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Abstract—Multi-coverage (MC) represents an important
problem for various tasks of unmanned aerial vehicles (UAVs).
For the multi-coverage of a given environment, all visible sur-
faces must be covered by simultaneously captured images from
at least k different viewpoints where additional constraints
on resolution, geometry and error may be imposed. In this
paper we formulate the MC problem for robot missions and
propose a model-predictive control structure to navigate a
stereo-pair of UAVs in a leader-follower formation throughout
the mission. Our simulation study demonstrates that the UAVs
reach and maintain the formation with high spatial and
temporal accuracy.

Keywords—Multi-camera coverage; unmanned aerial vehi-
cles (UAV); motion planning; model predictive control; leader-
follower formation

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) with onboard cameras
are increasingly deployed in various applications including
surveying, search and rescue, inspection as well as video
production. In all these applications, the UAVs move (in
many cases autonomously) to capture imagery of sufficient
quality of the environment or objects of interest (e.g. [1]–
[3]). In this paper, we focus on UAV mission planning
and execution for multi-coverage (MC) which represents an
important problem for surveying, surveillance and recon-
struction tasks. For multi-coverage, all visible surfaces of
a given environment must be covered by simultaneously
captured images from at least k different viewpoints. In
order to solve the MC problem (cp. Figure 1), we first
need to compute all camera viewpoints (or constellations),
i.e., the position and orientation of k cameras satisfying
various constraints, and then to plan and execute the paths
for the UAVs such that all constellations are visited. A
prominent instance of the MC problem is stereo coverage
with flexible baselines where two UAVs simultaneously
cover the environment.

Our contribution is threefold. First, we introduce and
formulate the MC problem for robot missions, which is
distinct to the well-known problem of multi-robot coverage
(e.g., [4]) due to its requirement on simultaneous image
capturing. Second, we propose a method for computing
the constellations and planning the UAV mission for the
stereo case. Third, we realize a distributed, model-predictive
controller for UAV motion execution and evaluate its perfor-

Fig. 1. Sketch of the MC problem. A team of UAVs autonomously flies
through the environment such that each constellation ci is visited and the
corresponding surface is covered by simultaneously captured images from
k UAVs.

mance for stereo coverage in a 3D simulation environment.
This paper complements our previous work on multi-UAV
systems1, networks [5], [6] and coordination [7], [8] with a
clear focus on path planning and motion control.

The remainder of the paper is organized as follows.
Section II discusses related work. Section III formulates
the MC problem and Section IV describes our methods
for constellation planning, path planing and control strategy
for the stereo coverage case. Section V summarizes our
simulation results and Section VI concludes this paper with
a discussion about future work.

II. RELATED WORK

There are a couple of publications available that suggest
to use multiple cameras to create stereo-pairs with differ-
ent baselines generated by lateral displacements. Gallup et
al. [9] present a multi-baseline, multi-resolution system that
selects the displacement parameters to maintain a constant
depth accuracy within the 3D reconstruction process. They
investigate the depth error caused by pixel quantization
and show, that selecting a proper baseline can significantly
improve the accuracy of depth estimates while keeping the

1http://uav.aau.at

http://uav.aau.at


computational effort low by reducing the resolution. Match-
ing performance is evaluated empirically and the algorithm
is only tested within triangulation angles where the matching
rate is sufficiently high. In 2005 Nakabo et al. [10] created
a variable baseline stereo vision system that operates in
real-time and uses two pan-tilt-cameras on linear sliders.
They investigate the accuracy of 3D position estimates by
considering the angular error caused by pixel quantization.

A set of stereo-camera parameters can also be interpreted
as a formation of two cameras. A key challenge for a practi-
cal implementation is the determination of the relative pose
of the cameras. This can be achieved with external position-
ing systems which imposes limitations on the applicability.
An alternative approach is based on vision with two main
techniques: In the first technique, one camera has a direct
line of sight to the other camera and uses a known calibration
pattern, markers or geometric properties for relative pose
estimation [11], [12]. The second technique exploits the
shared FoV of both cameras and uses matched keypoints
of the two images to determine the relative orientation and
direction of translation. This technique is also known from
uncalibrated stereo algorithms.

