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ABSTRACT
Crowd surveillance will play a fundamental role in the coming gen-
eration of video surveillance systems, in particular for improving
public safety and security. However, traditional camera networks
are mostly not able to closely survey the entire monitoring area due
to limitations in coverage, resolution and analytics performance.
A smart camera network, on the other hand, o�ers the ability to
recon�gure the sensing infrastructure by incorporating active de-
vices such as pan-tilt-zoom (PTZ) cameras and UAV-based cameras,
which enable the adaptation of coverage and target resolution over
time. �is paper proposes a novel decentralized approach for dy-
namic network recon�guration, where cameras locally control their
PTZ parameters and position, to optimally cover the entire scene.
For crowded scenes, cameras must deal with a trade-o� among
global coverage and target resolution to e�ectively perform crowd
analysis. We evaluate our approach in a simulated environment
surveyed with �xed, PTZ, and UAV-based cameras.
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1 INTRODUCTION
Surveillance of crowded scenes is a key issue for public safety in
indoor and outdoor environments. Various factors in�uence the
development of a critical situation of crowds, hence a camera net-
work must be able to capture local events as well as guarantee a
global coverage of the whole area. Covering the entire monitoring
area while maintaining a su�cient resolution of the (moving) indi-
viduals might be challenging with �xed cameras. A costly camera
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infrastructure is necessary to provide a su�cient target resolution
in every part of the monitoring area to perform common tasks such
as person identi�cation. Consequently, video footage of poten-
tially empty parts would also be captured with such static camera
network.

An alternative approach is to deploy recon�gurable cameras,
which can dynamically adapt their �eld of view (FoV), resolution
and position. In this case, the goal is to optimize coverage and
target resolution depending on the current state of the crowded
scene. Such camera networks aim to focus the a�ention on critical
areas of the crowd, but ensuring an acceptable level of a�ention
also on less critical areas. In this paper, we propose a novel network
control approach to explore the trade-o� between target resolution
and coverage in heterogeneous networks consisting of �xed, PTZ,
and UAV-based cameras. In our approach, we model the crowd
scene and the camera network in a simulation environment, we
estimate the state of the crowd by merging the contributions of
the individual cameras’ FOVs and we let cameras locally decide on
their next PTZ or position parameters.

Our contribution can be summarized as (1) a policy to trade-o�
between global coverage and crowd coverage, (2) a new metric to
evaluate the performances of the surveillance task, (3) a framework
to track the crowd �ow based on the coverage maps, and (4) a
3D simulator of crowd behaviors based on [4] and heterogeneous
camera networks.1

�e remainder of this paper is organized as follows: Section 2
brie�y discusses related work. Section 3 describes the key compo-
nents of the proposed approach along with the evaluation metric.
Section 4 presents the results of our simulation study, and Section 5
provides some concluding remarks together with a discussion about
potential future work.

2 RELATEDWORK
Automated video surveillance systems have been studied with the
goal of reducing the human intervention while operating a control
room [3, 11, 16]. In such frameworks, cameras need to be aware of
the network con�guration sharing the necessary information to
improve events capturing and global coverage of the scene [9, 10,
13]. Due to the dynamic nature of the events and the corresponding
need for recon�guring the camera network layout, research in the
�eld has to deal with a limited amount of annotated data. �is also
makes each event unique and di�cult to reproduce.

Relying on virtual environments and simulation tools can help
to partially address these issues. Virtualization has been widely
1Simulator available at h�ps://github.com/nick1392/HeterogenousCameraNetwork

https://github.com/nick1392/HeterogenousCameraNetwork
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adopted in research, both in the community of camera networks [12,
17] and crowd analysis [6].

Pan, tilt and zoom (PTZ) cameras have been deployed to survey
crowded scenes [1, 12, 17]. PTZ cameras can be recon�gured to
increase coverage of certain areas, either by progressively scanning
the environment, or zooming in to speci�c locations in presence of
events of interest. In a cooperative camera network, PTZ cameras
can be e�ectively used to track targets of interest [1, 2, 7, 14].

