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Abstract

Simultaneous coverage represents an important problem
for various drone applications where objects must be cov-
ered by simultaneously captured images from different view-
points that may impose additional requirements on geome-
try, resolution and depth error. In order to solve simulta-
neous coverage the drones must plan their movements such
that the required viewpoints are concurrently reached while
minimizing the overall mission time and satisfying the qual-
ity requirements. In this paper, we introduce a market-based
and QoS-aware coordination method for assigning drones
to viewpoints during the mission. In our simulation study,
we compare three algorithm variants based on the achieved
mission time and the required communication effort.
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1. Introduction

Drones with onboard cameras are often used for surveil-
lance, search-and-rescue, inspection and entertainment [8].
In these applications, the drones move in the environment,
capture and pre-process multimedia data at a specified qual-
ity and transfer it to the base station. In this paper, we
focus on simultaneous coverage where all visible surfaces
of a given environment must be covered by simultaneously
captured images from at least k different viewpoints [10].
Various quality of service (QoS) parameters such as target
resolution, depth error and multi-drone geometry have an
impact on number and positions of the required viewpoints.
In order to solve simultaneous coverage (cp. Figure 1), we
first need to compute all camera viewpoints (or constella-
tions), i.e., the positions and orientations of k cameras sat-
isfying the QoS parameters, and then to assign drones to
constellations such that all constellations are visited while
minimizing mission time and resource usage.

In our previous work [10] we introduced the concept of
simultaneous coverage and presented a leader-follower path
planner for a fixed team of two drones. In this paper we
focus on how to dynamically coordinate larger teams of
drones. The contribution includes (i) a method for com-
puting the constellations based on QoS parameters, (ii) a
market-based and decentralized assignment of drones to
constellations and (iii) a simulation study comparing mis-
sion time and communication effort of three allocation vari-
ants. Our approach dynamically assigns the drones, plans
collision-free paths along the constellations and is resource-
efficient which is important for various multimedia applica-
tions.

Market-based coordination is a well studied approach for
multi-robot systems [2, 12, 7, 4, 6]. Similarly, multi-camera
constellations and corresponding quality parameters have
been investigated in the computer vision community (e.g.
[9, 3]). More recently, drone networks have been deployed
in various applications including multimedia distribution
and their communication requirements and design aspects
have been studied (e.g. [1, 5, 11]). The key novelty of this
work lies in the adoption and evaluation of market-based
coordination for simultaneous coverage.

The paper is organized as follows: Section 2 briefly
introduces simultaneous coverage. We present our meth-
ods for constellation computation, task assignment and path
planning in Section 3 and discuss the simulation results in
Section 4. Section 5 concludes the paper with a summary
and outlook for future work.

2. Problem Definition

Figure 1 depicts the simultaneous coverage problem of
partially unknown environments where the drones can take
on different roles during the mission. Drones explore the
environment for objects of interests. Once a drone has de-
tected an object, it identifies the relevant surfaces, computes
the required constellations for the coverage and initiates the



Figure 1. Simultaneous coverage of a partly
unknown environment with multiple drones.
Drones explore the environment for objects
of interest, detect relevant surfaces and com-
pute the required constellations as well as
cover each surface simultaneously.

assignment of k drones for the simultaneous coverage.
A set of m drones C = {c1, . . . , cm} explore and cover

the environment. The environment is specified by a set of
objects O = {o1, . . . , op} which can be known a priori or
detected during the mission. Each object oi is abstracted by
a set of visible surfaces Si = {si1, . . . , sij} which results
in the overall set of surfaces to be covered S = ∪pi=1Si,
with |S| = q. For each surface, a constellation of k drones
is computed satisfying QoS parameters such as target res-
olution δ, depth error and multi-drone geometry. The QoS
parameters have an effect on the number of constellations,
the aggregated amount of data to be transferred and conse-
quently on the overall mission time. In order to solve si-
multaneous coverage, k ≤ m drones must be assigned to
visit each constellation and simultaneously capture images
of the corresponding surface.

The key objective is to minimize the overall mission time
while satisfying all QoS parameters. The key steps for solv-
ing this problem include the computation of the correspond-
ing constellations for the surfaces that can be covered by in-
dividual drones, the assignment of drones to constellations
and the planning of the paths between constellations.