Additional sensors, however, are needed to recover the
scale factor. Achtelik et al. [13] fuse the vision results
with readings from the inertial measurement unit (IMU)
to compute a metric distance information. They include
the scale factor in the state vector and show that their
filter converges if there is sufficient relative acceleration.
However, such relative acceleration requirement poses a
limitation when aiming for a stable and synchronized for-
mation flight. Piasco et al. [14] follow a similar approach
but they recover the scale factor with the absolute altitude
information measured by sonar sensors. Montijano et al. [15]
use the IMU-readings to estimate roll and pitch, remove their
effects from the image and determine the third rotation angle
using a structure from motion approach. They show that their
distributed controller converges to the desired formation up
to scale.

To the best of our knowledge, this paper is the first work
focusing on motion planning and control of optimal multi-
coverage constellations for quad-copter UAVs.

III. PROBLEM DESCRIPTION

Figure 1 depicts the MC problem where the environment
is abstracted by simple cuboids. Thus, all visible surfaces of
the cuboids represent the overall coverage area. For each
surface, a constellation of k UAVs is computed satisfying
various constraints, e.g., on the pixel resolution, depth error
and UAV distances. In order to solve the MC problem, a
team of d ≥ k UAVs must visit all constellations where k
UAVs capture simultaneously images of the corresponding
surface.

We assume that each UAV has an onboard processing
and communication unit with sufficient performance and is
equipped with two cameras: a downward-facing camera that
is used for relative localization and a camera for capturing
the scene. Additionally, the UAVs are synchronized and are
able to measure the distances between them in metric units
(e.g., with onboard Ultra Wideband (UWB) modules). At
least one UAV is able to navigate within the environment.

Solving the MC problem can be partitioned into three
subproblems: First, all constellations must be determined
to satisfy the constraints. A constellation is defined as the
3D positions and orientations of k cameras to capture the
synchronous multi-view shot of a particular surface. Second,
routes for all UAVs must be planned such that all constel-
lations are visited and synchronized images are captured.
Third, a real-time control strategy must be executed to move
the UAVs from one constellation to the next.

A. Constellation Planning

The environment to be covered is represented by the
set of n ∈ N visible surfaces of abstracted cuboids S =
{s1, ..., sn} . The size of the surface which can be covered
by a single constellation is limited by the camera’s resolution
and aperture angle. In a preprocessing step, surfaces exceed-
ing this limit are partitioned into smaller parts resulting in
a new set S′ with m ≥ n surfaces S′ = {s′1, ..., s′m} .

For every surface s′i, a camera constellation ci must be
determined. Thus, we need to find m constellations C =
{c1, ..., cm} to cover the whole scene. Each constellation
contains k camera-poses, consequently ci =

{
pi1, ..., p

i
k

}
.

with pij representing the pose (i.e., position and orientation)
of camera j in constellation i.

B. Mission Planning

Mission planning is concerned with establishing the opti-
mal capturing sequence among all constellations. In general,
we must plan the routes of d ≥ k UAVs from their initial
positions such that each constellation is simultaneously
visited by k UAVs (and synchronized multi-view images can
be captured). The mission planning objective is to minimize
the UAV routes wrt. some criterion (e.g., the overall flight
time). The result of mission planning is thus a sequence of
poses pij for each UAV. In the general case d > k, not every
UAVs must visit every constellation.

C. Mission Execution

Mission execution is concerned about sequentially navi-
gating the UAVs to their desired constellation poses starting
from their initial positions. When a UAV reaches pose pij ,
it hovers there waiting for the remaining k − 1 UAVs of
constellation ci, performs the synchronized image capturing
and moves then to the next pose in its corresponding mission
plan. This is repeated until all camera constellations have
been visited. Thus, a real-time control strategy for navigating
the UAVs from one pose to the next pose location is required.
Low-level control for stabilization and tracking a velocity
or attitude signal is already well investigated [16], [17] as
well as the input-output decoupling for quad-copters [18]
and therefore not covered in this paper. Instead, we focus
on the design of a high-level controller that determines the
desired velocities and controls the orientation of heading of
the UAVs. Since external positioning systems such as GPS
are not always available or rather inaccurate, we explore
relative localization of the UAVs resulting in precise relative
poses of the constellation but less precise absolute poses due
to the uncertainty of the external positioning system.
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Fig. 2. 1D camera model and maximum angular error ∆ϕ(u) caused
by quantization, with u representing the position on the image plane (in
length units) and p the physical distance between two pixels. Focal length
f , aperture angle α and the resolution r are the camera parameters.

