz et al., Wireless Multimedia Sensor Networks: Applications and Testbeds. PIEEE Oct. 2008
- [] Rinner et al., The Evolution from Single to Pervasive Smart Cameras. In Proc. ICDSC 2008

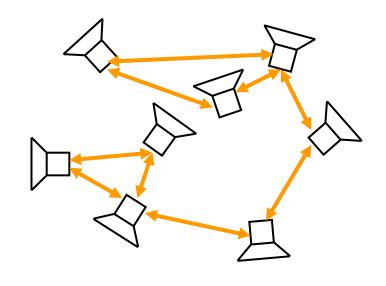
Distributed Smart Cameras

Smart Cameras collaborate

- Connect autonomous cameras in a network
 - exploit smart cameras' capabilities (eg. avoid raw data transfer)
 - relax centralized/hierarchical structure of MC networks
 - introduce dynamic configuration (structure and functionality)
- Challenges for distributing sensing & processing
 - camera selection and placement
 - calibration & synchronization
 - distributed processing
 - data distribution and control, protocols and middleware
 - distributed computer vision (distributed signal processing)
 - real-time, energy-awareness, ...


(Potential) Advantages of DSC

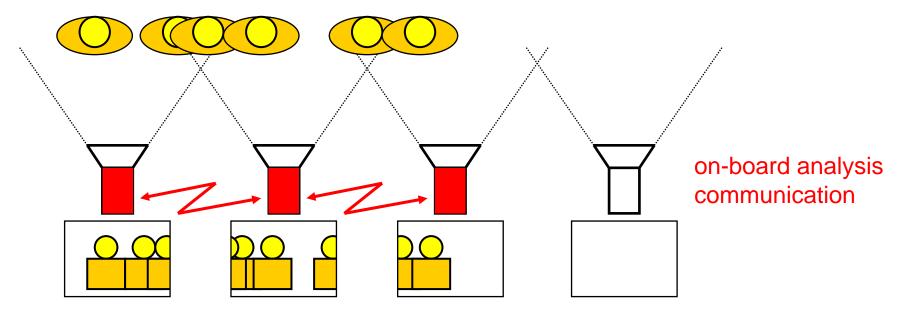
- Scalability
 - no central server as bottleneck
- Real-time capabilities
 - Short round-trip times; "active vision"
- Reliability
 - High degree of redundancy
- Energy and Data distribution
 - Reduced requirements for infrastructure; easier deployment?
- Sensor coverage
 - Many (cheap) sensors closer at "target"; improved SNR
- ...


Networking

Traditional Camera Networks

Cameras stream images/videos to "server"

Smart Camera Networks



Cameras collaborate directly (spontaneous, p2p, ad-hoc)

Distributed Processing in Network

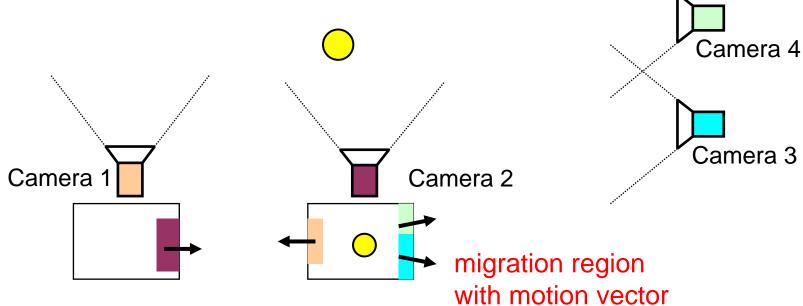
 Example: autonomous tracking of mobile objects among multiple cameras

- Computation follows (physical) object
 - requires spontaneous communication; distributed control & data

