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Abstract— The strong resource limitations of unmanned
aerial vehicles (UAVs) pose various challenges for UAV ap-
plications. In persistent multi-UAV surveillance, several UAVs
with limited communication range and flight time have to
repeatedly visit sensing locations while maintaining a multi-hop
connection to the base station. In order to achieve persistence,
the UAVs need to fly back to the base station in time for
recharge. However, simple motion planning algorithms can
result in mutual movement obstructions of UAVs caused by
the constraints. We introduce two planning algorithms with
different planning horizons and cooperation and compare their
performance in simulation studies. It can be seen that the short
horizon uncooperative strategy can outperform other strategies
if a sufficient number of UAVs is used. The full horizon strategy
can generate a solution visiting all sensing locations if the
existence conditions for such a solution are fulfilled.

I. INTRODUCTION

Recent progress in the field of aerial robotics has lead to
increasing interest in using unmanned aerial vehicles (UAVs)
for civilian use cases including environmental monitoring
and disaster management [1]. In the latter case, they can
be used to continuously monitor disaster sites and send
the sensed data, such as images or videos, via wireless
transceivers to a base station to support the mission operators.

In this work we assume communication and energy con-
traints. The communication constraint forces the UAVs to
maintain a connection to the base station via a multi-hop
link throughout the mission. The energy constraint forces a
UAV to reach the base station with the remaining energy
and to recharge before continuing the mission. This is es-
pecially important for disaster management scenarios where
the mission operators have to assess the situation over long
mission periods. The goal of persistent surveillance is to
plan paths for multiple UAVs such that all sensing locations
are repeatedly visited and the communication and energy
constraints are satisfied.

The persistent surveillance problem has been tackled from
different perspectives in literature. One approach is to map it
to a Vehicle Routing Problem (VRP) with inter-depot routes
to account for the limited energy capacity [2], [3]. Other ap-
proaches decouple path generation and controlling of agents
along these paths [4], [5]. Control policies have been derived
to select the next goal [6] to minimize the maximum cell
age or to adjust direction and speed of UAVs [7] to achieve
a desired coverage. The Persistent Vehicle Routing Problem
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(P-VRP) with recharging stations is modeled with temporal
logic specifications in [8].

Maintaining connectivity is a prominent task in robotic
networks. In [9] the effect of connectivity on the coverage
performance is presented. A distributed controller for main-
taining network integrity is proposed in [10]. In [11] the
planning of a mission to visit certain targets is done offline
exploiting a radio propagation path loss simulator. Planning
for periodic connectivity in environments with obstacles is
done in [12]. A heuristic for the VRP with communication
sites is presented in [13]. In [14] a mathematical program-
ming approach for planning search and rescue missions for
different connectivity demands is presented.

In contrast to the state of the art, we jointly consider
communication and energy constraints which can result
in mutual movement obstructions of UAVs in persistent
surveillance missions. These problems do not occur when
both constraints are considered individually. In this paper
we compare algorithms with different planning horizons to
overcome the obstructions. Short horizon approaches based
on [6] only plan for the next sensing location a UAV has to
approach, whereas full horizon algorithms plan tours through
all sensing locations the UAVs have to follow. Additionally,
our proposed full horizon strategy can generate a solution
visiting all sensing locations if the existence conditions for
such a solution are fulfilled.

The outline of the paper is as follows: Section II describes
persistent surveillance and the movement obstructions. Sec-
tion III introduces our planning algorithms, and Section IV
presents the simulation results.

II. PROBLEM DESCRIPTION

We assume that the mission area is convex and divided
into a two-dimensional grid of square cells. A subset S =
{1, . . . , S} of these cells represents the sensing locations and
a base station is located at a particular cell and denoted as 0.
A set of UAVs U = {1, . . . , U} visits sensing locations re-
peatedly to take measurements. Time is divided into discrete
time steps, and a UAV can move to one neighboring cell
(there are at most 8 neighboring cells) or stay at its current
cell at each time step. The energy capacity or maximum flight
time E is measured in time steps, and a UAV consumes one
energy unit at every time step regardless of whether the UAV
is staying at the current cell or moving to a neighboring cell.
The energy constraint requires that each UAV has to reach the
base station before its energy is depleted. The communication
range Rcom is measured in number of cells. There is a
link between two UAVs or a UAV and the base station if



the distance between them is less than Rcom. The distance
between two UAVs or a UAV and the base station is the
Euclidean distance between the centers of the cells at which
they are located. The communication constraint requires that
there must be a single- or multi-hop link from every UAV
to the base station at every time step. The age at,s of a
sensing location s at a certain instant t denotes the number
of time steps that have passed since the most recent visit of
any UAV at s. The goal is to find solutions that minimize
the maximum age over all sensing locations.