3. Methods

In the following, we present details of the three key steps
of our approach. For simplicity, we assume objects with
constant height and a common ground plane and can there-
fore transform the coverage problem to 2D environments
where each surface can be represented as a line segment.

Furthermore, k is fixed to 2 which represents the special
case of stereo coverage.

3.1. Constellation Computation

Constellation computation determines camera poses sat-
isfying the QoS parameter target resolution δ and various
camera parameters. We adopt a simple 1D camera model
[10] to estimate δ as a function of the sensor resolution r,
the lens aperture angle α and the distance to the surface d:

δ =
r

2 · d · tan(α2 )
. (1)

It is obvious that increasing δ results in a larger num-
ber of constellations since the camera (with fixed r) must
cover a smaller part of the surface (either by zooming in
or lowering the distance). If we assume a 50 % overlap
and a baseline b between two cameras, the maximum length
lmax of a line segment for a two-camera constellation can
be estimated as lmax = b = d · tan(α/2) [10]. Thus, larger
surfaces must be partitioned into segments with a maximum
length lmax.

An alternative is to cover larger surfaces with more than
two drones which is depicted in Figure 2 where n drones are
aligned in a constellation and the neighboring drones simul-
taneously cover different segments of the entire surface of
length L. For this advanced constellation, the drones must
be placed such that their field of views can cover three line
segments of length ln (as compared to two of length lk for
simple constellations). The relation between the number of
partitions uk for the simple constellation and the advanced
constellation un is given as

uk
un

=
ln
lk

=
2

3
, (2)

which means that the advanced constellation requires more
partitions than the simple constellation if lmax < L. Given
the total length L, δ and r, we can compute the number of
drones needed to cover the whole surface simultaneously as

n =
3 · L · δ

r
+ 1. (3)

Advanced constellations impose position and orientation
constraints such as linear alignment and constant distances
among neighbors for n drones. However, the surface of
length L can be instantaneously covered with n constella-
tion points as compared to 2·k·(n−1)

3 for simple constella-
tions.

For the computation of the constellation points (i.e., the
camera poses) we adopt our previous approach [10] which
minimizes the relative angle and the depth error. The re-
sult of this optimization are constellation points with the
baseline parallel to the surface and cameras perpendicularly
orientated to it.



Figure 2. Advanced constellation for a surface
of length L > lmax with n drones.

3.2. Task Assignment

As constellations may be computed during the mission,
they must be dynamically assigned to available drones in an
efficient way. We deploy a market-based approach for the
assignment of drones to constellations due to their decen-
tralized approach and low computational effort. Figure 3
depicts the flow chart and communication of an auctioneer
drone and a bidder drone. Basically, the auctioneer initiates
the assignment process by broadcasting an auction message
to all idle drones which choose a specific point and respond
with a bid whose value is reciprocal to the flight distance
from the current position. After a predefined waiting time,
the auctioneer determines the winning bidders and sends out
the corresponding auction messages to all bidders. The win-
ner drones plan and move along the paths to the constella-
tion points, potentially waiting for other drones, and cap-
ture the image. We distinguish between object-based and
surface-based auction approaches.

Object-based auctioning In this variant, the auction-
eer assigns k drones to object oi and thus the same k drones
cover all of the object’s surfaces Si. The auctioneer includes
all constellations of oi in the auction initiation message.
The bidder drones compute their minimal aggregate flight
distance to the closest constellation point and bid with that
value. The flight distance is based on a collision-free path
planning and serves as input for the bid valuation. The auc-
tioneer then has to find k bids whose sum, plus the flight
distance along the collision-free path going through all k
closest constellation points, is minimal. The winning k
drones select the starting constellation as the point which
has the lowest accumulated distance from their current po-
sitions. The drones cover then all constellations of oi along
the shortest path. We label object-based auctioning as OB.

Surface-based auctioning In this variant, the auction-
eer initiates an auction for each surface independently. The

Figure 3. Flow chart for auctioning constel-
lations among drones where the detecting
drone starts auctioning (left) and idle drones
(right) compete for a constellation.

bidder drones respond with their flight distance from their
current location to the closest constellation point. This vari-
ant also supports simple and advanced constellations com-
posed of k and n constellation points, respectively. Thus,
the auction mechanism only differs in the number of con-
stellation points and required bids. We label the variants of
surface-based auctioning as k-SB and n-SB, respectively.