Unmanned Aerial Vehicles (UAVs), or drones, have been adopted
for di�erent services and purposes, both in civil and military ap-
plications including environmental pollution monitoring, agricul-
ture monitoring, and management of natural disaster rescue opera-
tions [8, 15, 18].

Yao et al. [19] identify the key features of a distributed network
for crowd surveillance, i.e., to (1) locate and re-identify a person
across the network, (2) track persons, (3) recognize and detect local
and global crowd behavior, (4) cluster and recognize actions, and
(5) detect abnormal behaviors. To achieve these goals, issues like
how to fuse information coming from multiple cameras perform-
ing crowd behavior analysis tasks, how to learn crowd behavior
pa�erns, and how to cover an area with particular focus on key
events, are among a variety of challenges to be tackled.

3 DYNAMIC CAMERA NETWORK
RECONFIGURATION

Our approach is based on a set of �xed, PTZ, and UAV-based cam-
eras with di�erent characteristics and capabilities for the surveil-
lance of crowded scenes. Multiple cameras provide diversity by
observing and sensing an area of interest from di�erent points of
view, which further increases the reliability of the sensed data. Our
framework for camera network recon�guration is suitable for both
static and dynamic scenarios.

In this section we introduce the key components of our proposal.
In particular, we �rst introduce the observation model for the en-
vironment, which describes the relation between the observation
and its con�dence. We then describe, how each type of camera is
modeled in the simulation environment, and formalize the recon�g-
uration objective. Next, we describe our recon�guration policy that
allows the network focus to be tuned in order to achieve a suitable
trade-o� between global coverage and crowd resolution.

3.1 Observation Model
�e region of interest C , which has to be surveyed is divided in a
uniform grid of I × J cells where the indexes i ∈ {1, 2, . . . , I −1} and
j ∈ {1, 2, . . . , J − 1} of each cell ci, j ∈ C represent the position of
the cell in the grid. We assume a scenario evolving at discrete time
steps t = 0, 1, 2, · · · , tend . At each time step, the network is able to
gather the observation over the scene to be monitored, process it,
and share it with the other camera nodes in order to plan the next
set of actions to be taken. For this purpose we de�ne

• an observations vector Oi, j , which represents the number
of pedestrians detected for each cell ci, j ∈ C;

• a spatial con�dence vector Si, j , which describes the con-
�dence of the measures for each cell ci, j ∈ C . �e value
only depends on the relative geometric position between
the observing camera and the observed cell;

• a time con�dence vector Lti, j , which depends on the time
passed since the cell has last been observed;

• an overall con�dence vector F ti, j , which depends on the
temporal and spatial con�dences.

�e observations vector is de�ned as

Oi, j = {o1,1,o1,2, · · · ,oi, j , · · · ,oI, J } (1)

�e value oi, j for each cell ci, j is given as

oi, j =

{ ped
pedmax

if ped ≤ pedmax

1 if ped > pedmax
(2)

where ped is the number of pedestrians detected within the cell by
a given camera, and pedmax is the maximum number of pedestrian
for a cell to be considered as crowded. Crowded cells should be
monitored with a higher resolution.

Occlusion of targets is one of the main challenges in crowded
scenarios. We assume that our camera network is able to robustly
detect a pedestrian when its head is captured with a resolution of
at least 24 × 24 pixels, in line with the smaller bound for common
face detection algorithms [5].

For each cell a spatial con�dence vector is de�ned as

Si, j = {s1,1, s1,2, · · · , si, j , · · · , sI, J } (3)

where the value 0 < si, j ≤ 1 is bounded, and decreases as the
distance between the observing camera and the cell of interest
ci, j increases. �e actual value of a cell depends on the type of
observing camera and is described in Section 3.2.

Similarly, a time con�dence vector is de�ned as

Li, j = {lt1,1, l
t
1,2, · · · , l

t
i, j , · · · , l

t
I, J }. (4)

Each value lti, j is de�ned as

lti, j =

1 −
t−t 0

i, j
TMAX

if t − t0
i, j ≤ TMAX

0 if t − t0
i, j > TMAX

(5)

where t0
i, j is the most recent time instant, in which cell ci, j was

observed, and TMAX represents the time instant, a�er which the
con�dence drops to zero. �e value lti, j decays over time if no new
observation oi, j on cell ci, j become available.

