Private Space Monitoring
with SoC-based Smart Cameras

Ihtesham Haider
Institute of Networked and Embedded Systems
Alpen-Adria-Universitit Klagenfurt, Austria
ihtesham.haider @aau.at

Abstract—Cameras and other sensors are increasingly de-
ployed for private space monitoring applications such as home
monitoring, assisted/enhanced living and child monitoring. Since
these cameras capture highly sensitive information and transfer it
over public communication infrastructures, security and privacy
is a major concern. This work presents a secure camera device
along with a secure data delivery and archiving solution for
private space monitoring applications using untrusted public
cloud storage services. Integrity, authenticity, confidentiality and
freshness of captured data are protected on-board using physi-
cally unclonable functions (PUF). The protection holds true for
entire lifetime of the data until it is consumed by an authorized
end-user. Experimental results obtained from our Zynq7010 SoC-
based prototype shows that the device is able to secure videos
with 30 frames per second at 640x480 resolution with marginal
overhead. The presented solution is not limited to visual sensing
but can be applied to a wide range of pervasive sensing and
secure data delivery scenarios.

Index Terms—Private space monitoring, smart camera, secu-
rity, privacy, physically unclonable function, PUF

I. INTRODUCTION

Since visual data contains information about the identities
and behaviors of observed individuals, security and privacy of
the captured data have always been a critical issue in visual
sensor networks (VSNs). With emergence of IoT, VSNs are
becoming increasingly popular in various private space mon-
itoring applications such as smart homes, assisted/enhanced
living, child monitoring and home security. A generic archi-
tecture for such applications is shown in Fig. 1. One or more
smart cameras monitor the space for events of interest. Upon
event detection, an alert message is sent to an end-user and the
video data capturing the event is uploaded to a cloud storage.
Upon upload, a push notification is sent by the cloud server
to the end-user who then downloads the data.

The growing software stack on today’s smart camera nodes
and inevitable use of Internet for communications and storage
have tremendously increased the attack surface area of these
applications. Data security and user privacy are key require-
ments that must be met for widespread adaption of these ap-
plications. Considering the infrastructure of Fig. 1, an attacker
may get access to the sensitive image data compromising the
privacy of the monitored individuals, introduce fake data in the
network by injecting malware in vulnerable software stack of
the nodes or gain either full or partial control of some nodes
in the network to launch degradation-/denial-of-service attack.

Bernhard Rinner
Institute of Networked and Embedded Systems
Alpen-Adria-Universitit Klagenfurt, Austria
bernhard.rinner @aau.at

Public cloud
storage server

forward requested data

Data nonrepudiation?
Data confidentiality?
Access authorization?
Data freshness?

upload notification

e
mrrnn —

Internet

Smart cameras monitoring
private spaces

End-user monitoring
devices

Fig. 1. A high level infrastructure of private space monitoring applications
depicting security and privacy requirements

To prevent attackers from mounting these attacks the sensor
nodes need to be secured.

Winkler and Rinner [1] have recently surveyed security
threats prevalent in today’s VSNs and corresponding security
requirements to counter these threats. Data protection is typ-
ically implemented at application level. Considering that an
attacker has modified the underlying OS, middleware or hard-
ware, data security can be completely bypassed. Consequently,
node security is a requirement for high-level data protection.
According to the survey, data protection encompasses data
integrity, authenticity, confidentiality, freshness and access au-
thorization whereas node security subsumes firmware integrity,
authenticity, cloning prevention, hardware tamper detection,
resistance to side-channel and denial of service attacks.

We present a smart camera node implemented as a system
on chip along with a secure data capturing, archiving, and
delivery solution using untrusted public cloud storage services.
Data and node security is provided on-camera using CMOS
fingerprints which are extracted by a physically unclonable
function (PUF). The PUF-based solution is lightweight, tightly
integrated with the sensor’s hardware fabric and can be easily
mapped onto existing smart camera nodes.

The contributions of this work are threefold:

e« We present a hardware and software architecture of a
SoC-based visual sensor node. The node extracts its
signing and encryption keys from on-chip PUF. Captured
video data and metadata is encrypted-then-signed on
camera using the platform-bound security keys to ensure

System Platform

Software

Computer Vision Security

Atmegal28 MCU @7.3MHz,
XC2C256 CPLD @16MHz,
64kB RAM

Cyclops [2]: 2 fps @64 x 64

PXA270 @624MHz,

CITRIC [3]: 30 fps @640 x 480 64MB RAM

. Blackfin DSP @400MHz
. @ »
PrivacyCam [4]: 4 fps @320 x 240 30MB RAM
ARM Cortex A8 @480MHz,
TMS320C64x+DSP@360MHz,
Atmel TPM, 256MB RAM