The following conditions for the existence of a solution
that visits every sensing location can be specified. First, if the
distance between the base station and any sensing location
is smaller than Rcom, the minimum amount of energy that
is necessary to guarantee a solution that visits every sensing
location is the energy necessary to fly directly from the base
station to the sensing location and return to the base station.
If the communication range is smaller than the distance to
the sensing location, UAVs are necessary that act as relays
and leave the base station as necessary. In this case the
supporting UAVs need enough energy to fly to the designated
relay positions and return to the base station. Second, there
must be enough UAVs such that every sensing location can
be reached. These are sufficient and necessary conditions for
the existence of a solution, but not sufficient ones for every
algorithm (as described in the next paragraphs).

The sensing selection policy in [6] assigns a sensing
location for each UAV u at each time step t based on a
weighted combination of the age at,s of sensing location s,
the distance between the UAV and the sensing location χu,s,
and the minimum distance between s and any other UAV:

wu,s = at,s + ω0χu,s + ω1 min
v 6=u

χv,s. (1)

Each UAV gets assigned to the sensing location with the
highest value wu,s individually. The weighting parameters ω0

and ω1 are determined by an offline optimization algorithm
where the parameter space is sampled and the mission is
simulated to get the objective value for a particular set of
parameters. We adopt this approach to enforce the connec-
tivity constraints by disallowing moves that would result in
a disconnected network and denote it as short horizon (SH)
algorithm. A safe path calculation ensures that every UAV
can reach the base station with the remaining energy without
violation of the connectivity constraints. More details can be
found in [15].

It is shown in [6] that with suitable parameters ω0 and
ω1 the performance is close to an optimal solution for a
single UAV for the scenario considered therein. The optimal
solution for the single UAV case can be determined by
moving the UAV with maximum speed along the shortest
tour through all sensing locations. The shortcoming of the
simple SH approach is that constraints that force connectivity
and limit the flight time have an impact on the ability of a
single UAV for moving to its desired sensing location. The
problems that can arise are oscillation and mutual blocking
and are described with an example in Figure 1 (a) and (b),
respectively.
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Fig. 1. Limitation of short horizon planning depicted for a one-dimensional
surveillance problem: An area consisting of a line of cells with the base
station (circle) and sensing locations (cross), which have to be visited by
UAVs (triangles) is shown. The communication range is limited to 5 cells.
(a) Oscillation: Two UAVs with an energy capacity of 10 and 20 time steps,
respectively have to visit the sensing location. The limited communication
range requires one UAV sensing and the other UAV relaying the data to the
base station. The simple SH approach sends both UAVs towards the sensing
location (time steps 1 to 6) and forces one UAV back to the base station
because of the flight time limits (time steps 6 to 11). After recharging the
UAV continues the mission and both UAVs approach the sensing location
(12 to 14) until the other UAV has to return to the base station (after 14). This
procedure continues forever and the sensing location will never be reached.
(b) Mutual blocking: There are two sensing locations at both ends of the
area and the base station in the center. Each of the two UAVs approaches
the sensing location but the connectivity constraints prevents each of them
from reaching the sensing location.

