PECCS 2011

Pervasive Smart Cameras

FAKULTÄT FÜR TECHNISCHE WISSENSCHAFTEN

Institut für Vernetzte und Eingebettete Systeme

Bernhard Rinner

The Digital Universe

- Forecasts from a recent IDC report [1]
 - "The amount of digital information in the world will grow to almost 35 trillion GByte by 2020."
 - "The amount of digital information created already exceeds the available storage." By 2020 this storage gap grows to more than 60 %
 - "Cameras play a significant part for data creation"
 - [1] J. Gantz, D. Reisl. The Digital Universe Decade Are You Ready?, May 2010 (IDC forecast report)
- Storing, analyzing, searching, protecting, etc. these huge amount of data becomes a real challenge

Ubiquitous Cameras

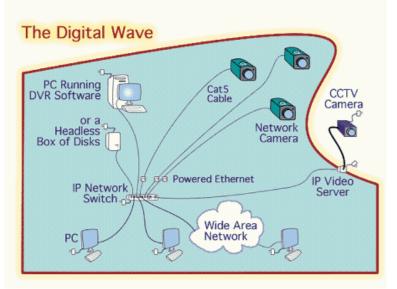
- We are surrounded by billions of cameras in public, private and business spaces
- Various well-known examples
 - Transportation
 - Security
 - Entertainment
 - ...
- How to explore all the captured data ?
- Different view on camera(s) required, applies especially for pervasive computing

Revolution in Cameras

- Ongoing technological advances in
 - lenses
 - image sensors
 - onboard processing
 - networking
- transform camera as box delivering images into spatially distributed that generate data and events
- Huge amount of visual information is processed in a network of resource-limited embedded nodes in dynamic environment
- > Make cameras smart, autonomous and collaborative

Agenda

- Smart Cameras
 - Introduction
 - Trends
- Selected Applications
 - Tracking
 - Configuration
 - Security & privacy
- Challenges
 - Research question
 - Conclusion



Smart Cameras

Traditional Camera Networks

- Cameras capture images/videos
- Raw or compressed data is streamed to central server
- Image data is displayed/archived/ analyzed at central point
- Data and energy is transferred over wired infrastructure

[Regazzoni et al. Special Issue on Video Communications, Processing and Understanding for Third Generation Surveillance Systems. Proc. IEEE. October 2001]

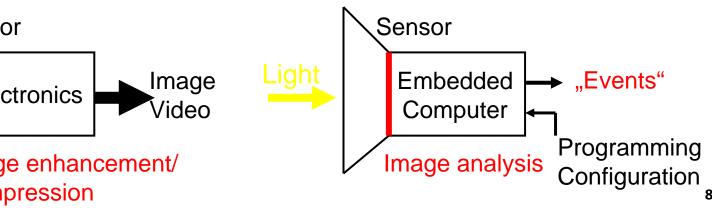
Centralized and static architecture, heavy infrastructure required

Making Cameras smarter

Smart cameras integrate sensing, processing and communication on single embedded device

Traditional Camera

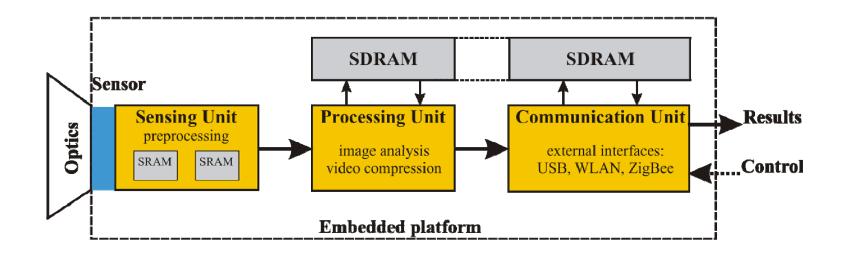
- Optics and sensor
- Electronics
- Interfaces


delivers data in form of (encoded) images or videos.