IV. METHODS

In the following we present our solution for the special
case where two UAVs are capturing stereo images of the
environment, i.e., d = k = 2. For the sake of simplicity,
we assume only vertical surfaces with constant height and a
common ground plane. We can therefore transform the MC
problem to 2D environments where each surface si can be
represented by a line segment.

A. Stereo Constellation Planning

We restrict the constellation planning to perpendicular
oriented cameras and parallel baselines wrt. the considered
surface. With the camera model depicted in Figure 2, we
compute the maximal length dmax of a captured surface still
satisfying the minimum target pixel resolution δ as

dmax =
r

2δ tan
(
α
2

) (1)

with α as the aperture angle and r the resolution of the
camera. Since we are only interested in the overlap of
both cameras’ FoV for stereo coverage, we can determine
the maximum length lmax of any line segment si and the
maximum length of the baseline bmax. With the assumption
of a 50 percent overlap, these limits are given as

lmax = bmax = dmax · tan
(α

2

)
(2)

and serve as simple condition for partitioning line segments
and transferring S to S′ in the preprocessing step.

For each s′i ∈ S′, a camera constellation ci is planned
by incorporating the camera model (Figure 2), the depth-
error model (Figure 3) and a cost function that reflects the
matching performance of the downward facing cameras that
are used for relative localization. A camera constellation
contains k = 2 poses, and each pose is specified by the
x and y coordinates as well as the orientation, which is the
rotation around the z-axis.

The simple 1D camera model has three parameters: the
focal length f , the aperture angle α and the resolution
r. Since the image sensor has a finite number of pixels,

Emax
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Fig. 3. Worst case depth error Emax defined as the difference between
longest and shortest distance estimates caused by the angular errors ∆ϕi.

quantization effects may lead to incorrect depth estimates.
The worst case angular error ∆ϕ(u) depends on the position
u and the maximum lateral error ∆umax on the image plane.
As depicted in Figure 2, ∆umax is defined as half of the
distance p between two pixels and can be calculated as

∆umax =
p

2
=
f · tan(α2 )

r
. (3)

This lateral error is constant over the whole image. The
angular error ∆ϕ(u) is then given by

∆ϕ(u) = arctan

(
u+ ∆umax

f

)
− arctan

(
u

f

)
. (4)

We compute the two camera poses, such that the cost
function shown in Equation (5) is minimized. Two poses
in 2D expose 6 degrees of freedom (two for the positions
and one for the orientation of each camera). With the per-
pendicular orientation and the parallel baseline constraint we
can reduce the constellation specification to three parameters
and thus reduce the complexity of the optimization task,
which is important for fast online planning. Each surface
is represented by a line that is defined by its start and end
point. We first transform the coordinate system such that the
start point lies in the origin and the line is parallel to the
positive x-axis. Thus, the constellation is given by x1, y1
and x2.

The next step is to compute the camera poses in the
transformed coordinates by performing the optimization that
minimizes the cost function

J(x1, y1, x2) = w1 · Jdepth + w2 · Jmatch(γ) (5)

where w1 and w2 are weight factors and Jdepth represents the
aggregated depth error. We implemented Jdepth as the mean
of the depth error calculated for a number of evenly spread
samples across the line. The cost term Jmatch depends on
the relative view angle γ of the downward facing cameras.
This angle is derived using the height and the distance
between the cameras. There are various publications that
evaluate the matching performance of different feature types
at various view-point conditions. Based on the results of [19]
(Table 6.3) we fit a function
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Fig. 4. Graph depicting the measured matching performance (blue crosses),
the identified function Pm(γ) as given in Equation (6) (blue dashed line)
and the cost function Jmatch(γ) as given in Equation (7) (red line) at
different view angles. The parameters are chosen as a = 1.576 and b =
−0.07507.

