
Self-calibration and Cooperative State Estimation
in a Resource-aware Visual Sensor Network

Jennifer Simonjan†, Melanie Schranz∗, Bernhard Rinner†

∗Lakeside Labs, Austria, Email: schranz@lakeside-labs.com
†Alpen-Adria-Universität Klagenfurt, Austria, Email: Jennifer.Simonjan@aau.at, Bernhard.Rinner@aau.at

Abstract—In this paper we present an algorithm, which enables
distributed visual sensor networks to autonomously calibrate the
network and dynamically build clusters to achieve cooperative
object tracking based on state estimation. A main focus is thereby
on resource-awareness and -efficiency, since we aim for low-power
embedded smart camera networks. We do not require any human
intervention or a-priori information about the network topology
to achieve calibration and tracking. Camera nodes first estimate
relative positions and orientations and then use the common
coordinate system to enable cooperative state estimation. For
that purpose, cameras dynamically build clusters depending on
their available resources. New nodes joining the network are
discovered and failing nodes do not prevent others from their
tasks. Compared to other methods, our approach is not only
able to handle sensor measurement errors but also faulty camera
positions gathered during the network calibration process.

I. INTRODUCTION

Visual Sensor Networks (VSNs) consist of a set of static
smart cameras, each having processing and communication
capabilities on-board. Typical VSNs are spatially distributed,
composed of a large number of nodes and often deployed in
environments without any infrastructure. Each node poses lim-
itations in processing, storage and communication capabilities
due to the local energy reservoir. Thus, resource-awareness
plays a key role within these networks.

In this paper we introduce an algorithm for VSNs, which
is capable of autonomous network calibration and resource-
aware, cooperative target tracking. For that purpose, we in-
tegrate state estimation based on dynamic clustering [1] with
network calibration [2] and can therefore relax the assumption
of a known absolute coordinate system. Our approach works
in a fully decentralized manner, without requiring any human
interaction or a-priori network information. The main design
goals are the following:

– self-calibration, to ease the network management,
– adaptability, to handle dynamic environments together

with changing network topologies,
– resource efficiency, to achieve a long lifetime for low-

power embedded sensor networks.
Most existing work for resource-aware dynamic clustering

assumes a known configuration of the cameras in the network
[3]–[6]. Approaches for autonomous network calibration typ-
ically focus on computer vision solutions [7]–[9], which are
computationally much more complex. There is a lot of research
available on how to estimate either camera or object positions
having erroneous measurements. The idea of this paper was to

estimate the camera positions as well as the object positions
to enable a self-configuring network and to avoid the need
for an a-priori known ground plane. All position estimates
are thereby influenced by measurement errors and estimation
errors of each other. The results show that a cooperative state
estimation of object positions works well even though having
faulty camera position estimates.

The remainder of the paper is organized as follows. Section
II discusses related work and section III introduces the prob-
lem statement. Section IV presents our approach for network
calibration and object tracking. The evaluation results are
presented in section V. We conclude and outline future work
in section VI.

II. RELATED WORK

There is much research going on in the field of cooperative
state estimation and multi-target tracking. In typical collab-
orative tracking applications, camera networks are assumed
to be externally calibrated, since the common ground plane is
required to perform joint state estimation. A calibrated network
provides thus the basis for cooperative tracking.

An example approach for multi-target tracking in self-
configuring pan-tilt-zoom (PTZ) camera networks was pre-
sented by Soto et al. [3]. Their overall goal is to achieve
cooperative tracking using a Kalman-Consensus filter, while
selectively focusing on specific target features with higher
resolution.

A similar approach was introduced by Liu et al. [4].
Whenever an object is detected by several cameras, they form
a cluster to cooperatively track the object. A main advantage of
their approach is, that an optimization-based algorithm selects
only a subset of cameras as cluster members, rather than all
cameras which can see the object, in order to save resources.

SanMiguel and Cavallaro [5] proposed another framework,
which creates camera coalitions for collaborative object track-
ing in resource-constrained networks. Coalition heads are, like
in our approach, selected dynamically. The authors came up
with a decentralized negotiation scheme to allocate resources
to coalitions over time.

Another framework for distributed state estimation, called
information-weighted Consensus Filter (ICF), was proposed
by Kamal et al. [6]. It additionally incorporates the cross-
covariances between the individual states of the nodes into
the distributed estimation. Such a consensus filtering scheme
can guarantee convergence to the optimal centralized estimate.