Autonomous Multi-Camera Tracking

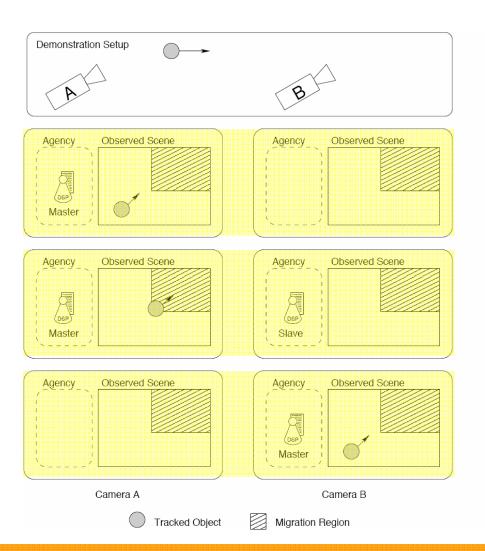
[] Quaritsch et al., Autonomous Multicamera Tracking on Embedded Smart Cameras EURASIP JES 1/2007]

- Assumptions for multi-camera tracking
 - implement on distributed embedded smart cameras
 - avoid accurate camera calibration
 - do not rely on central coordination
- Important design questions
 - What (single-camera) tracking algorithm to use?
 - How to coordinate the cameras?
 i.e., distributed control, exploit locality
 - How to hand over tracking from one camera to next?
- Treat questions independently
 - standard ("color-based") CamShift tracker
 - focus on hand over strategy



Spatial Relation among Cameras

- Camera neighborhood relation
 - important for determining "next camera(s)"


 based on pre-defined "migration region" in camera's FOV (overlapping or non-overlapping FOVs)

no pixel correspondence required

Multi-Camera Handover Protocol

Master/Slave handover

- 1. camera A tracks object
- 2. whenever object enters migration region tracking agent is cloned on "next" camera (slave)
- 3. slave starts tracking when slave identifies object master gets terminated

Tracker initialization

color histogram a initialization data

Implementation & Results

Visualization

- migration region (magenta)
- tracked object (red rectangle)
- tracking agent (red box)

Code size	15 kB
Memory requirement	300 kB
Internal state	256 B
Init color histogram	< 10 ms
Identify object	< 1ms

CamShift (single camera)

Loading dynamic executable	8 ms
Initializing tracking algorithm	250 ms
Creating slave on next camera	18 ms
Reinitializing tracker on slave	2 ms
Total	278 ms

Multi-camera performance

Toward Visual Sensor Networks

Characteristics of VSN

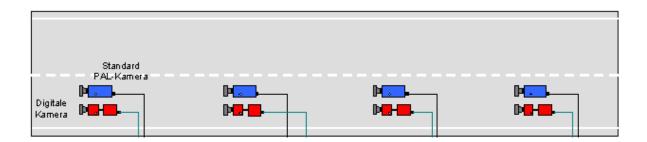
- In-network image sensing & processing
- Data streaming as well as eventing
- Resource limitations (power, processing, bandwidth ...)
- Autonomy & service-orientation
- Ease of deployment

Multi-view Calibration

- Standard calibration methods are tedious
 - performed offline
 - require physical appearance of reference objects
 - limited scalability in large networks
- Automatic methods are necessary in visual sensor networks
 - Limited knowledge about initial position and orientation of cameras
 - Mobility of camera nodes
 - No human/expert available
- Estimation methods
 - Vision Graph
 - Calibration of neighboring cameras

Estimating the Vision Graph

- Identify cameras with overlapping FOV
 - Also referred to as topology of the network
 - Exploit spatiotemporal tracks of moving objects
 - Often assume common ground plan
- Determine the "area" of overlap
 - Compute offline (if cameras are fixed)
 - Model camera projection (if parameters are known)