III. ALGORITHM DESCRIPTION

A. Short horizon cooperative (SHC)

To overcome the mutual blocking problem we developed
an extension to SH based on graph matching and formation
reconfiguration. The idea is depicted in Figure 2. The goal is
that UAVs change their positions from an initial configuration
to a final configuration. For this purpose, a configuration is
modeled as graph where the nodes are UAVs and the base
station and there is an edge between two nodes if the nodes
are within communication range. The initial configuration is
determined by the positions at a particular time step, and
the final configuration are the positions of UAVs at relay
positions and sensing locations that should be visited such
that no edge length in the graph exceeds Rcom. Before
a reconfiguration of UAVs can happen, a graph matching
between the initial graph and the final graph is necessary
to determine which UAVs should move to which position.
Therefore, we employ the Initial Tree Selection (ITS) [16]
using a weighted graph matching algorithm [17] together
with a prefix labeling algorithm [18]. The labels of the nodes
in Figure 2 are the outcome of this graph matching algorithm.
Nodes in the initial graph that do not have a correspondence
in the final graph are called extra nodes, and nodes in the
final graph that do not have a correspondence in the initial
graph are called missing nodes. The goal is to move the extra
UAVs such that the communication graph finally contains
the final graph and the UAV can approach their goals while
maintaining the final graph.

At the beginning of the planning horizon (iteration) the
algorithm calculates the desired final configuration of the
UAVs and the reconfiguration procedure determines the



length of the iteration in time steps. One iteration is outlined
in Algorithm 1. Here P represents a set of paths, one for each
UAV, where a path is a sequence of cells which describes
the moves of a UAV. The moves are synchronized over all
UAVs, i.e. all UAVs perform the next move on their path
at the same time. The UAV state vector p consists of the
positions of the UAVs at the beginning of the iteration and
is indexed by u, i.e. p(u) is the position of UAV u. The
matrix A determines the assignment of a UAV to a sensing
location, i.e. if A(u) = s then UAV u is assigned to s. This
matrix is calculated in the same way as for the SH algorithm
based on the weighing matrix W , where W (u, s) = wu,s.

First, the assigned sensing locations in A are ordered
according to their values in W . Then an approximation of a
minimum node Steiner Tree which contains the base station
s0 and as many sensing locations (terminals) as possible such
that the number of nodes (terminals and intermediate nodes)
in the tree is not larger than U + 1 (available UAVs plus
base station) is calculated. We use the algorithm in [19] and
set the node weight to one. The input for the algorithm is
the graph containing all the cells as vertices and an edge
between two vertices if the distance between the cells is
not larger than Rcom, together with the terminal sensing
locations. The resulting tree is the desired final tree Tf and
is labeled with the prefix labeling algorithm and matched
with the connectivity graph of the UAVs and the base station
given by the actual positions of the UAVs and the base
station (p0). This results in a partially labeled graph Tt with
unlabeled nodes that could not be matched. Then the extra
and missing nodes are determined. After that, the shortest
paths in Tt between all pairs of extra nodes and the parents
of nodes of missing nodes that are also in the actual tree
Tt are calculated. A minimum weight matching assigns an
extra node to a missing node and the path between them is
stored in SP . Afterwards, the UAVs move along the paths
and the tree Tf is relabeled after a UAV reaches its goal.
When the trees match (compare graphs returns true) the
UAVs move to their final goals (the cells determined by Tf ).
The iteration is finished when s1, . . . , sk sensing locations
have been reached, where k ≤ U is an input to the algorithm
(this means a new iteration can start before all U selected
sensing locations have been reached).

B. TSP based partitioning (TSPP)

The TSP (Traveling Salesperson Problem) based partition-
ing algorithm partitions the sensing locations based on the
number of UAVs available and the communication range in
disjoint sets divided by rays that origin at the base station.
In every partition a TSP tour through all sensing locations
is generated which a set of UAVs have to follow where one
UAV acts as leader and supporter UAVs act as relays. An
example of an partition is shown in Figure 3.