None of the approaches mentioned above allows cameras
to autonomously estimate the network topology, which means
that a known global ground plane is assumed. This is also true
for the many other cooperative tracking approaches which can
be found in literature.

To establish a global coordinate system, network calibration
algorithms typically rely on cost-intensive computer vision
methods such as vanishing line estimations [8], 3D position
estimations [7] or 3D point clouds [9]. We require a sim-
ple, efficient network calibration method to ensure resource-
efficiency as well as operability on low-resolution embedded
cameras.

Distributed state estimation and localization can also be
found in the field of robotics. In decentralized, cooperative
Simultaneous Localization and Mapping (SLAM) approaches,
mobile robots jointly build a map of the environment while
localizing themselves within the map. Multiple robots usually
collect local sensor measurements to landmarks, exchange
them and perform a cooperative state estimation [10], [11].
SLAM algorithms typically work in environments with mobile
sensors and static targets, while we focused on static sensors
and mobile targets. However, the localization and state esti-
mation process is similar.

In our work, we were interested in the performance of
cooperative object tracking in case the cameras estimate the
ground plane coordinate system autonomously, introducing
errors for camera positions. This means, our state estimation
algorithm has to handle inaccurate object measurements as
well as erroneous camera positions.

III. PROBLEM FORMULATION

In this paper, we consider a set of n ∈ N smart cameras
C = {c1, ...,cn}, whereby at least some of them have an
overlapping field of view (FOV). Two example network setups
are depicted in figure 1. The network in the upper plot is
connected in terms of overlapping FOVs. The lower plot shows
two disconnected sub-networks, namely cameras c1, . . . ,c4 and
cameras c5, . . . ,c7.

Each camera ci in the network has an initially unknown
position and orientation and assumes itself to be the origin of
the coordinate system with an orientation of 0◦. This means,
that every camera operates on its own local coordinate system.
Two cameras ci and ch are considered as neighbors, if they
have an overlapping FOV. We further define a set of j ∈ N
mobile objects O =

{
o1, ...,o j

}
, which are typically humans

in camera surveillance or tracking applications.
The overall task of the VSN is to let cameras cooperatively

track one or more specific objects through the network by
jointly estimating the object positions. To enable a joint state
estimation, cameras have to operate on the same coordinate
system, which they have to establish first. This means, the
starting point of our system is right after the deployment of
a camera network, when cameras do not have any topology
information. The output of the system includes a common
coordinate system established by the cameras as well as the
estimated tracks of objects which moved through the network.

Fig. 1. Two possible camera network setups, whereby one network is
connected in terms of overlapping FOVs and the other network is split into
two connected networks.

For that purpose, we require cameras to be synchronized in
time and to be able to locally perform certain processing tasks
such as object detection, re-identification and state estimation.
Further, we assume cameras to be able to measure local
distances and angles to objects within their FOVs. Figure 2
shows the FOV of a camera ci within its own local coordinate
system and with the local distance and angle measurements to
an object o j.
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Fig. 2. The model of a FOV of a camera ci within its own local coordinate
system. di j and αi j are the locally measured distance and angle to the object.
ϕi is the orientation of the camera, which is 0 in the local coordinate system.

In a nutshell, our approach performs the following steps:
1. calibrate cameras relative to each other wrt. their local

coordinate systems
2. establish common coordinate systems within connected

sub-networks
3. perform resource-aware cooperative object tracking

IV. ALGORITHM

We have developed an algorithm which calibrates cam-
era networks autonomously to afterwards enable cooperative
tracking of objects utilizing state estimation. For all camera
pairs which have detected the same object in their FOVs,
the cameras first check whether calibration is necessary and
perform then the cooperative object tracking.



As we assume that at least some cameras have overlapping
FOVs, an object may be seen by multiple cameras at the
same time. All cameras that can see the object o j at the
same time belong to the same tracking cluster Ω j, within
which only one camera ci is responsible of estimating the
object’s position in order to save resources. This camera is
thus referred to as tracking cluster head ch

i ∈Ω j of object o j.
To estimate the object position, the tracking cluster head ch

i
collects object observations of all tracking cluster members
cm

k 6=i ∈ Ω j and performs a cooperative state estimation using
the Kalman Consensus Filter proposed by Ding et al. [12].