Pm(γ) = a · e(b|γ|) (6)

by identifying the parameters a and b that describe matching
performance Pm in terms of the view-angle γ (see Figure 4).
Since the sign of the angle is not relevant, the absolute value
is taken. The cost-term is then defined as the inverse of this
function shifted down, so that Jmatch(0) = 0 yields. This
means that a relative view angle of 0◦, consequently two
identical images, does not result in any costs:

Jmatch(γ) =
1

a
·
(
e−b|γ| − 1

)
(7)

Additionally, the solution of the optimization process is
constrained since we have bounds on the baseline and the
capturing distance and the whole line must be visible in both
camera images. The final camera poses are determined by
applying the inverse coordinate transformation to the camera
positions determined by the optimization and the rotations
are computed by adding the fixed 90◦ to the angle of this
transformation (see Figure 5).

B. Path Planning

Once the camera planning is completed for all s′i, a set
C of all constellations is generated. In our special case with
d = k all UAVs have to participate to capture a multi-view
shot, thus the planning process simplifies from looking for
individual routes to finding a common capturing sequence
defined as

C ′ = (c′1, ..., c
′
m) (8)

which represents a sequence of all ci ∈ C satisfying the
overall flight time objective.

With the known initial positions of the UAVs, a modified
version of the classic Travelling Salesman Problem (TSP)
can be used to solve this task. The starting node is fixed as
the initial positions of the UAVs and the mission is com-
pleted after visiting all desired constellations. Additionally,
the pairwise distance is specified as the longer route to get
both UAVs from one constellation to the next.

Fig. 5. Camera constellation computation. (1) a coordinate transformation
is applied, such that the line starts in the origin and lies on the positive x-
axis. (2) an optimization problem is solved to determine the camera poses
in transformed coordinates. (3) the inverse transformation is applied.

C. Control Strategy

The set of reference poses can also be seen as a set of
formations, with a fixed position and orientation for one
camera, and corresponding relative poses for the others.
So, instead of treating each team member as an individual
UAV that tracks a given trajectory, the problem can be
reformulated as a formation flight problem: The team holds
a given formation specified by the capturing constellation.
Once the capturing process is finished for the actual surface,
the UAVs move together to the next constellation and adjust
their formation to the new one.

We apply a distributed control structure based on the
leader-follower concept that uses model predictive control
(MPC) techniques. We assume that the leader knows its
absolute pose in the scene and the follower can determine its
relative pose using the overlapping FoV of the downward-
facing cameras and the measured distance (see Figure 6).
The absolute pose of the follower is then given as the
sum of these two poses. It is important to mention, that
a certain amount of overlapping FoV is necessary for the
visual relative localization. Inherent to its system design, a
quad-rotor has to tilt or pan in order to generate forces for
lateral acceleration or deceleration. Consequently, the poses
of the mounted cameras vary which could result in loosing
the overlap. It is therefore very important, that all formation
members move synchronously. In our approach, the follower
uses the leader’s predicted trajectory to pro-actively set the
control commands in order to achieve a synchronous motion.
The MPC controller determines the control input based on
optimization, therefore a stable formation is possible. In
contrast, the output of a conventional controller, such as
a PID-controller, is a function of the control error which
means, that an error in the formation must occur, before the
follower is able to react.

1) Model: Our MPC controller acts as a high-level
controller, that steers the UAVs by determining the desired
velocities. For the modelling we consider the whole quad-
copter system as a block that tracks a given velocity signal,
consequently it has a reference velocity as input. We assume
that the UAV can localize itself, thus it has a measured
position as output. We incorporate the dynamic response



Fig. 6. Basic idea for relative localization: The overlapping FoV of
the downward-looking cameras is used to determine the relative pose of
the follower with respect to the leader up to a scale factor (e.g. with
the 5-point algorithm). The absolute distance information is then used
to recover the scale. We assume that this distance can be measure with
ultra wideband technology (UWB). This information combined with the
predicted trajectory of the leader is used to determine the follower’s control
commands. The forward-facing (red) cameras are used to capture the multi-
view shots of the scene.

of the UAV to the reference velocities by modelling it as a
decoupled linear time invariant (LTI) system. A comparison
with the detailed non-linear model, that includes the non-
linear state equations and motor-, attitude- and velocity-
control, shows that a LTI-model of order three with con-
straints on the input signal is sufficient to approximate the
system behavior in one coordinate direction. A model of the
form

ẋx =

[
0 1 0
0 0 1
a1 a2 a3

]
xx +

[
0
0
b3

]
ux

yx = [1 0 0]xx

(9)

is identified with ux representing the reference velocity in x-
direction as input, the position x, velocity ẋ and acceleration
ẍ as state variables, consequently ẋx = [x ẋ ẍ]