The algorithm for partitioning is shown in Algorithm 2.
The function get partitions adds sensing locations with
increasing distance to the base station to S0 until there are no
more sensing locations that can be reached with the number
of UAVs provided in the second argument or MST (S0)
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Fig. 2. Outcome of the graph matching algorithm. The nodes are the base
station (node ‘0’) and the UAVs. The initial graph (a) models the state of the
UAVs and the base station at a particular time step with a line between two
nodes if they are within communication range. A dashed line indicates the
communication link and a solid line indicates the selected tree in the initial
graph. The graph (b) models the final desired UAV configuration, where
each UAV is assigned a relay position or a sensing location. For example,
UAVs labeled with ‘011’, ‘012’, and ‘0211’ are assigned to sensing locations
but can reach them only with help of relays labeled with ‘01’, ‘02’, and
‘021’. The shaded nodes are the extra nodes (a) and the missing nodes (b),
respectively.

exceeds MST (S)/K. Here, MST denotes the weight of
the minimum spanning tree of the partition, which serves an
estimate of the TSP tour. The weight of the edges between
two sensing locations is the length of the shortest path
between them. Then the function get partitions orders the
remaining sensing locations by the angle of the line between
the base station and the sensing location and adds them in
that order to a partition Sk, k > 0 (these are referred to as
angular partitions). A new angular partition k+1 is created
if MST (Sk) exceeds MST (S)/K.

In particular, in the while loop in Algorithm 2 the number
of angular partitions K is increased until the number of
UAVs necessary to cover all partitions at the same time
exceeds |U|. The function get min U returns the minimum
number of UAVs necessary to reach any of the sensing
locations in the set provided. In the example for Figure 3
get min U = 4. Note, that the second argument of the
call to get partitions (UAVs for S0) is zeros in the loop
(and therefore, S0 will be empty) since this number is not
known at this moment. After the loop finishes the remaining
UAVs available for S0 are calculated and the final partition is
calculated. Now, get partitions is called with U0 as second
argument.

After the area is partitioned, the paths for the UAVs for
each partition are generated. This is shown in Algorithm 3.
For each angular partition a TSP tour on the sensing locations
Sk is calculated and the paths for get min U(Sk) (k > 0)
UAVs are generated, where one leading UAV follows the tour
and the supporting UAVs leave the base station as necessary
(see Figure 3 (b)). If necessary, the leader (and therefore also
the supporters) returns to the base station for recharge and
continues with the next sensing location on the path such that
the maximum flight time is not exceeded. Additionally, the
tour can be shortcut if sensing locations have already been
visited by any supporter UAV or during the return to the
base station. The set V is the set of all sensing locations that
have been visited by leader or supporter UAVs. This set can
be ignored for the calculation of the paths for S0. In every
iteration it is checked whether the path for S0 or the longest



Algorithm 1 shc iteration
Input:

UAV states p, path P , assignment A, weight matrix W , number of
intended sensing locations to reach before a new iteration starts k

Output:
extended path P

(s1, . . . , sU )← sort SL in A according to values in W
for i = 1 to U do

T ′
f ← calc steiner tree({s0, s1, . . . si})

if |V (T ′
f )| > (U + 1) then exit for loop

Tf ← T ′
f

Lf ← label trie(Tf )
Gc ← calc conngraph(p ∪ p0)
(Tt, Lt)← calc graph matching(Gc, Tf , Lf )
Lt ← complete labels trie(Tt, Lt)
(Ve,Vm)← calc extra missing(Lt, Lf )
for i ∈ Ve, j ∈ Vm do

D(i, j)← length of shortest path in Tt from node i
to the closest parent of j that is also in Tt

M ← calc matching(D)
for u ∈ Ve do SP (u)← shortest path in Tt from u to M(u)

while true do
for u ∈ U do

if u ∈ Ve then
p′(u)← make a move along SP (u)
if u reached goal on SP (u) then

Lt ← update labels(Lt)
Ve ← Ve \ {u}

Gc ← calc conngraph(p′ ∪ p0)
if compare graphs(Gc, Lt, Tf , Lf ) then

p′(u)← make move towards SL which has same label as i

P ← P extended with p′

if all s1 to sk have been reached by any UAVs then exit while loop

Algorithm 2 partition
Input:

sensing locations S, UAVs U
Output:

partition (S0,S1, . . . ,SK)

S1 ← S,S0 ← ∅,S2 ← ∅, . . .
K ← 1
while

∑K
k=1 get min U(Sk) ≤ |U| do

(S′0,S′1, . . .)← (S0,S1, . . .) //save for later
K ← K + 1
(S0,S1, . . . ,SK)← get partitions(S, 0,K)

K ← K − 1
U0 ← |U| −

∑K
k=1 get min U(S′k)

(S0,S1, . . . ,SK)← get partitions(S, U0,K)

path in any Sk, k > 0, is longer and sensing locations are
moved from S0 to Sk (path for S0 is longer than longest
path in any Sk), or from Sk to S0 (longest path in any Sk
is longer than path for S0).