Sensor Image Electronics √ideo Image enhancement/ Compression B. Rinner

Smart Camera

- Optics and sensor
- Onboard computer
- Interfaces

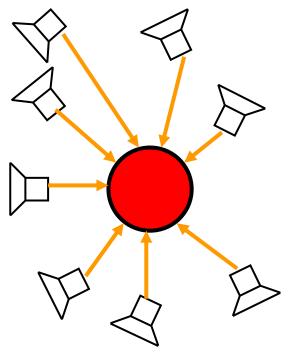

delivers abstracted image data and is configurable and programmable

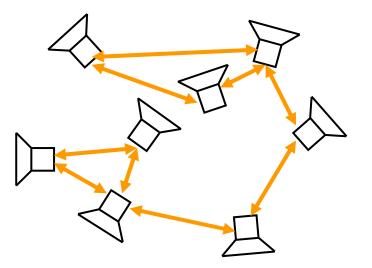
Smart Camera Architecture

• Main components

[Rinner, Wolf. Introduction to Distributed Smart Cameras. Proc. IEEE, 96(10):1565–1575, 2008]

Process data where it is captured


- Perform image and video analysis in real-time closely located at the sensor
- Deliver (only) abstracted events
- Reduce data transfer
 - From raw data to features or events
 - Example: tracking
- "Smart cameras look for important things"


Collaborate spontaneously

Traditional Camera Networks

Cameras stream images/ videos to "server"

Smart Camera Networks

Cameras collaborate directly (spontaneous, p2p, ad-hoc)

Perform advanced in-network analysis

- From data collection and streaming to dynamic collaboration
 - More demanding processing possible (eg., online learning)
 - Analysis may change depending on network state and environment
- Exploit heterogeneous sensors
 - Different cameras (static, PTZ, RGB/IR ...) but also audio, laser etc.
 - Perform intra and/or inter node fusion
 - Synchronization and calibration necessary
- Deliver multimedia data at required QoS level
- Support autonomous operation at network level
 - Self-* methods

[Akyildiz et al. Wireless Multimedia Sensor Networks: Applications and Testbeds. Proc. IEEE, 2008]

Be aware of scarce Resources

- Major resource limitations
 - Processing power
 - Communication bandwidth
 - Onboard memory
 - Energy
- Various Prototypes

Rinner et al. (multi-DSP) 10 GOPS @ 10Watt

WiCa/NXP (Xetal SIMD)

50 GOPS @ 600mWatt

CMUcam₃ (ARM₇)

60 MIPS @ 650mW

CITRIC (PXA270) 660 MIPS @ 970mW

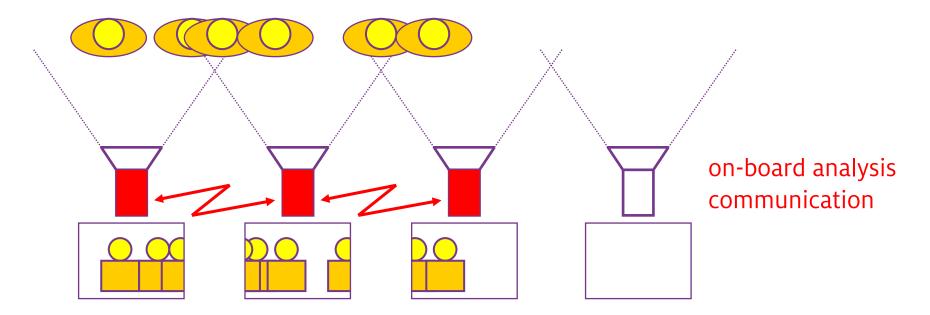
[Rinner et al. The Evolution from Single to Pervasive Smart Cameras. Proc. ICDSC 2008]

Why Networks of Smart Cameras?

- Scalability
 - No central server as bottleneck
- Real-time capabilities
 - Short round-trip times; "active vision"
- Reliability
 - High degree of redundancy
- Energy and Data distribution
 - Reduced requirements for infrastructure; easier deployment
- Sensor coverage
 - Many (cheap) sensors closer at "target"; improved SNR
- Compare with sensor networks

Selected Applications

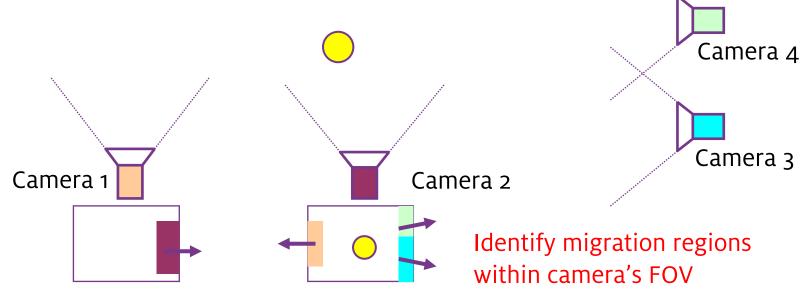
Quest for Novel Pervasive Applications


- Some requirements
 - Easy deployment
 - Adaptive and scalable
 - Reactive/interactive
 - Secure- and privacy-aware
- Application domains
 - Distributed surveillance and security
 - Smart homes / smart buildings
 - Ambient intelligence
 - Human-computer interfaces
 - Mobile and robotic networks
 - Virtual reality systems

— ...