Given the spatial and temporal con�dence metrics, the overall
con�dence vector is de�ned as

F t = { f t1,1, f
t
1,2, · · · , f

t
i, j , · · · , f

t
I, J } (6)

with

f ti, j = si, j ∗ l
t
i, j . (7)

�us, for each cell ci, j we have an observationoi, j with an overall
con�dence f ti, j . �e con�dence value varies between 0 and 1, where
1 represents the highest possible con�dence. If a su�cient number
of cameras is available for covering all cells concurrently, the overall
con�dence vector is given as F I = {1, · · · , 1}.
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Figure 1: A �xed camera observes the environment without
varying the spatial con�dence for each cell at each time step.

(a)

Figure 2: At each time step, a PTZ camera can pan its FOV
in the range of 180° given a �xed initial position.

3.2 Camera Models
We brie�y describe the models adopted for the three di�erent cam-
era types: �xed cameras, PTZ cameras, and UAV-based cameras.
We assume that all �xed and PTZ cameras are mounted at a �xed
height, such that their spatial con�dence metric depends only on
the distance from the cell. All UAV-based cameras �y at a �xed
altitude.

3.2.1 Fixed Cameras. Fixed cameras (see Fig. 1) provide a con�-
dence matrix, which gradually decreases as the distance from the
camera increases. Being (x ,y) a point in the space at a distance d
from a �xed camera, the value of the spatial con�dence s(x ,y) is
de�ned as

s(x ,y) =
{
− 1
dmax

∗ d + 1 if d < dmax

0 if d ≥ dmax
(8)

with dmax being the distance from the camera, over which the
spatial con�dence is zero. �us, the con�dence value si, j of cell ci, j
is de�ned as

si, j = max{s(x ,y)}∀(x,y)∈ci, j . (9)

3.2.2 PTZ Cameras. PTZ cameras are modeled similarly to �xed
cameras, with the additional capability to dynamically change the
�eld of view (see Fig. 2).

3.2.3 UAV-based Cameras. For UAV-based cameras the FOV
projection on the ground plane is di�erent with respect to the
previous models, as shown in Fig. 3. �e spatial con�dence of point
(x ,y) at a distance d from the UAV is computed as

s(x ,y) =
{
− 1
duav

∗ d + 1 if d < duav

0 if d ≥ duav .
(10)

Figure 3: Example of the distribution of the spatial con�-
dence in the area surveyed by an UAV.

3.3 Recon�guration Objective
�e objective of the heterogeneous camera network is to guarantee
the coverage of the scene while focusing on more densely populated
areas. �e priority metric de�nes the importance of each cell to be
observed. A high value indicates that the cell is crowded or that we
have a low con�dence on its current state, thus requiring an action.

In order to formalize the recon�guration objective, a priority
vector P is de�ned as

P t = {pt1,1,p
t
1,2, · · · ,p

t
i, j , · · · ,p

t
I, J }. (11)

�e priority for each cell is de�ned as

pti, j = α ∗ o
t
i, j + (1 − α)(1 − f Ii, j ) (12)

where 0 ≤ α ≤ 1 represents a weighting factor to tune the con�gu-
ration and f Ii, j represents the pre-de�ned ideal con�dence for the
cell.

�e objective G of each camera, given its possible set of action,
is to minimize the distance between the con�dence vector and the
priority vector

G = min{| |F t+1 − P t | |} (13){
min{F t+1 − F I } if α = 0
min{F t+1 −Ot } if α = 1

(14)

Se�ing α = 1 causes the network to focus on observing more
densely populated areas with no incentive to explore unknown
cells. In contrast, α = 0 causes the network to focus on global
coverage only without distinguishing on the crowd density of the
cells.

3.4 Update Function
At each time step t , the network has knowledge about the current
observation vector Ot , the spatial con�dence vector St , the time
con�dence vector Lt , and the overall con�dence vector F t . In order
to progress to the next time step t + 1, an update function for these
vectors is required.