Given the existence conditions described in Section II this
algorithm will generate a solution that visits every sensing
location at least once. For a persistent mission the solution
can be repeated since all paths start and end at the base
station.

IV. SIMULATION RESULTS

In this section we compare four algorithms: (i) short
horizon (SH), (ii) short horizon cooperative (SHC), (iii) TSP
based partitioning (TSPP), and (iv) tree traversal (TT). The
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Fig. 3. TSPP algorithm: Example of an partitioning of an area and path
generation. The base station is located at the bottom left corner of the area,
there are 14 UAVs available, and the minimum number of UAVs necessary
to reach all the sensing locations is 4. (a) The set of UAVs can be divided by
the number of minimum UAVs necessary to create three partitions that can
be patrolled by three teams of UAVs simultaneously. For the three partitions
S1,S2, and S3 (angular partitions) there are 12 UAVs necessary. For the
remaining two UAVs a partition S0 can be created. (b) Teams of UAVs with
a leader and supporter UAVs follow the generated tours.

TT algorithm is based on the concurrent tree traversal algo-
rithm [20] using the union of the shortest paths from every
sensing location to the base station as input. This algorithm
traverses a given tree placing relays when necessary and
traversing branches concurrently if possible. All algorithms
have been implemented in Matlab. The parameters ω0 and
ω1 are determined with the pattern search algorithm provided
by Matlab. The TSP tours for TSPP are determined with a
simple genetic algorithm. The simulations are run on an area
of 21x21 cells where the base station is at the lower left
corner and the upper right 20x20 cells are sensing locations.

First, we investigate the effect of decreasing communi-
cation range Rcom with increasing number of UAVs U
and unlimited energy capacity E. The number of UAVs is
increased from 2 to 10, whereas the communication range
decreases such that all UAVs are necessary to reach the
top right cell. Figure 4 depicts the coverage time which
is the number of time step it takes until every sensing
location has been visited at least once. This number serves
as an indicator for the performance of persistent surveillance
scenarios. It can be seen that the values are almost constant
for the approaches with increasing number of UAVs. The
only exception is the SH algorithm for which no parameters
ω0 and ω1 could be found for 10 UAVs such that the area is
covered within the planning horizon (2000 time steps). This
is an indication of the mutual blocking problem which gets
more prominent as the number of UAVs increases and the
communication range decreases. Since the genetic algorithm
has a probabilistic part, the simulations for TSPP are run
5 times and the results also include the standard deviation.
It can be seen by the slight decrease of the coverage time
that TSPP can exploit the increasing number of UAVs since
the supporting UAVs visit sensing locations that have not to
be visited by the leading UAV which results in a shortcut
route. SHC cannot make use of the increasing number of
UAVs because the reconfigurations to the final desired trees
consume more time with increasing fleet size but it can
outperform the others with small number of UAVs.



Algorithm 3 tspp
Input:

sensing locations S, partition (S0,S1, . . . ,SK)
Output:

path P

resume← true, objmin ←∞
while true do
V ← ∅, obj1 ← 0
for k = 1 to K do

T ← solve tsp(Sk)
(P ′

k,V
′)← generate pathes(T )

V ← V ∪ V ′

obj1 ← max{obj1, length(P ′
k)}

if |S0| > 0 then
T ← solve tsp(S0 \ V)
P ′
0 ← generate pathes(T )

obj0 ← length(P ′
0)

if max{obj0, obj1} > objmin then exit while loop
else

objmin ← max{obj0, obj1}
if obj0 > obj1 then

for k = 1 to K do
s← closest SL in S0 to any SL in Sk
if get min U({s}) ≤ get min U(Sk) then
Sk ← Sk ∪ {s}, S0 ← S0 \ {s}

else
for k = 1 to K do

s← closest SL in Sk to any SL in S0
if get min U({s}) ≤ get min U(Sk) then
S0 ← S0 ∪ {s}, Sk ← Sk \ {s}

if S0,S1, . . . ,SK did not change then exit while loop
else exit while loop

P ← combine paths(P ′
0, P

′
1, . . . P

′
K)
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Fig. 4. Comparison of the first coverage time with increasing number of
UAVs and decreasing communication range, and unlimited energy capacity
E. Due to mutual blocking with a high number of UAVs and small
communication range Rcom, SH is not able to visit all sensing locations in
the last scenario.