TrustCAM [5]: 10 fps @320 x 240

ARM Cortex M4 @168MHz,
2x2MB SRAM,
Atmel TPM

TrustEYE [6]: 16 fps @640 x 480

Drivers, Libraries,
Applications

Embedded Linux,
Drivers, Libraries,
Applications

uCLinux
Embedded Linux,
Drivers, Libraries,
Applications

Embedded Linux

Hand posture recognition

Compression,
Background subtraction

Frame encryption

Compression ROI encryption,

ROI extraction,
Compression

ROI encryption,
Frame signing

Compression Frame encryption,
Signing frame-group

(group = 25 frames)

Zynq7010 SoC @666MHz,

PUF-enabled-SoC based Secure 1GB DDR3 SDRAM

Camera: 30 fps @640 x 480

Embedded Linux
Drivers, Libraries
Application framework

Compression,
Motion detection

Secure keys storage,
Encrypt-HMAC-Sign footage,
Secure boot, Tamper resistance

TABLE I
COMPARISON OF SOME EXISTING SMART CAMERA PLATFORMS WITH THE PROPOSED DEVICE (LAST ENTRY) WITH RESPECT TO HARDWARE PLATFORM,
SOFTWARE STACK, SECURITY FEATURES AND ACHIEVED FRAME-RATE

non-repudiation, confidentiality, freshness and access au-
thorization of the data before sending/archiving it over
untrusted public infrastructure. Additionally, secure boot
of the SoC verifies integrity, authenticity and unclon-
ability of camera firmware. Hardware tampering can be
detected due to tamper evidence property of the on-chip
PUF. Compared with TPM, the PUF-based solution to
secure camera nodes is cost effective, tightly integrated
and does not require any additional specialized hardware.

o By leveraging the SoC-based secure visual sensor node,
we propose a solution for secure capture, archival and
delivery of video data for private space monitoring ap-
plications. The solution does not rely on secure cloud
storage rather data protection is applied on camera before
it leaves the sensing device.

o We present a Zynq7010 SoC-based camera prototype that
is capable of securing 30 fps at 640 x 480 resolution.
The proposed approach incurs only 371 bytes of storage,
2488 logic-gates of hardware and ~160 bits/footage of
transmission overhead on the node, which is insignificant
compared to using trusted platform modules (TPMs) to
secure visual sensor nodes.

II. RELATED WORK

The section presents related work in the areas of VSN
platforms and different approaches to secure data and nodes.
A visual sensor node hardware typically consist of an im-
age sensor array and a host processing platform. The host
generally runs an embedded operating system (OS); specific
applications are deployed on top of the OS. An early VSN
device, Cyclops [2], is based on 8-bit Atmegal28 clocked at
7.3MHz and has 64kB RAM. It uses dedicated logic (CPLD)
for capturing frames at CIF resolution. However, computer
vision algorithms and standard asymmetric cryptography is
typically not feasible on such resource constrained platforms.
CITRIC [3] offers higher performance capacity by employing
PXA270 processor clocked at 624MHz and 64MB RAM. As

a result, it enables on-camera distributed pattern recognition,
computer vision and security algorithms that reduces network
communication overhead.

Mohanty [7] presents a secure digital camera concept with
a built-in watermarking and encryption for digital rights
management of the video data. Authenticity of images is
achieved by watermarking. To meet the real-time comput-
ing requirements, FPGA implementation of invisible-robust
watermarking and advanced encryption standard (AES) is
proposed. PrivacyCam [4] is a privacy preserving camera for
surveillance based on uCLinux on Blackfin DSP clocked at
400MHz with 32MB of RAM and Omnivision OV7660 image
sensor that secures 4 fps at 320 x 240 resolution. Privacy
is achieved by encrypting the regions of interest in each
frame using AES. This allows to monitor behavior of people
meanwhile obfuscating their identities. Only authorized people
(having access to decryption key) have full access to reveal
identities and behavior. Stifler et al. [8] presents monochrome
CMOS active pixel image sensor with on-chip cryptographic
engine that has digital encryption and authentication circuits
to provide data integrity, confidentiality, and non-repudiation.

Approaches to secure VSN nodes mainly fall in two cat-
egories: secure camera approach and trustworthy sensing. A
secure camera approach aims a holistic security solution ad-
dressing all layers of a camera stack including the applications,
middle-ware, OS, and the hardware. In our previous work, we
followed this approach in TrustCAM [5] where we integrated a
trusted platform module (TPM) into camera node. Anonymous
attestation and time-stamping features of the TPM were used
to protect the integrity, authenticity and confidentiality of the
image data. This approach has following limitations: (i) since
security has to be meshed with the application logic, it is often
left over to the application developers responsibilities and (ii)
the large size of software components such as the OS and the
network stack makes it difficult to effectively secure them.