3.3. Path Planning

For our problem, path planning is concerned with the
movement of drones from their current position to con-
stellation points avoiding collisions with objects and other
drones. We use a simple heuristic based on linear move-
ment segments because such movements naturally match
the waypoint navigation of drones and can be computed in
a resource-efficient way.

In order to identify a path from one constellation point to
another, we check for intersections of the linear path with
objects. Since objects are abstracted by line segments we
can focus on the corner points of the objects, i.e., we check
whether all corner points of an object lie on the same side
of the linear path. If this condition is not true, the linear
path causes a collision with the object and a bypass point
is introduced. Thus, we insert a new waypoint at a given



minimum distance from the ”colliding” corner point and
compute the new path via this bypass point. A direction of
the bypass point is important as it affects the accumulated
distance along the new path. Potentially multiple bypass
points must be inserted if there are more ”colliding” corner
points. In order to avoid collisions among drones, a given
minimum distance from the corner is increased for each ad-
ditional drone in a constellation by the minimum allowed
distance between drones.

4. Results

We evaluate our drone coordination methods in a simu-
lation study where we measure the mission time and com-
munication effort with varying number of drones and target
resolution. We use two scenarios as input for our experi-
ments: Scenario A is composed of 3 objects placed on an
environment of 200m×200m, and scenario B is composed
of 10 objects placed on a 800m× 800m environment, re-
spectively. The objects are randomly placed, have a convex
shape and are composed of 3 or 4 line segments. Drones
start from random initial positions in the environment.

For each experiment, we vary the number of drones
(m ∈ 4, 6, 8, 10, 12) and the target resolution δ from 1
px/m to 251 px/m with a step of 10. We measure the
overall mission time and the communication effort in terms
of transferred auction messages, and aggregated amount of
location messages and image data. Each experiment is per-
formed 100 times and average values are depicted in the
performance graphs.

The following parameters have been set in our simula-
tion environment: The auctioneer waiting time for bids is
set to 1 s. If an insufficient number of bids is received, a re-
auctioning is initiated. Drone speed is set to 14 m/s. Cover
time is fixed to 3 s and accounts for deceleration and sta-
bilization of the drone at the new constellation point. The
camera parameters are set as: f = 4.7 mm, α = 60◦ and
r = 1920 px (full HD sensor). Both minimum distance be-
tween drones and a distance to objects is set to 5 m. The
image size is given as 6.5 MB and derived from the HD
sensor resolution. Auction and location messages are esti-
mated as 100 B. We perform experiments for each auction
method, and test n-SB with two settings for the maximum
size of advanced constellations: n = 0.5 · m and n = m,
respectively. OB and k-SB assume a fixed k = 2 for all
objects’ surfaces.

4.1. Mission time

Figure 4 (left) depicts the overall mission time as a func-
tion of δ and m for both scenarios. In general, the mission
time increases with δ due to the larger number of constel-
lations. The three different auction methods result in dif-

ferent mission times, in particular for a small m. For OB
auctions a fixed team of k drones is assigned for each ob-
ject. If drones cannot be perfectly assigned to objects, the
remaining drones need to wait until the assigned drones be-
come available again. In such cases (e.g. in scenario A with
4 drones), the mission time of OB is significantly larger due
to the waiting time of some drones.1 For the k-SB method,
a surface has to wait to be covered until the fastest k drones
complete the coverage of the other surface. However, this
waiting time is shorter than the OB waiting time.

Since n-SB aims to cover large surfaces with advanced
constellations of size n, there is a limit on the achievable
target resolution δmax for a given length L and n. If the
specified δ is larger than δmax, then n-SB computes ad-
vanced constellations with δmax and covers the large sur-
faces with that target resolution. For that reason, the graph
for m = 4 remains almost constant.

The performance of OB improves wrt. the other ap-
proaches with increasing m. There is a threshold at m =
p · k because this is the maximum number of drones which
can simultaneously cover p objects. Increasing the number
of drones further does not reduce the mission time of OB.

4.2. Communication effort

Data communication among drones and the base station
can be grouped into (i) auction messages (i.e., items an-
nounced by an auctioneer, drone bids and auction results),
(ii) location messages (i.e., current and future waypoints
among the assigned drones), and (iii) imagery of the cov-
ered surfaces transferred to the base station.