T , and
the measured position x as output. While many approaches
restrict their state vector to position and velocity, our in-
vestigations showed, that this is not sufficient to cover the
systems dynamics with sufficient precision. Therefore, the
acceleration is added as additional state, which results in
also modelling the jerk of the system. The height is assumed
to be constant, thus the z-coordinate is not considered in
the model. Further, to keep the MPC-problem linear we do
not consider rotations at this point. The overall model is
composed of the two sub-models of the x and y coordinates

Fig. 7. Overview of our control structure with the target position for the
leader and the relative position of the follower, specified desired formation,
as inputs. The reference input for the leader MPC controller is generated
by the ”trajectory generation” block, whereas the reference trajectory of the
follower is generated by the shifted predicted trajectory of the leader. The
relative pose (computed by the 5-point algorithm [20] and the measured
distance) is combined with the absolute pose of the leader to determine the
follower pose. The control inputs determined by the MPC controller are the
desired velocities in x and y direction of the UAV. To control the height
and orientation of heading the provided controllers of the non-linear UAV
model from [21] are used.

and can be given as

ẋ =

[
Ax 0
0 Ay

]
x +

[
bx 0
0 by

]
u

y =

[
cTx 0
0 cTy

]
x

(10)

with x = [xx xy]
T , u = [ux uy]

T and y = [yx yy]
T .

2) Control Structure: As shown in Figure 7, the target
position for the leader UAV and the relative pose for the
follower are the inputs to the control structure. Based on
the leader’s current position a discrete reference trajectory
is computed specifying the next h desired positions of
the leader, where h is the prediction horizon of the MPC
controller. Within this trajectory generation we follow a very
simple approach by defining a straight line between start
and destination as the ideal path. Note that more complex
trajectory generation concepts may be applied to generate
the reference trajectory. The desired velocity of the leader
defines the distance between the points of the reference
trajectory.

As already mentioned, we aim for a stable and synchro-
nized formation flight. Therefore, the reference trajectory
of the follower is determined by shifting the predicted
trajectory of the leader by the desired relative position. Our
approach uses the downward facing cameras to compute
the relative pose up to scale with feature based methods
(e.g. with the 5-point algorithm [20]). The scale factor is
recovered with the distance information provided by the
UWB modules. In Figure 7, this is represented with the
”relative pose computation” block. The absolute pose of
the follower is then determined as the sum of the leader’s
absolute and the follower’s relative pose.

Each controller uses its measured 2D-position and its
reference trajectory that includes the next h desired positions
to determine the control inputs of the UAV, which are



the reference velocities in x and y-direction. These control
inputs are determined in global coordinates, thus a rotation
must be applied to translate them to the UAV’s body frame.
The angle of rotation is given by the actual facing direction
of the UAV. This rotation is not included in the prediction
model, but as our results show, errors are only introduced
when the UAVs are rotating. Constant angles of rotation do
not cause any problems.

V. RESULTS

We evaluate our proposed solution for the MC problem
with a simulation study. We have therefore implemented
the three parts of our approach in Matlab/Simulink. Con-
stellation planning is implemented as a constrained non-
linear optimization task. Mission planning is based on an
online available Matlab function, called ”Fixed Start Open
Traveling Salesman Problem - Genetic Algorithm” [22]. For
the model identification and flight simulation we use the
open source Simulink model of a quad-copter [21] which
includes the non-linear state equations, motor dynamics and
control as well as attitude and velocity controllers. It also
contains inputs for external disturbances that can be used
to evaluate the robustness of the controllers. The Matlab
toolbox for predictive control is exploited to implement our
MPC controllers. Within the MPC controllers, the identified
linear model is used and the constraints for the control
inputs are set. Based on a simple demonstrative example we
perform the constellation and mission planning and simulate
the flights of both UAVs.

A. Constellation and Mission Planning

Figure 8 depicts the results of constellation and mission
planning on a small scenario composed by two rectangles
with a total of 8 line segments. We specified the camera
parameters as a focal length of f = 4.7 mm, an aperture
angle of α = 60◦ and a resolution of r = 1024 pixels. With
the choice of a minimum resolution of δ = 25 pixels per
meter on the target we get an upper bound on the capturing
distance with dmax = 35.4 m and the limit of lmax = bmax =
20.5 m. As no line of the model exceeds this limit, no further
partitioning was required. Planning was conducted for m =
8 constellations and achieved a path for the leader with an
overall length of 464 m.