TrustEYE [6] followed the trustworthy sensing approach
which aims to protect the captured images closer to the

sensor. Our TrustEYE node comprised Omnivision OV5642
image sensor and ARM Cortex M4 processor. We integrated
TPM into the sensing unit, which has exclusive access to
the sensor’s data. Integrity, authenticity, confidentiality and
freshness of the sensed data are ensured at the sensing unit
using 2048-bits RSA keys. The platform is able to process and
secure 640x480 frames at 16fps. TPM-based trusted image
sensor approach incurs significant hardware overhead on the
resource constrained sensing unit. Another major limitation of
trustworthy sensing approach is that once data is signed within
sensor, any legitimate modification (processing, compression
etc.) of data at host processor stage invalidates the security
guarantees.

We overcome these limitations by fingerprinting smart
camera using lightweight security circuits called physically
unclonable function (PUF). The fingerprint serves as entropy
source for cryptographic keys. On-chip PUF provides secure
storage for keys, binds the keys to camera hardware and
makes the hardware tamper evident. Data protection is intrin-
sic feature of the node. Integrity, authenticity and freshness
of data are ensured by digitally signing the timestamped
video footage. Privacy and access authorization are ensured
by end-to-end encryption of the frames. Since data security
is implemented in camera firmware, integrity, authenticity
and unclonability of camera firmware is ensured by secure
boot. Unlike TPM, the PUF-based solution is lightweight,
tightly integrated with the sensor’s hardware fabric and can
be trivially mapped onto the existing camera hardware. To the
best of our knowledge, this is first attempt to secure VSN
devices using PUFs. The proposed security mechanism is not
limited to smart cameras but can be extended to other sensors
and IoT nodes for privacy-protected, secure data delivery.
A comparison summary of some existing platforms and the
proposed device is given in Table L.

III. PRIVATE SPACE MONITORING

To illustrate our approach, we consider private space moni-
toring scenario of Fig. 1. Vulnerable OS on the camera nodes
and use of public infrastructure for video data transmission
and archival necessitates protection of this data closer to the
source. Data protection includes data integrity, authenticity,
confidentiality, freshness and access control. Since data secu-
rity is implemented at application level, in order to ensure
effective security guarantees, underlying software and hard-
ware stack of the camera node needs to be protected as well.
Node security requirements include integrity, authenticity and
unclonability of camera firmware, resistance against hardware
tampering and side-channel attacks. Below we provide an
overview of our scheme for secure data capture, archival and
delivery in the given private space monitoring scenario.

A. Overview

In order to keep the cost of the camera device low, we
do not assume availability of permanent storage of videos on
the camera. During monitoring, we leverage the public cloud
storage for long-term video archiving. To limit the amount of

data transmitted by the camera device, archiving is triggered
upon event detection. The event can be triggered internally
(e.g., by on board analytics) or externally (e.g., by auxiliary
sensors or a request from the end user). We assume that
integrity and authenticity of an external source is verified
before triggering an event. Data security is an integral part of
the sensing device. Integrity, authenticity, confidentiality and
freshness of data is ensured on the sensing device before it
is uploaded to the cloud storage. The security guarantees on
the sensed data are ensured for entire lifetime of the data.
Confidentiality is ensured by encrypting each video frame
using AES128 encryption algorithm. Integrity and authenticity
are ensured by signing the hash-chain of encrypted frames
using our PUF-based Cert-IBS scheme [9]. PUF-based Cert-
IBS and AES128 algorithms use platform-bound security keys.
On-chip PUF binds the signing and encryption keys to VSN
device hardware and serve as secure key storage. On event
detection, encrypted-hashed-signed footage is uploaded to a
public cloud storage server and an alert message is sent to the
end-user who can then download the archived footage from the
cloud on demand. Integrity, authenticity and freshness of data
is ensured by verifying PUF-based Cert-IBS signatures. Only
the authorized end-user (i.e., having access to the decryption
key) can decrypt the frames.

In order to bind cryptographic keys with camera platform
and limit data access to only legitimate end-user, the scheme
requires two steps namely fingerprint extraction and key ex-
change to be performed before the camera can be deployed for
monitoring. Fingerprint extraction is performed by a trusted
authority (TA) in a secure and trusted environment during
camera development stage. During this step, TA extracts
unique fingerprint of the camera hardware using on-chip PUF.
The fingerprint is used to bind the signing and encryption
keys with the hardware. When the camera is powered off,
these keys exist in form of CMOS manufacturing variations
of the hardware which are hard to read. At power-up, the keys
are extracted from the hardware using PUF. Key exchange is
performed by the end user before deploying the camera for
monitoring. During this step, the end-user transfers signature
verification and decryption keys from the camera device to her
monitoring device such as smartphone or tablet via a local
interface e.g., NFC. Since the connection is local (without
involving the Internet), it is assumed that the keys are not
leaked to a third party. Afterwards, the camera is deployed
for monitoring. The fingerprint extraction, key exchange and
monitoring phases of our scheme are depicted in Fig. 2.