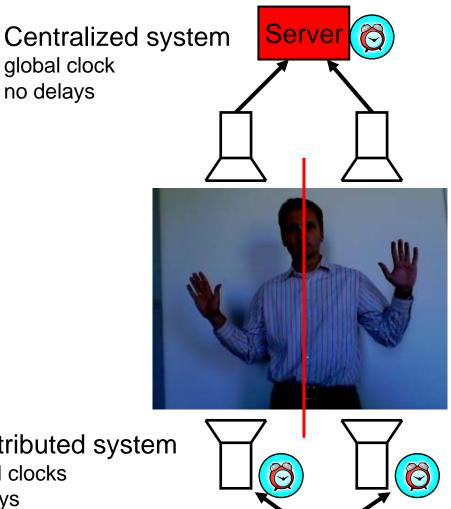

Multi-Camera Calibration

- Focus on calibration only among neighboring cameras
 - Determine reliable corresponding points
 - Estimate parameters of neighboring cameras
- Distributed calibration algorithms
 - Avoid transferring images
- Exploit information about position and orientation of cameras
 - Often available in sensor networks
 - Calibration not exclusively based on captured images

Multi-Camera Calibration (2)

- Relaxing calibration requirements
 - What to do when there is no overlap (cp. epipolar geometry)?
 - Accurate calibration not required for some applications
- Example: Camera Hand-off in MC-Tracking
- Camera network topology
 - Applications pose strong constraints (traffic, buildings etc.)

Temporal Calibration / Synchronization


global clock

no delays

Cameras need to be synchronized for distributed analysis. **Problems**

- No global clock
- Communication delays (unknown, jittering)
- Example
 - Fusing individual views from two cameras

Distributed system local clocks

delays

Synchronization

- Synchronization accuracy
 - Depends on application and on level of local processing
 - Often "frame-accurate" synchronization sufficient
- Apply methods from sensor networks
 - Tutorial of K. Römer

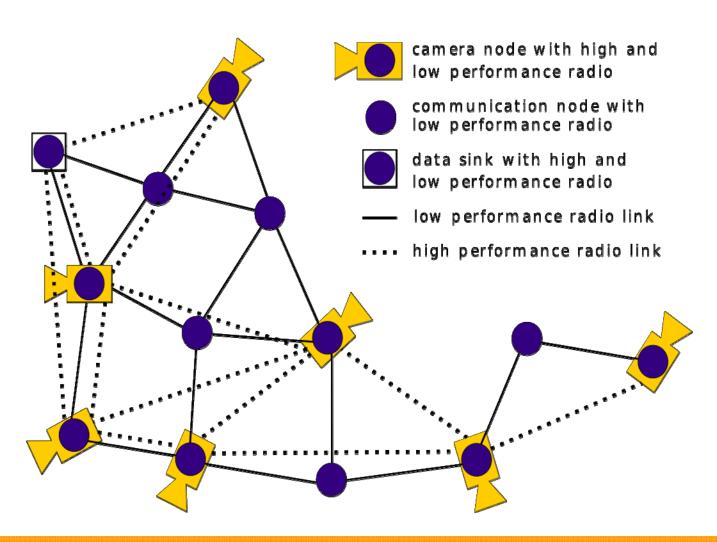
Resource-Awareness

- Visual sensor nodes have limited resources
 - Embedded platform
- Critical resources
 - Sensing
 - Computing and memory capacity
 - Communication
 - Power
- Manage resources effectively
 - Switch off unused components: dynamic power management
 - Trade performance, quality, time etc: reconfiguration

Quality of Service

- Cameras and VSN provide different quality levels
- Low-level QoS
 - Image resolution
 - Communication bandwidth, delay
- More abstract QoS
 - Different detection performances

Applications & Case Studies


Pervasive Smart Camera Network

- Tradeoff among bandwidth, power consumption and streaming requirements in VSN
- One approach: dual radio networks
- Equip (some) nodes with two radios: low-bandwidth
 & high-bandwidth
- Use low-bandwidth radio for normal operation
 - coordination, eventing,
 - transfer of low-resolution (still) images
- Use high-bandwidth radio for streaming

[] Winkler, Rinner. Pervasive Smart Camera Networks exploiting heterogeneous wireless Channels. In Proc. PerCom 2009