Example 1: Multi-camera Tracking

• Track mobile objects autonomously among multiple cameras

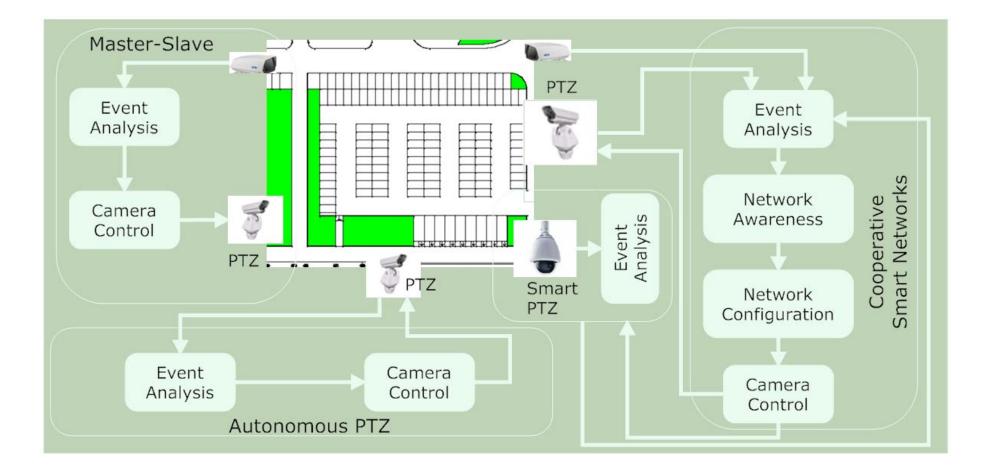

- Computation follows (physical) object
 - requires spontaneous communication; distributed control & data

Autonomous Migration of Processing

• Camera Handoff

- Initialize object tracker on "neighboring" camera(s)
- Similarity function for object re-detection
- Various approaches for neighbor selection, eg., a priori definition, learning, virtual markets

[Quaritsch, Kreuzthaler, Rinner, Bischof, Strobl. Autonomous Multicamera Tracking on Embedded Smart Cameras. EURASIP Journal on Embedded Systems. 2007]


Example 2: Mobile Camera Configuration

- Pan-Tilt-Zoom (PTZ) cameras allow to change their FOV
- Adapt coverage dynamically, eg., to
 - modify area of interest
 - follow targets
- Active visual sensor networks have to react in real-time
 - Estimate the current state (based on image analysis)
 - Compute the PTZ configuration (based on accurate modeling of 3D coverage)
 - Cooperate among cameras may be required for state estimation
- Comparison of different approaches

[Micheloni, Rinner, Foresti. Video Analysis in PTZ Camera Networks. IEEE Signal Processing Magazine. Sep. 2010]

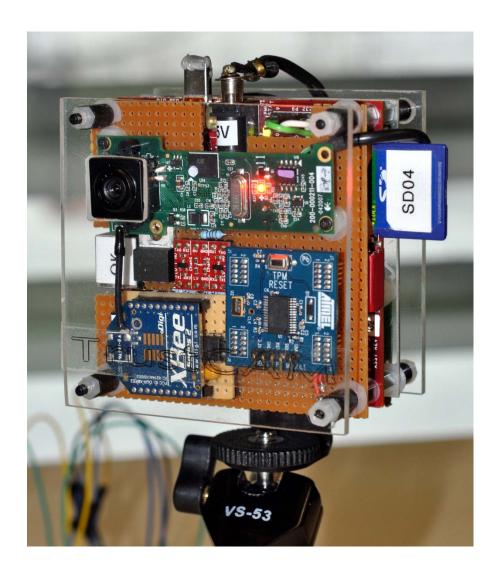
Different forms of cooperation

Example 3: Security and Privacy

- System level approach addressing the following security issues in cameras:
 - Integrity: detect manipulation of image and video data
 - Authenticity: provide evidence about the origin of image and videos
 - Confidentiality: make sure that privacy sensitive image data cannot be accessed by an unauthorized party
 - Multi-level Access Control: support different abstraction levels and enforce access control for confidential data
- Considered attack types: only software attacks