B. Modelling and Flight Simulation

Figure 9 shows a comparison of the linear prediction
model with the detailed non-linear model for one axis.
Further simulations show, that the accuracy of this model
is sufficient, since both UAVs come up with a very stable
formation flight, once they took the desired formation. In ad-
vance, using a linear model allows a higher frame-rate of the
MPC because of lower computational complexity compared
to non-linear MPCs. This is important for implementation
on real UAVs with limited resources.

The results of the simulated mission execution with a
total flight time of 115 seconds are shown in Figure 10.
The UAVs start at their initial positions. The inputs, given
by the target position of the leader and the desired relative
position of the follower, as well as the rotations of both
UAVs, are defined by the capturing constellations. They start

Fig. 8. Results of the planning process. Input: The given scene abstraction
(red) and the initial positions of the UAVs (black crosses). Output: The
constellations (blue) and the planned path of the leader (cyan line)

with the values of the first capturing constellation c′1 and
are kept constant until the multi-view image is is captured.
We assume that the capturing is complete when both, the
positional error of both UAVs are below Tpos = 0.2 m and
their velocities are less than Tvel = 0.1 m/s for at least
2 seconds. After these conditions have been fulfilled, the
reference signals jump to the values of the next constellation.
This process is repeated for all c′i ∈ C ′ with i = 1, . . . ,m.
The reference signal for the height is kept at a constant value
during the whole simulation. Figure 10 and 11 show that all
control errors vanish when the UAVs approach the constel-
lation. This means that the leader UAV accurately reaches
the intended poses and the desired formation is taken by
the follower. In Figure 12 the temporal evolution of the 2D
positions is shown. It can be seen, that the desired formation
is taken while moving to the next target. However, significant
errors are imposed immediately after the reference values are
set to the next constellation. The UAVs start with a rotation
resulting in poor tracking performance of the leader until the
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Fig. 9. Response of the linear (dashed red line) and the nonlinear (blue
line) prediction model to a varying velocity reference input. Velocity and
acceleration are limited by 5 m/s and 1.5 m/s2, respectively.



Fig. 10. Performance of the MPC controller during the overall mission.
The upper two plots show the x and y positions of the leader (blue solid)
and the follower (dashed red) UAVs whereas the dotted lines represent the
reference values. The third plot depicts the heights of the UAVs which
have been set to 50 m. Deviations in the height tracking are caused by
uncompensated coupling effects whenever a UAV changes its pan or tilt
angle. The fourth plot shows the orientations of leader and follower.

reference orientation of heading is reached. This behavior is
a consequence of our linear prediction model which does
not cover UAV rotations. A further consequence of the
rotation maneuver is that the movement of the follower
looses synchronicity. However, once the formation error has
vanished, synchronicity is maintained again.

VI. CONCLUSION

In this paper, we introduced the multi-coverage problem
and presented a distributed model-predictive controller for
the special case of flexible stereo coverage. Our approach
computes the required camera poses wrt. a given depth error
model and a cost-function that takes the relative view angle
of the downward facing cameras into account. Our MPC
control structure achieves accurate relative positioning and a
stable formation flight when the UAVs are approaching their
constellation poses which represent important phases of the
mission. However, synchronicity and formation deteriorate
immediately after the next constellation poses are set.

Smooth formation transitions are one strategy to com-
pensate this behaviour and would result in a sufficient
FOV overlap of the downward facing cameras at any time
throughout the mission. In our future work we extend the
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Fig. 11. Formation error: The first and second plots show the formation
error in x and y direction, respectively. The third plot shows the absolute
formation error, which is the Euclidean distance between the actual and
reference position of the follower in the xy-plane.

planning into 3D and implement the system on real UAVs
to conduct real-world experiments.
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Fig. 12. Plot of the positions on the xy-plane: The plot shows the 2D
position of the leader (blue), the follower (dashed red) and the reference
input of the followers MPC controller (dotted red). The results show
that whenever the reference values jump to those of the next camera
constellation, there is an error in the follower’s position which converges
and the UAVs take the desired formation while moving towards their target.
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