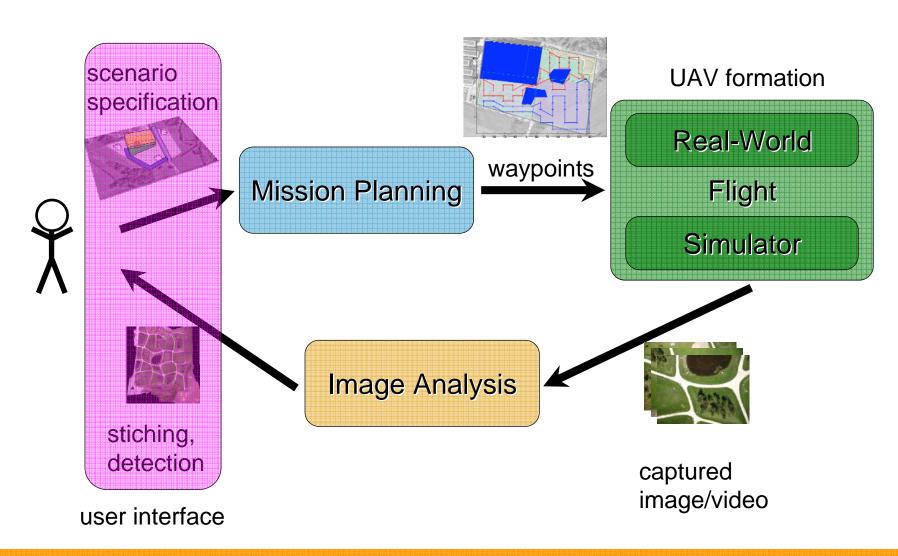
PSC Network Architecture

PSC Camera Network

- Visual Sensor Network Platform
- Sensor Nodes
 - Embedded board with USB connected peripherals
 - TI OMAP3530 processor: ARM Cortex A8 @ 600MHz, TI C64x DSP @430MHz
 - 128MB RAM, 256MB Flash
 - SD-Card, USB, DVI, audio-i

PSC Demo: Tracking

- Demonstrate tracking by using only low-bandwidth radio
 - initially transfer background image
 - perform tracking onboard
 - transfer tracking result (bounding box);8 bytes/frame


Collaborative Microdrones

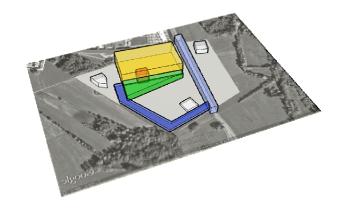
- UAVs for disaster management
 - deploy a group of small UAVs for disaster management applications
 - fly over the area of interest in structured way (formations)
 - sense the environment
 - analyze the sensor data (image stiching, object detection etc.)
- Provide "bird's eye view" to special task forces in real-time
- Support high autonomy and an intuitive user interface

[] Quaritsch et al., Collaborative Microdrones: Applications and Research Challenges. In Proc. Autonomics 2008

High-level "Processing Loop"

UAV Platform

[www.microdrones.com]


- Battery-powered quatrocopter
 - about 1 m size, 200g payload
 - 20 minutes operation time
 - onboard camera 10MPixel
- GPS-based waypoint navigation
- Communication
 - Uplink (RC channel): remote control;
 - Downlink (2.4 GHz channel): flight data, (low-resolution) images/video