�e temporary spatial con�dence vector St+1
temp is determined

by the geometry of cameras at time t + 1. For each cell, the value
st+1
tempi, j

is the maximum spatial con�dence value of all cameras
observing the cell (i, j). Cells that are not covered by any camera
will have a spatial con�dence value of 0.

We estimate the time con�dence vector as follows. Lt+1
t ime is com-

puted by applying Eq. 5 to each element of Lt . Another temporary
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time con�dence vector Lt+1
new is computed se�ing to 1 the value of

all cells currently observed, and se�ing to 0 all other cells.
With the estimated vectors we compute two estimations of the

overall con�dence vector such that:

F t+1
t ime = St ∗ Lt+1

t ime (15)

F t+1
new = St+1

temp ∗ Lt+1
new (16)

�e new overall con�dence vector is then computed as

F t+1 = max{F t+1
new , F

t+1
t ime }∀(i, j). (17)

For each cell (i, j) in which f t+1
new > f t+1

t ime , we also need to
update the last time the cell has been observed t0(i, j) = t + 1, and
the observation vector ot (i, j).

3.5 Local Camera Decision
In our approach all the information vectors described in Section 3.1
are shared and known to all cameras. Each camera locally decides
its next position using a greedy approach to minimize the cost
de�ned in Eq. 13 in its neighborhood.

At each time step, each mobile, PTZ and UAV-mounted camera
selects a neighborhood that can be explored. �e UAV’s neighbor-
hood is de�ned as a square centered at the cell where the drone is
currently placed (see Fig. 3). �e PTZ neighborhood is a rectangle
which covers the space in front of the camera as shown in Fig. 2.

For each cell in the neighborhood, we center a windowW of size
Nw × Nw on each cell cW ∈W and we store in the cell the value

cW =
∑
| | f t+1

i, j − p
t
i, j | |. (18)

�e UAV will then move toward the cell in its neighborhood with
the largest cW , and the PTZ steers its FOV to be centered on that
cell. If two or more cells have the same value of cW , the camera
selects one of them randomly.

3.6 Evaluation Metrics
We de�ne the Global Coverage Metric (GCM) for evaluating the
network coverage capability as

GCM(t) =

∑
∀ci, j |f ti, j>д

1

I ∗ J (19)

with д being the threshold above which we consider the cell cov-
ered. We then average the results for the whole duration of the
observation as follows:

GCMavд =
∑

t=0, · · · ,tend

GCM(t)
t + 1 (20)

We de�ne the People Coverage Metric (PCM) for evaluating the
network capability to cover pedestrian in the scene as

PCMtot =

∑
∀person∈ci, j |f ti, j>p

1

totalPeople
(21)

withp being the threshold above which we consider the cell covered.

ID д and p α GCM PCM
1 0.2 0 12.4 % 17.4 %
2 0.2 0.5 14.3 % 20.5 %
3 0.2 1 10.4 % 13.5 %
4 0.01 0 42.9 % 47.6 %
5 0.01 0.5 30.3 % 33.1 %
6 0.01 1 22.9 % 28.2 %
7 0.01 0 43.1 % 45.6 %
8 0.01 0.5 28.7 % 54.4 %
9 0.01 1 26.1 % 61.2 %

Table 1: Simulation experiments. Legend: ID–experiment;
д,p–cell coverage thresholds; GCM–global coverage metric;
PCM–people coverage metric. Experiments 1-6 refer to a
uniformly distributed crowd, experiments 7-9 refer to a
crowd with directional motion properties.

4 EXPERIMENTAL RESULTS
For the experiments we de�ne an environment of size 60×60 meters.
�e scene is square-shaped exhibiting people passing by, cars, and
vegetation. Pedestrians can enter and exit the scene from any point
around the square. Each cell ci, j is a square of 1 × 1 meter. In this
environment 2 �xed cameras, 2 UAVs and 2 PTZs are positioned
as shown in Fig. 4(a). Sample images of the environment from a
PTZ and a UAV-based camera are shown in Figures 4(b) and 4(c),
respectively. For our experiments we simulate the movement of
400 pedestrians crossing the scene with the following parameters :

• Tmax = 3 seconds
• pedmax = 2
• dmax = 10 meters
• �xed and PTZ cameras height = 5 meters
• UAV cameras height = 7 meters

4.1 �antitative Results
In this section we present the quantitative results obtained with our
model in the simulated environment. �e goal is to evaluate the
capabilities of the system to survey a crowded scene using the met-
rics de�ned in Sec. 3.6. We run 9 di�erent simulation experiments
with varying values of д, p, and α .