[Winkler, Rinner. Securing Embedded Smart Cameras with Trusted Computing. EURASIP Journal on Wireless Communications and Networking, 2011]

Our Approach: TrustCAM

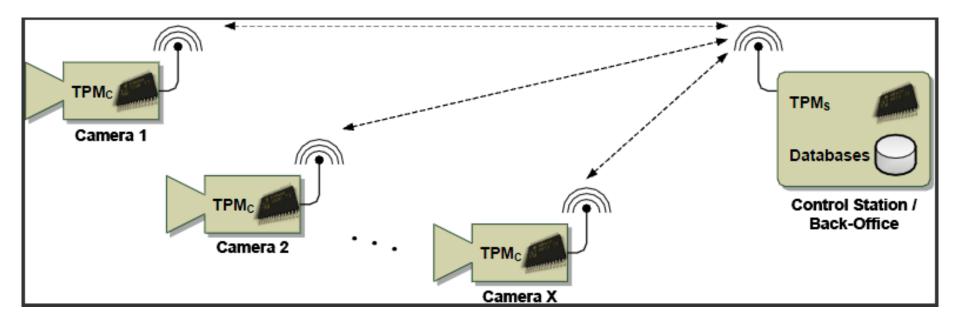


- We integrate Trusted Computing into camera prototype
- Trusted Computing (TC) is a hardware security solution based on microchip called Trusted Platform Module (TPM)
- Reasons for using TPMs:
 - Implement a well defined set of security functions
 - Public and well reviewed specification
 - Cheap and readily available
 - Hardware provides higher security guarantees than software
 - Using established technology is better than re-inventing the wheel (especially when doing security)
- Main challenge: TPMs are relatively slow
- Careful integration into camera is required

TrustCAM Prototype

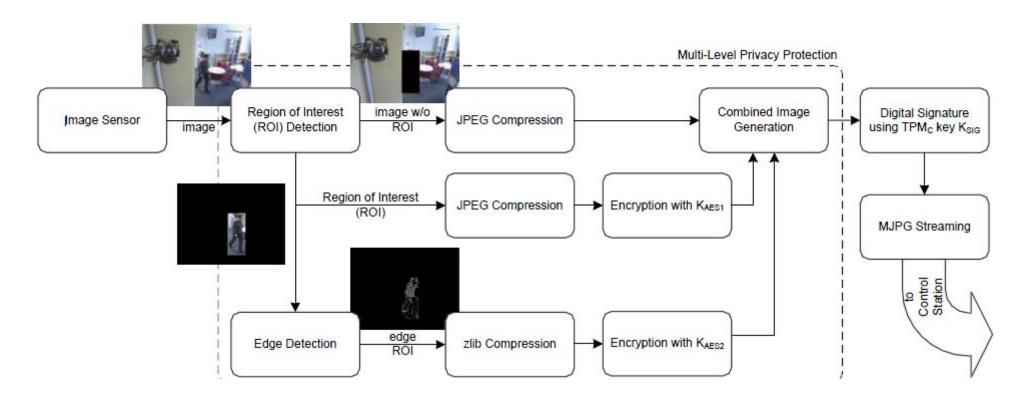
- TI OMAP 3530 CPU: ARM @ 480MHz and DSP @ 430MHz
- 256MB RAM, SD-Card as mass storage
- VGA color image sensor
- wireless: 802.11b/g WiFi and 802.15.4 (XBee)
- LAN via USB (primarily used for debugging)
- Atmel hardware TPM
 - on I2C bus

Hardware/Software Stack


Applicatio	on 1	Ар	plication 2	Application N						
		Ti	rustCAM Soft	ware Fram	nework					
System		-	bjpeg, zlib, lib ., IVT…)	exif,		ouSerS h I2C TI				
	Linux Kernel									
OMAP 3530 (ARM Cortex A8 and TMS320C64x+ DSP)										
			USB	USB	S	erial	I2C			
256MB RAM	256N NAN Flas	ID	Color CMOS Sensor	802.11 k WiFi Ra		Bee adio	Atmel TPM			

- Embedded linux system (Angstrom based)
- Custom kernel with TPM integration
- Customized TrouSerS software stack for TPM access
- Component based application development framework

