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CHAPTER III:

Distributed Vision Algorithms

Hamid Aghajan, Wayne Wolf
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Vision Network AlgorithmsVision Network Algorithms

Contact: Wayne Wolf

wolf <AT> Princeton.Edu
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TopicsTopics

• Target modeling for distributed systems
• Distributed state management and protocols
• Calibration:

– Spatial
– Temporal
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Distributed Vision AlgorithmsDistributed Vision Algorithms

• Starting points:
– Single-camera algorithms
– Multi-camera server-based algorithms

• New challenges:
– No central repository
– Communication delays
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Example: Distributed Gesture RecognitionExample: Distributed Gesture Recognition

• Lin et al: recognize gestures using graph 
model
– Started with single-camera algorithm
– Split block diagram and inserted protocol to 

transform into distributed algorithm
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Token PassingToken Passing



5

CVPR 2007 Short Course 9Distributed Vision Processing in Smart Camera Networks

Algorithm PartitioningAlgorithm Partitioning

fixed migrating
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TokenToken--Passing ProtocolPassing Protocol

• Token represents 
ownership of high-level 
analysis

• Nodes periodically 
determine when token 
should move
– Use target centroid as 

heuristic
• Handshake transfers 

token

Low-level
analysis

I own
target?

I keep
target?

no
Send model
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no
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PeerPeer--toto--Peer TrackingPeer Tracking

• Velipasalar et al: Nodes 
must agree on target 
identity
– In the presence of 

multiple views
• Need distributed 

algorithm for agreement

Camera 1 Camera 2

Camera 3
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Distributed Tracking Agreement ProtocolDistributed Tracking Agreement Protocol

• Each node runs a 
tracker for each target in 
its field of view

• Nodes form ring for 
synchronization 
communication

• Nodes share tracker 
information every N 
frames

Camera 1 Camera 2

Camera 3
T

T
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Label ConsistencyLabel Consistency

• Cameras must agree 
on label for target in 
shared field of view

• Negotiate agreement 
and label at next 
communication round 
after target crosses 
field of view line
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Target Position SharingTarget Position Sharing

• When target is 
occluded, node can 
get position from 
other nodes

• Provides fault 
tolerance
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Communication DiagramCommunication Diagram

CVPR 2007 Short Course 16Distributed Vision Processing in Smart Camera Networks

Communication ProtocolCommunication Protocol

Perform Local Tracking
Store Incoming Msgs

Check Msgs For Synch Prev
Send Synch Next

Process Msgs
Submit Requests

Receive Replies
Modify Tracker Data

Check Msgs For Synch Prev
Send Synch Next

Handle Requests
Wait for/Send Synch All

Begin Synch
Point

End Synch
Point
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Target ModelingTarget Modeling
• We use a fast blob tracker:

– Bounding box
– Bhattacharya coefficient:

– qz is density function of the feature z representing the color of 
the target model

– pz(y) is the feature distribution of the FG blob centered at y

• All the usual problems:
– Multiple views and models
– Target merging and splitting

• We don’t build target merge/split into the protocol---
handled camera-by-camera
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The synch_rate is 1 frame

Video: Indoor Setup 1Video: Indoor Setup 1
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The synch_rate is 30 frames

Video: Indoor Setup 2Video: Indoor Setup 2
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The synch_rate is 60 frames

Video: Indoor Setup 3Video: Indoor Setup 3
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Spatial CalibrationSpatial Calibration

• Need to find camera position/orientation, 
possibly camera internal parameters

• All the usual multi-camera problems
• Algorithm must work without centralized 

server
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Calibration using Belief PropagationCalibration using Belief Propagation

• Devarajan and Radke: Leverage 
dependencies introduced by camera 
geometries

• Belief propagation is used in sensor 
networks
– Camera calibration introduces similarity 

transforms that make the problem more 
difficult
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Vision GraphVision Graph
• Nodes are connected if they 

share enough visible points
– Stable accurate estimate of 

epipolar geometry can be 
obtained

• N(i): neighbors of node i
• Constructing initial estimate:

– Estimate reconstruction from 
nucleus of i, N(i)

– Use RANSAC to reject 
outliers

– Adjust
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Basic Belief PropagationBasic Belief Propagation

• Each node updates its belief using messages from 
neighbors

• Update equations:
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Camera CalibrationCamera Calibration

• Joint density of camera position based on camera 
observations can be factored:

• Two cameras have some variables Yi, Yj that must 
agree
– Enforce using binary selector matrix C
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Update AlgorithmUpdate Algorithm

• Belief function:
• Compatibility potential:

• Belief update computation:
– Can be calculated iteratively in pairwise computations
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Temporal CalibrationTemporal Calibration

• Server-based systems are 
easy to synchronize:
– Gen-lock
– Cabling

• Peer-to-peer systems 
cannot be implicitly 
synchronized
– Analog synchronization is 

too expensive

server
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Timing Synchronization AlgorithmsTiming Synchronization Algorithms

• Lamport:
– Read clock value of nodes periodically
– Use average clock difference to adjust clock

• Lundelius:
– Nodes broadcast timestamp at expected time
– Nodes gather timestamp messages
– Use medium value to adjust clock

• Halpern:
– Nodes broadcast timestamp at expected time
– Nodes update its clock when a faster timestamp is received
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System ConfigurationSystem Configuration

• Lin et al: Network configuration:

– Configuration 1: 6 cameras in a single network
– Configuration 2 & 3: 10 cameras distributed in 

several networks

CVPR 2007 Short Course 30Distributed Vision Processing in Smart Camera Networks

Lamport's Algorithm (cfg.2)
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Lamport's Algorithm (cfg.3)
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Simulation ResultsSimulation Results
• Lamport’s algorithm: 

– The 10 nodes can only be synchronized within 300 ms
– Sub-networks can converge if initial difference is small
– Clock value of routers might oscillate between average values of

neighboring sub-networks
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Simulation ResultsSimulation Results
• Synchronization requirements

– Distributed gesture recognition system
• Current: 15.23 frames/sec @ Pentium III 1.0 GHz
• Goal: 30 frames/sec

– All three algorithms can achieve 15 frames/sec requirement in 
configuration 1

– Only Halpern’s algorithm fulfills the requirements in configuration 2 and 3
– Lamport’s and Lundelius’ algorithms need O(n2) messages in each round
– Halpern’s algorithm need amortized O(n) messages in each round
– Halpern’s algorithm advantages:

• Simplest in computation
• Most precise synchronization
• Fewer message exchanges
• Timestamps can be hidden within data messages
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ImageImage--based Temporal Calibrationbased Temporal Calibration

• Velipasalar: Correlate images sequences to find 
synchronizing offset
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Temporal Synchronization AlgorithmTemporal Synchronization Algorithm

• Each camera calculates position of its target(s) 
in other camera’s field-of-view

• Each camera finds a possible match in the frame 
sequence of other camera and identifies initial 
frame offset between cameras

• Perform a confidence check for each track pair
• Refine the match
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Confidence Check and RefinementConfidence Check and Refinement

• Not all target identifications will be equally good
– Confidence check weights match by confidence value

• After confidence check, frame offset is refined 
using local search
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Results without Final Refinement StepResults without Final Refinement Step
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