To enable a joint state estimation, all object estimations
must be performed in the same coordinate system. A common
coordinate system can only be established within a network of
connected cameras, since cameras estimate relative positions
based on jointly detected events. We therefore may need mul-
tiple coordinate systems, one for each connected sub-network.
In the lower plot of figure 1 for example, cameras c1, . . . ,c4 as
well as cameras c5, . . . ,c7 establish two independent coordi-
nate systems. The network calibration approach introduced in
[2], allows each camera in a connected network to establish a
global network view wrt. its local coordinate system. However,
to perform the cooperative tracking, the cameras need to agree
on one common coordinate system. Therefore, we introduce a
further cluster, called coordinate system cluster Ψs, whereby
s differentiates between the connected sub-networks. These
clusters also have a cluster head ch

i ∈Ψs and cluster members
cm

k 6=i ∈ Ψs. All cluster members agree during the calibration
process on the coordinate system of the cluster head, which
means that the final coordinate system has its origin at the
position of the cluster head.

Calibration of cameras is done only if they have not
localized each other yet (when they detect joint objects for the
first time), while tracking clusters change dynamically with the
moving objects. Only cameras which can see the same object
at the same time belong to a common tracking cluster. The
head and the members of tracking clusters thus change as the
object moves through the network. Cameras may also belong
to multiple tracking clusters in case they can observe multiple
objects at the same time.

In the following subsections we will describe the details
of the algorithm, which is split into three major parts: object
observation, network calibration and state estimation.

Object observation

This algorithm is triggered whenever an object o j is detected
by a camera ci, to construct an object observation vector Oi j.
The vector includes a time stamp tx, the utility λi, an object
descriptor fi j, the locally measured distance di j and angle αi j
to the object and the flags ςh

i and ςm
i , which indicate whether

the camera is a coordinate system head, member or none of
these.

The utility λi comprises information about the resources of
a camera and the detection/tracking confidence, and is used to
elect both, coordinate system and tracking cluster heads.

The object descriptor fi j is used to enable re-identification
of objects at neighboring cameras. Visual descriptors usually
include object characteristics such as texture, color or shape
to enable robust re-identification [13].

The flags ςh
i and ςm

i indicate not only if a camera ci is
a coordinate system head or a member, but also if there
already exists a common coordinate system or not. If either
of them is true, this indicates that there is already a head
ch

i ∈Ψs, whose coordinate system should be used to establish
a common network view. If both flags are f alse there is no
coordinate system head and the cameras still need to agree
on one. Using all these measurements the following object
observation vector is defined as:

Oi j = (tx,λi, fi j,αi j,di j,ς
h
i ,ς

m
i )

After the vector Oi j has been determined, the camera
waits a random back-off time and then broadcasts it. The
random back-off time is required, to reduce the probability that
multiple camera pairs exchange their first object observation
at the same time, which would lead to a simultaneous election
of coordinate system heads.

Receiving an observation vector triggers the calibration or
tracking process on neighboring cameras. The pseudo code of
the object observation is shown in algorithm 1 and runs on
every camera in the network.

Algorithm 1 Object observation algorithm
On object o j is detected at camera ci

do construct object observation Oi j:
generate timestamp tx, utility λi and descriptor fi j
estimate local angle αi j and distance di j to object

if camera ci is coordinate system head then
set coordinate system head flag ςh

i to true
else if camera ci is coordinate system member then

set coordinate system member flag ςm
i to true

else
set both flags ςh

i and ςm
i to f alse

wait random back-off time
broadcast object observation Oi j

Network calibration
The network calibration algorithm calibrates cameras of

connected networks to one common coordinate system. This
is not a real-world coordinate system since we do not have
access to ground plane coordinates, rather it is established
wrt. the cluster head’s local coordinate system. The network
calibration is triggered in the following two cases: Either an
object observation has been received from a camera that has
not been localized yet or localization information about a
multi-hop neighbor has been received.

Assume camera ci receives an object observation Oh j of
another camera ch for object o j. If camera ch has not been
localized yet, the calibration process will start. First of all,
the coordinate system flags ςh

i , ςm
i , ςh

h and ςm
h are checked. If

any of the flags is true, this indicates that there is already a



common coordinate system. If all flags on both cameras are
f alse, there is no coordinate system to which camera ci and ch
belong to. In this case, the cameras decide, based on the utility,
for a coordinate system head before they start the calibration
process.