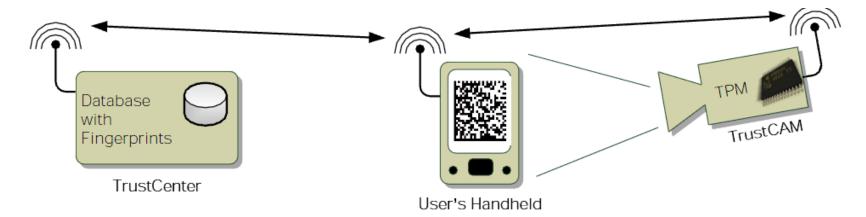
Architecture Overview


• Each Camera is equipped with a TPM called TPM_{c}

• Cameras are controlled from central back-office

Multi-level security and privacy

Perform cryptographic operations onboard Signing: integrity and authenticity Encryption: confidentiality and multi-level access control


Control Station

- Video viewer prototype
- Abstracted regions of interest
- Frame groups signatures embedded as custom EXIF data
- History: circular buffer with last 64 frames
 - Unverified frames: orange
 - Verified frames: dark green
 - Last frame of group: light green

Example 4: Authentic User Feedback

- How to certify what a camera is doing?
- An authentic communication channel between user & camera
 - Wireless channel is problematic
- Alternative: visual communication for device pairing
 - direct line of sight attackers are easy to spot
 - intuitive way to select the intended camera
- Camera returns a list of hash sums of executed applications
- TrustCenter helps to translate hash sums into properties

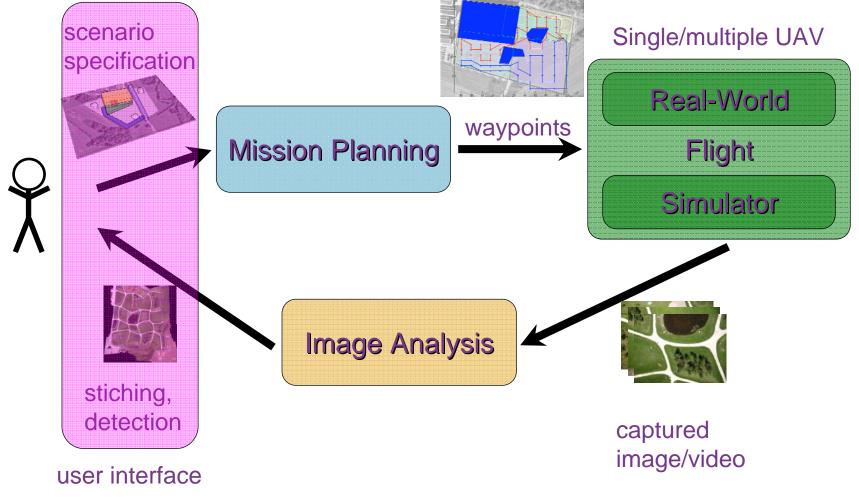
User Feedback- Camera Selection

- User is equipped with a trusted handheld device
- 2D barcodes displayed on the user's handheld
- Barcode encodes attestation request and a challenge

Feedback on Mobile Device

- Provide detailed results available to users
- Show running vision processing blocks and their interactions
- Present description and check sums of blocks

Component Name	Version	Comment	Component Name	Version	Comment
X-Loader	1.4.2	with TPM patches	libjpeg	6.2	vanilla
U-Boot	2009.08	with TPM patches	libivt	1.3.7	vanilla
Linux Kernel	2.6.33	with TrustCAM patc	TrouSerS	0.3.4	with I2C patc
Firmware Image	TrustCAM 0.1		libexif	0.6.16	vanilla
Vision Processing	Segmentat		Face	ROI	МЈРЕ
Vision Processing		Description and Prop	Face Blurring	Encryption	MJPE Stream
Vision Processing	Segmentat	Detection Detection Description and Prop This component separa	Face Blurring	Encryption	


Example 5: Collaborative Aerial Cameras

- Develop autonomous multi-UAV system for aerial reconnaissance
- Up-to-date aerial overview images are helpful in many situations:
 "Google Earth with up-to-date images in high resolution"
- Quadcopter platform with onboard sensors and computation
- GPS receiver for autonomous waypoint flights
- Limitations on payloads, flight time, weather conditions

Autonomous UAV Operation

User Interface

Define high-level tasks, i.e., observation area

Real-time overview image and execution status

http://pervasive.uni-klu.ac.at/cDrones

[Videos]