cDrones: Mission Planning

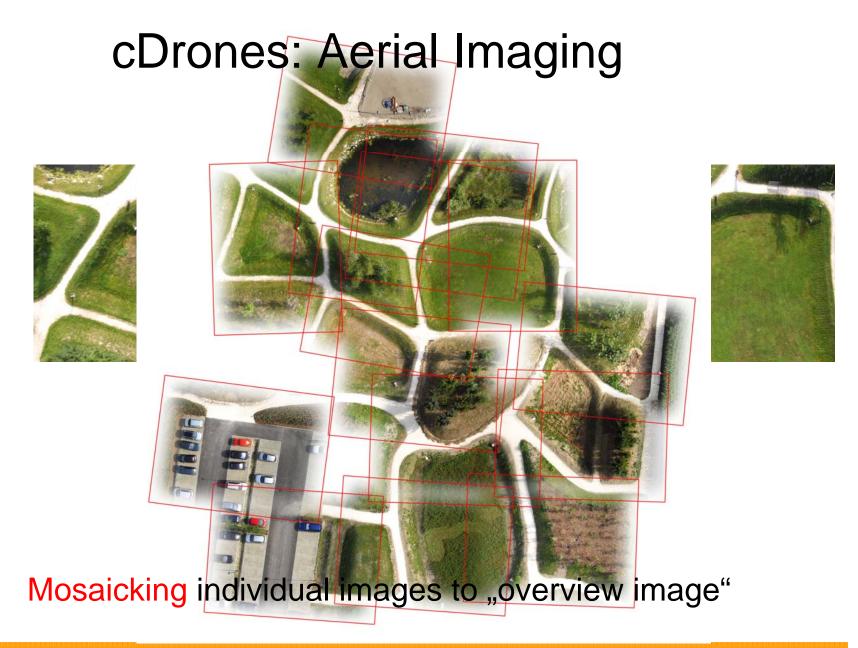
- Find the optimal routes & formation for a small group of UAVs
 - Sequence of waypoints & actions
- Given the scenario description
 - Simplified 3D representation
 - Areas of interest, no-fly zones
- Considering various constraints
 - Power, flight time
 - Target resolution, update rate etc.
- Current approach
 - CSP-based planning

cDrones: Mission Planning (2)

Pripture points subdiefinitiful (coptionize coverage)

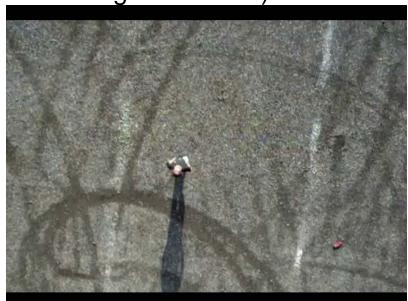

cDrones: UAV Formation

- Build and maintain a formation
 - e.g. "parallel", "triangle" (of 3-5 UAVs)
 - Follow the waypoint routes given by mission planning
- Exploit GPS and IMU data of UAVs
 - Guarantee safe flight routes for individual UAVs
 - No online obstacle detection
- Provide real and simulation environment
 - Simplify testing
 - Modeling the UAV dynamics



cDrones: Aerial Imaging

- UAVs connected via wireless network (eg 802.11)
- Preliminary imaging
 - Mosaicing using COCOA



cDrones: Aerial Imaging (2)

- Video analysis
 - Alignment of frames (ego motion compensation)

 Object detection & tracking (relative movement within aligned frames)

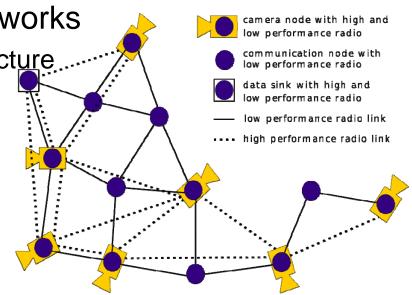
raw video analysis

(Potential) further Applications

- Entertainment (computer games)
 - in 3D environments
- "Smart Rooms / Smart Environments
 - detection gestures, sign language, room occupancy ...
- Environmental monitoring
 - sensor fusion, habitat monitoring
- Security
 - Safety enhancement (trains, cars), access control, surveillance
- "Virtual Reality"
 - augment real world with digital information
- ...

Challenges

#1: Architecture


How to design resource-aware nodes and networks

- Low-power (high performance) camera nodes
 - Dedicated platforms: vision processors, PCBs, systems
 - Many examples: CITRIC, NXP

Visual/Multimedia Sensor Networks

Topology and (multi-tier) architecture.....