Figure 5 shows the effect of increasing fleet size with fixed
communication range Rcom = 8 (4 UAVs are necessary). It
can be seen that SH can exploit the increasing number of
UAVs when the communication range is large enough. The
drop in the coverage time for TT with 12 UAVs results from
the fact that there are enough UAVs to traverse the tree with
two teams simultaneously.

Next, we investigate the long term performance by plotting
the maximum age of all sensing locations over the time.
Figure 6 shows the result for 4 and 8 UAVs with unlimited
energy capacity. SHC is not able to maintain the persistent
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Fig. 5. Comparison of the first coverage time with different number
of UAVs, fixed communication range Rcom = 8, and unlimited energy
capacity E. The simple SH strategy can outperform the others because the
movement restrictions get attenuated with an increasing number of UAVs.
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Fig. 6. Comparison of the persistence performance with 4 and 8 UAVs,
fixed communication range Rcom = 8, and unlimited energy capacity E.
SH can outperform the other algorithms with 8 UAVs. SHC is not able to
employ the additional UAVs.

performance after the first coverage (time step 326 and 367
for 4 and 8 UAVs, respectively) because sensing locations
with high age get more distributed on the area over time and
the reconfiguration time of the UAVs increases and stays
high. As seen in Figure 5, SHC is not able to exploit the
increasing number of UAVs.

To see the effect of the energy constraints we compare SH
and TSPP with 4 UAVs, and set E to 50 and 100 (40 time
steps are necessary to reach the sensing location at the top
right corner and return to the base station). Because of the
bad performance of SHC and TT we do not investigate in
these algorithms with limited energy. Capacity values higher
than the first coverage time do not decrease the performance
considerably compared to the case with unlimited energy.
The results are plotted in Figure 7. SH needs considerably
longer for the first coverage with E = 50 but can improve its
performance over time. The reason is that sensing locations
are visited while the UAVs are returning to the base station
for recharge. This limits the age for the sensing locations
which then do not have to be considered for some time
thereafter. This reduces the number of sensing locations
that effectively have to be considered for visiting and the
performance in terms of maximum age increases over time.
This effect declines with increasing energy since the interval
between returns to the base station is longer. In Figure 8



0 500 1,000 1,500 2,000 2,500 3,000
0

500

1,000

Time steps

M
ax

.a
ge

SH (50) TSPP (50)
SH (100) TSPP (100)

Fig. 7. Comparison of the persistence performance with 4 UAVs, fixed
communication range Rcom = 8, and limited energy capacity E of 50 and
100 time steps. With small energy budget it takes longer for SH for the first
coverage (first peak of the plot).
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Fig. 8. Comparison of the persistence performance with 8 UAVs, fixed
communication range Rcom = 8, and limited energy capacity E of 50 and
100 time steps. With 8 UAVs SH can outperform TSPP in contrast to the
scenario with 4 UAVs.

the results of the same scenario with 8 UAVs are plotted.
In contrast to the scenario with 4 UAVs, SH is able to
outperform TSPP for all time steps.

V. CONCLUSION

We formulate and compare different algorithms for the
persistent surveillance problem with energy and communi-
cation constraints that use different planning horizons. Since
energy limitations and communication constraints have an
impact on the possible movements of the UAV, we formulate
existence conditions for a solution. We show that, given
enough UAVs attenuating the constraints, a simple short
horizon algorithm can make use of an increasing number of
UAVs to improve the mission performance although it cannot
guarantee to produce a valid solution. In other situations,
where the movement of the UAVs is severely limited by
the constraints, a patrolling based approach that finds a
solution given the existence conditions can outperform the
other approaches.
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