B. Rinner

Challenges

#1: Architecture

How to design resource-aware nodes and networks

- Low-power (high performance) camera nodes
 - Dedicated platforms: vision processors, PCBs, systems
 - Many examples: CITRIC, NXP
- Visual/Multimedia Sensor Networks
 - Topology and (multi-tier) architecture
 - Multi-radio communication
- Dynamic Power Management
 - For sensing, processing and communication

#2: Networking

How to process and transfer data in the network

- Ad hoc, p2p communication over wireless channels
 - Providing RT and QoS
 - Eventing and/or streaming
- Dynamic resource management
 - (local) computation, compression, communication, etc.
 - Degree of autonomy: dynamic, adaptive, self-organizing
 - Fault tolerance, scalability
 - Network-level software, middleware

#3: Deployment, Operation, Maintenance

Consider the entire life cycle of the camera network

- Development support for applications
 - Model/simulate the application (function, resources, QoS)
 - Reuse/exchange of software/libraries
 - Software updates, debugging etc.
- Autonomous calibration and scene adaption
 - Avoid manual procedures
 - Adapt to different scenes and settings
- Network configuration

#4: Distributed Sensing & Processing

Where to place sensors and analyze the data

- Sensor placement, calibration & selection
 - Optimization problem
 - Distributed approaches eg., consensus, game theory, multi-agent systems
- Compressive Sensing
- Collaborative data analysis
 - Multi-view, multi-temporal, multi-modal
 - Sensor fusion
- Online/real-time processing
 - Can not effort to store large amounts of data

#5: Mobility

How to exploit networks of mobile cameras

- Mobile cameras are ubiquitous
 - PTZ, vehicles, robotics etc.
 - Mobile phones
- Advanced vision algorithms
 - Ego motion, online calibration
 - Closed-loop control, active vision

#6: Usability

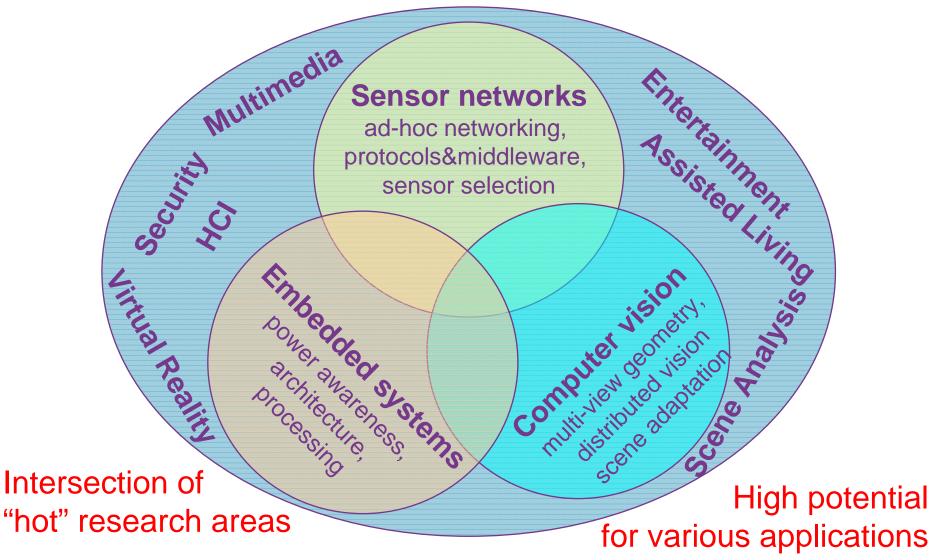
How to provide useful services to people

- Ease of deployment, maintenance
 - Self-* functionality
 - "Smart cameras for dumb people"
- Privacy and Security
 - Trust of the user
 - Control the privacy setting
- Interaction with the camera network

#7: Applications

What applications can (only) be solved by DSC

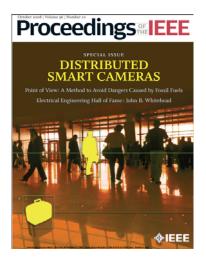
- Demonstrations
 - Large scale networks eg., for surveillance
 - Small scale networks eg., for entertainment, home environments
 - Only single camera application?
- Market opportunities
- Killer Application



Smart Cameras

- combine
 - sensing,
 - processing and
 - communication
 - in a single embedded device
- perform image and video analysis in real-time closely located at the sensor and transfer only the results
- collaborate with other cameras in the network (multi-camera system)

DSC is Interdisciplinary Research



Further Information

Web site: http://pervasive.uni-klu.ac.at

To probe further:

www.icdsc.org

www.icephd.org