After checking the coordinate system flags, the cameras start
to calibrate with each other in a pairwise manner. Each camera
estimates the relative position and orientation of the neighbor
within its local coordinate system. The estimation is based on
geometric constraints and can be found in [2]. This means,
there are two different coordinate systems after the pairwise
calibration, one on each camera.

Whenever a camera ch finished the localization of a neigh-
boring camera ci, it informs others about camera ci by
broadcasting a localization vector τhi. The localization vector
includes the relative position and orientation of camera ci wrt.
the local coordinate system of camera ch and enables cameras
which do not overlap with camera ci to localize it.

Assume camera cg receives the localization vector τhi of
camera ch including the localization data of camera ci. In case
camera cg has already localized the sending camera ch, it can
transform the coordinates of camera ci from the coordinate
system of camera ch to its own local coordinate system.
This transformation is achieved by translation and rotation of
the coordinates. In this way, all cameras within a connected
network can be calibrated.

Whenever the coordinate system head ch
i ∈ Ψs localizes

another camera cg, it informs cg about its estimated position.
Since coordinate system heads are located in the origin of the
common coordinate systems, the common system is the same
as their local system. This means, that local position estimates
done by coordinate system heads are those which are used for
the common coordinate system and thus for the cooperative
state estimation.

Algorithm 2 shows the network calibration algorithm, which
also runs on every camera within the network. The algorithms
were realized as threads and run therefore in parallel on the
cameras.

State estimation

Cooperative tracking can be performed by two or more
cameras, if they operate on the same coordinate system and
observe the same object. Thus, the prerequisite to start the
tracking process is that the cameras have localized each other
within the common coordinate system.

Thus, cooperative tracking is triggered if an object obser-
vation is received and the sending camera has already been
localized. In this case, a tracking cluster Ω j is formed by
electing a cluster head ch

i ∈ Ω j based on the utilities λ of
the cameras. Afterwards, the cluster head initiates an auction
to collect state vectors sk j from cluster members cm

k ∈ Ω j.
These state vectors include the estimated object position and
the camera utility: sk j = (x j,y j,λk).

The estimated object position (x j,y j) is thereby determined
within the common coordinate system which was established

Algorithm 2 Network calibration algorithm
On object observation Oh j is received at camera ci from ch

if object o j has also been detected then
if sender ch has not been localized yet then

if all flags ςh
i , ςm

i , ςh
h and ςm

h are false then
compare camera utilities λi and λh
if λi > λh then

ci becomes coordinate system head
else

ci becomes coordinate system member
estimate location and orientation of sender ch

if sender ch was successfully localized then
broadcast localization information
if ςh

i is true then
inform ch about its estimated coordinates

On localization vector τhg is received at camera ci
if the camera cg has not been localized yet then

if the sender ch has already been localized then
transform the received coordinates of cg to own coor-
dinate system
broadcast localization information τig
if ςh

i is true then
inform cg about its estimated coordinates

during the calibration phase. The utility λk is required to en-
able a dynamic cluster head election and adaptation. Whenever
the utility of a cluster member exceeds that one of the cluster
head, their roles change. The election is based on auctions as
described in [1].

The cluster head receives the state vectors of all cluster
members and performs the state estimation. Tracking clusters
dynamically change with moving objects, since only cameras
which can see the same object as the cluster head will answer
to the auction. The state estimation process is shown in
algorithm 3 and runs, as the other two algorithms, on every
camera.

V. EVALUATION

The proposed algorithm is evaluated via simulation studies.
For that purpose, we extended the VSN simulator [14], which
allows the algorithms including object detection, calibration
and state estimation to run locally on each camera.

Scenario: Figure 3 shows the simulation scenario we
used. We simulated a building with multiple rooms, whereby
one object moved through four of them. The path depicted by
the red line shows the object movement through the rooms
1, 2, 4 and 14. Sensor measurements are performed by the
cameras every 3 seconds. The duration of the measurements
differs for each room, depending on the path length of the
object, e.g., 88,67m for room 14 and 28,63m for room 2,
whereby the object moves 0.1m per second. The whole path
including all rooms and gangways has a length of 185,8m.