Figure 4 (center) compares the different auction mecha-
nisms in terms of exchanged auction messages. The graphs
clearly indicate two settings with long waiting times and
hence a high number of auction (re-)initiations. First, OB
requires many re-initiations for a low m because too few
drones are available to cover an object and they must wait
for other drones. Second, n-SB requires many re-initations
for a larger m because large surfaces may require a large m
for advanced constellations and the remaining drones may
need to wait until the large surface has been covered.

Figure 4 (right) plots the overall amount of location mes-
sages among the m drones. These messages are exchanged
between k or n drones when being assigned to the same
constellation. They exchange their current location with the
waypoint they are heading to. The number of messages de-
pends only on δ for OB and k-SB. For n-SB the number
of messages increases with m because there is the possibil-
ity of increasing the achievable resolution δmax and con-

1For the same reason, the mission time and the number of auctions of
OB for m = 4 in scenario B is approximately three times longer than
for m = 6. We have removed these graphs in the chart’s bottom left
and bottom center to avoid rescaling of the vertical axis and thus maintain
readability.



Figure 4. Results for scenario A (top) and scenario B (bottom).

sequentially the number of constellation points. There is a
fast increase for advanced constellations, and it surpasses
the simple one due to the fact that advanced constellations
require more partitions of the surface to satisfy δ than the
simple constellations as shown in Equ. (2). As each par-
tition has to be covered by 2 drones in both variants, and
these drones need to exchange their locations when heading
to cover that partition, the number of location messages is
larger for advanced constellations.

Naturally, the transfer of the captured images has the
strongest impact on the communication load. Figure 5
depicts the overall amount of image data captured by all
drones and transferred to the base station. The over-
all amount depends on the number of constellation points
which is determined by δ for OB and k-SB. For n-SB the
overall amount may be lower due to the lower achievable
target resolution δmax for a given n. If δ ≤ δmax for the n-
SB method, a larger amount of data is transferred, in com-
parison to k-SB, due to the same reason as for the loca-
tion messages: the more partitions of a surface to cover, the
more images to exchange.

4.3. Discussion

As our experiments have shown, the performance of our
auction methods significantly depends on the number of

Figure 5. Overall amount of image data for
scenario B.

drones. For low m, k-SB outperforms OB concerning mis-
sion time and auction messages. For m ≈ p · k, OB out-
performs k-SB because waiting time is avoided and auc-
tioning entire objects is more efficient than individual sur-
faces. Moreover, mission time and number of transferred
messages increase with larger δ due to increasing number
of constellations. Note that image data clearly dominates
the data transfer requirements since the data amount is or-
ders of magnitudes larger than for the other data types.



Figure 6. Average mission time and 97.5%
confidence intervals for OB, k-SB and two
variants of n-SB for scenario A. The colored
background indicates the limits of the achiev-
able target resolution δmax.

Figure 6 plots the average mission time of OB, k-SB and
two variants of n-SB for different target resolution δ for sce-
nario A with 12 drones. The vertical bars depict the 97.5%
confidence interval of the mission time for the specified δ.
The effect of n on the achievable δmax is represented by the
different background colors, i.e., 61 px/m for n-SB with
n = 6, 171 px/m for n-SB with n = 12, and 191 px/m
for OB and k-SB.

There is a tradeoff between mission time, achievable tar-
get resolution and required computation and communica-
tion effort. A hybrid approach could exploit this tradeoff by
changing the auction method based on the QoS parameters
and mission requirements.

5. Conclusion

We have presented a market-based and QoS-aware co-
ordination method for simultaneous coverage where drones
plan their movements such that the overall mission time is
minimized and quality requirements are satisfied. Our ap-
proach computes the drone constellations for each surface
and dynamically assigns drones to constellations by a sim-
ple decentralized auction mechanism. Drones move along
collision-free paths from constellation to constellation to si-
multaneously cover all objects. In a simulation study we
have compared three coordination methods based on the
achieved mission time, the required communication effort
and the achieved target resolution.

As future work, we will (i) investigate in hybrid meth-
ods able to adapt the auction mechanism, (ii) deploy the al-
gorithms on our drones and (iii) demonstrate simultaneous
coverage in an autonomous 3D reconstruction case study.
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