Multi-radio communication

#2: Networking

How to process and transfer data in the network

- Ad hoc, p2p communication over wireless channels
 - Providing RT and QoS
 - Eventing and/or streaming
- Dynamic resource management
 - (local) computation, compression, communication, etc.
 - Degree of autonomy: dynamic, adaptive, self-organizing
 - Fault tolerance, scalability
 - Network-level software, middleware
 [Doblander_ACMTECS2009], [Rinner_ICASSP2007], [Shin_2007]

#3: Distributed Sensing & Processing

Where to place sensors and analyze the data

- Sensor placement, calibration & selection
 - Optimization problem
 - Distributed approaches eg., consensus, game theory [Soto_CVPR2009], [Devarajan_PIEEE2008]
- Collaborative data analysis
 - Multi-view, multi-temporal, multi-modal
 - Sensor fusion
 [Kushwaha ICCCN2008], [Cevher TransMM2007]

#4: Mobility

How to exploit networks of mobile cameras

- Ubiquitous mobile cameras
 - PTZ, vehicles, robotics etc.
 - Mobile phones
- Advanced vision algorithms
 - Ego motion, online calibration
 - Closed-loop control, active vision

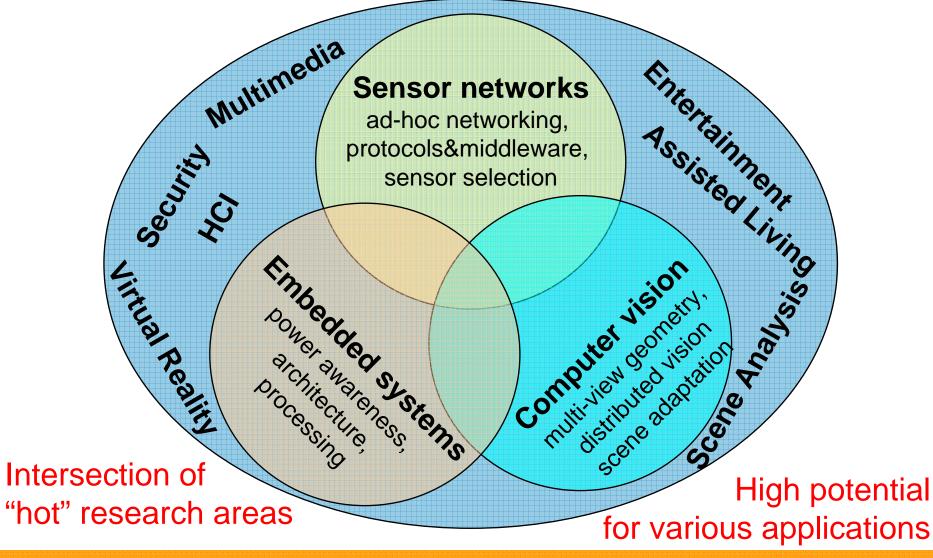
#5: Usability

How to provide useful services to people

- Ease of deployment, maintenance
 - Self-* functionality
- Privacy and Security [Serpanos_PIEEE2008]
- Killer application

Conclusion

Smart Cameras


- combine
 - sensing,
 - processing and
 - communication

in a single embedded device

- perform image and video analysis in real-time closely located at the sensor and transfer only the results
- collaborate with other cameras in the network (multi-camera system)

DSC is Interdisciplinary Research

Further Information

Mail

Pervasive Computing Lakeside B02b 9020 Klagenfurt

■ P: +43 463 2700-3670

• F: +43 463 2700-3679

W: <u>pervasive.uni-klu.ac.at</u>

"Interactive & Cognitive Environments"

- Erasmus Mundus Joint Doctorate
 - University of Genua (Coordinator)
 - Klagenfurt University
 - UPC Barcelona
 - TU Eindhoven
 - Queen Mary University of London
- 15 scholarships per year for EU and non-EU PhD students
- Starting in Fall 2010 (until 2017)
- More info coming soon
 - check http://pervasive.uni-klu.ac.at