Algorithm 3 State estimation algorithm
On object observation Oh j is received at camera ci from ch

if sender ch is localized already then
if object o j has also been detected then

if camera ci is cluster head then
initiate auction
receive state vectors sk j of cluster members
perform state estimation
if λi < λh then

handover cluster head role to camera ch
else

wait random backoff time
if auction initiate was received then

send object information
else

change role to cluster head
if handover is received then

change role to cluster head

Cameras within the same room are connected, which en-
ables them to establish a common coordinate system. This
means, there are four different coordinate systems established
by our algorithm, one for each room.

To enable an election of coordinate system and tracking
cluster heads, we defined the utility as:

λi = ν
j
i ·Rtotal,i

where ν
j
i is the detection confidence at camera ci for object

o j and Rtotal,i comprises the processing power, the remaining
energy and the remaining memory at camera ci.

To simulate sensor errors, we superimpose distance mea-
surements to objects with a uniformly distributed error within
the limits [−δ,+δ]. The limits increase with increasing dis-
tance to objects, since sensor measurements become typically
less reliable the further the objects are away [2]. δ is thus
modeled as a function of the distance and can be manipulated
using the factor k:

δ = k ∗d (1)

Results: Figure 4 shows the comparison of the coop-
erative state estimation within the ground truth coordinate
system (blue) and the self-calibrated coordinate system (red)
for two of the five rooms. The ground truth coordinate systems
are depicted in blue in the left plots and the self-calibrated
coordinate systems in red in the right plots. This means, for the
results in the left plots, cameras had ground truth information
of all camera positions to perform the state estimation. The
results in the right plots were generated by the cameras without
having any a-priori topology or calibration information. Room
14, shown in figure 4 (a), is equipped with 8 cameras, while
room 2, shown in figure 4 (b), is equipped with 4 cameras.

During the self-calibration, cameras c7 and c1 were elected
as coordinate system heads ch for room 14 and room 2,
respectively. These two cameras are thus located in the ori-
gin of the self-calibrated coordinate systems. The resulting

Fig. 3. Simulation scenario including 14 rooms, whereby the object was
moving through five of them. The red path depicts the ground truth movement
of the object.

(a) Room 14

(b) Room 2

Fig. 4. Results of the calibration and state estimation for (a) room 14 and (b)
room 2 with a noise value of k = 0.05. The left plots show the ground truth
coordinate systems and the right plots the self-calibrated coordinate systems.
The estimated object paths match except to rotation and translation.

network calibration and object path estimations match the
ground truths. However, they are shifted and rotated, since
they were established from the viewpoints of the coordinate
system heads.

Figure 5 shows the average state estimation error for the
object paths per room over increasing noise. The error is
expressed using the root-mean-square error (RMSE) defined
as shown in equation 2:

RMSE =

√
∑

s
j=1(x

true
j − xest

j )2 +(ytrue
j − yest

j )2

s
(2)



where s is the number of position estimations, (xtrue
j ,ytrue

j ) is
the ground truth position of object o j and (xest

j ,yest
j ) is the

estimated position. For noise values of up to 0.4, the average
state estimation error never exceeds 1.6m. Due to the self-
calibration, camera positions are also affected by noise, which
leads to more error prone state estimation results compared to
approaches with an a-priori known ground plane.

Fig. 5. RMSE of the object position after the self-calibration and state
estimation.

Figure 6 shows the average number of sent messages per
camera per room, which is required to calibrate the net-
work. For a noise value of 0.4, cameras require on average
between 30 and 40 message to calibrate the network. The
communication costs are low but depend on the number
of neighboring cameras and on the quality of the object
observations. Having measurements with a reasonable error
allows cameras to calibrate faster and more accurate. The
larger the error, the more object observations, and therefore
messages, are required. Detailed resource measurements of the
state estimation itself can be found in [1].

Fig. 6. Average number of sent messages required per camera to calibrate
the network.

VI. CONCLUSION

In this paper we presented an algorithm which enables
camera networks to calibrate themselves and then use this cal-
ibration information to perform collaborative object tracking.

We thus handle errors in camera positions, established during
the calibration process, as well as errors in object observations,
obtained during the sensor measurements.

In our next steps, we will introduce a feed-back loop, which
should improve the accuracy of the network calibration. For
that purpose, state estimations of objects will be fed back
into the calibration algorithm. Further, we will improve the
selection of tracking cluster members, such that no longer
all cameras which can see the object are selected as cluster
members, but only a sufficient subset.
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