�e values for д and p indicate how reliable the information is
about position in space and pedestrians, respectively. A threshold
of 0.2 indicates that our observation is at most 2.4 seconds old,
when taken with a spatial con�dence equal to 1. A threshold of
0.01 represents the cells and pedestrian about which we have a
minimum level of information.

As a reference if all 6 cameras remain �xed, they are able to
cover 6 % of the entire area with д = 0.2 and 12 % with д = 0.01. In
experiments (3) and (6), α is set to 1, causing our camera network
to focus only on observing pedestrians with no incentive to explore
new areas in the environment. In experiments (1) and (4), α is
set to 0 resulting in maximizing the coverage regardless of the
position of pedestrians. In experiments (2) and (5), α is set to 0.5
aiming for balancing coverage and pedestrian tracking in crowded
areas. We can observe that in experiments (1) and (4) we obtain
the lowest values of GCM, which is expected since we are focusing
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(a) (b) (c)

Figure 4: (a) Top view of the simulation environment including the camera positions. (b) Sample image from a UAV-based
camera. (c) Sample image from a PTZ camera.

on pedestrians. We also achieve the lowest scores in term of PCM
because cameras have no incentive in exploring new areas.

Experiments (7), (8), and (9) are conducted using a directional
crowd (Fig. 4(b)). When the network focuses only on observation
in (9), it obtains the best results in term of PCM and the worst
one in terms of global coverage GCM. As expected, we obtain the
best results in terms of coverage of the environment (GCM) in
experiments (3) and (6). Since the crowd is uniformly distributed
in the space, we also obtain the best results in terms of PCM. In
experiments (2) and (5), the network combines global coverage and
crowd monitoring, the system under performs compared with the
scenes where α = 0 and α = 1.

4.2 �alitative Results
In this section we present the qualitative results obtained with our
model in the simulated environment. �e goal is to demonstrate,
how our system is able to follow the crowd.

For this purposes, we simulate a single group of �ve pedestrians
crossing the scene from the bo�om le� to the top right as shown
in the sequence depicted in Fig. 5. �e UAV is able to closely follow
the pedestrians in the environment, scoring a PCM = 70.4 % and
GCM = 3.2 %, as shown in Fig. 6. Fig. 7 shows how observation,
priority and con�dences maps are updated over time in order to
guide the UAV in the tracking scenario.

5 CONCLUSION
In this paper we have presented a novel camera recon�guration ap-
proach for crowd monitoring. Our approach allows heterogeneous
camera networks to focus on high target resolution or on wide
coverage. Although based on simpli�ed assumptions for camera
modeling and control, our approach is able to trade-o� coverage
and resolution of the network in a resource-e�ective way. In future
research, network coordination will be improved relying on coop-
erative decision-making between cameras and assigning di�erent
polices (e.g., values of α ) to di�erent camera types.
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(a) (b) (c) (d) (e)

Figure 5: Image sequence of a group of pedestrian moving from the bottom le� of the environment (a) to the top right (c). �e
image is captured by a top view camera during the simulation to demonstrate the tracking behavior of our network.

(a) (b) (c) (d) (e)

Figure 6: Image sequence of a group of pedestrian moving from the bottom le� of the environment (a) to the top right (e)
captured by a UAV surveying the scene.

Scenario Priority P t Observation Ot Time con�dence Lt Spatial con�dence St Overall con�dence F t

(1)

(2)

(3)

Figure 7: Graphical representation of priority P t , observation Ot , time con�dence Lt , spatial con�dence St and overall con�-
dence F t for 3 di�erent scenarios: (1) Camera Network Sample, (2) Tracking sample at time t = 0, (3) Tracking sample at time
t = 10. In (2) and (3) the UAV focuses on the observation matrix, such that the next priority map depends only on previous
observations. Red represent the value 0, and green represents value 1.
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