In remainder of this section, we briefly discuss security
preliminaries in section III-B and detail the three phases of our
scheme: fingerprint extraction in section III-C, key exchange
in section III-D and monitoring in section III-E.

B. Security Preliminaries

Since the proposed scheme uses a PUF framework to bind
cryptographic keys with camera platform and PUF-based Cert-
IBS scheme to ensure non-repudiation of data, we introduce
the framework and PUF-based Cert-IBS scheme first.

}ﬁ'&% Camera fingerprint Cryptographic Keys

Trusted authority (TA) extracts camera fingerprint by incorporating PUF on camera.
Signing and encryption keys are extracted from noisy fingerprint using PUF framework

z
]
e
o
<
«
E
x
w
=
4
T
o
[
w
]
z
'S

MOBILE
Camera
w
g Verification and
< decryption keys
X
£
z 4
@
x End-user transfers verification and decryption keys
from smart camera to MOBILE device locally
Event-triggered On-demand data
data upload delivery
Cloud Storage
o
=
o
<]
=
8
= 4

MOBILE

Camera

On-board mechanisms for integrity,
authenticity, confidentiality and
freshness of data

Verification of data integrity, authenticity,
confidentiality and freshness done using
keys obtained during key exchange

Fig. 2. The fingerprint extraction, key exchange and monitoring phases of
proposed scheme for privacy-aware secure private space monitoring using
PUF-enabled-SoC based camera node. Fingerprint extraction is performed
once in a secure and trusted environment whereby the platform-bound unique
cryptographic keys are created. During key exchange, the end-user shares
verification keys with her monitoring device using a local interface. Thereafter,
the camera is deployed for monitoring.

PUF Framework. Physically unclonable functions (PUF) are
special lightweight circuits that use the CMOS manufacturing
process variations to generate the fingerprint of the underly-
ing hardware. A PUF circuit provides a challenge-response
mapping that is based on the uncontrollable variations in the
physical structure of the integrated circuit (IC) introduced
during the manufacturing process. These variations are random
and unique for each instance. Moreover, the chip manufacturer
is not able to control or forge these variations (physical
unclonability).

Multiple responses from the same PUF instance obtained
under different environmental conditions (e.g., temperature) or
operating conditions (e.g., voltage supply) slightly differ from
one another. These variations are referred to as PUF noise
or error-rate and are measured as intra-Hamming distance
(HD*re), Uniqueness of a PUF mapping is measured in
terms of inter-Hamming distance (H D*") which is a mea-
sure of how different two responses from two PUF instances
are. Randomness of a PUF response is measured in terms of
Hamming weight (HW) of the response. Ideally, maximum
HD™re ~ 0%, average HD™*" ~ 50% and average

HW = 50%. In order to extract uniformly distributed random
and perfectly reproducible fingerprint from the noisy and
biased PUF response, helper data algorithms (HDAS) are used.
Our scheme requires the flexibility of masking an externally
generated cryptographic key with the device fingerprint; there-
fore we use the HDA due to Tuyls [10]. The PUF framework is
comprised of two modules: the PUF and the HDA and works
in two phases: key binding and key extraction.
1) Key Binding: W « Gen(r, k)
It is a one-time protocol carried out by a legitimate
authority on the PUF in a secure environment to generate
helper data W. A challenge c is applied to the PUF
and response 7 is obtained. The authority then chooses a
random key k € {0, 1}* and calculates the corresponding
helper-data as W <+ r®Cy, where C is the nearest code-
word chosen from the error-correcting code C, with 2% —1
code-words. W is integrity protected public information.
2) Key Extraction: k < Rep(r', W)
It is performed every time the key extraction from the
PUF is desired. The PUF is subjected to the same
challenge c and a noisy response 1’ is obtained. The code-
word is then calculated as Cy < ' @ W. If r' corre-
sponds to the same challenge c¢ applied to the same PUF,
k is obtained after decoding Cxs using W otherwise an
invalid code-word is obtained i.e., k < Decoding(Cy/),
if Hamming distance(Cy,Cyx/) < t, where ¢ is error-
correction capacity of C.

This PUF framework offers following key advantages: (i)
it binds a unique key with a PUF-enabled hardware (ii) it
provides secure storage of the key since the key is derived
from device properties during start-up. When device is off,
the key exists in form of unreadable CMOS manufacturing
variations (iii) it offers more cost-effective secure key storage
than a secure memory alternative.

PUF-based Cert-IBS. The PUF-based Cert-IBS [9] is based
on the framework [11] to construct certificate-based identity-
based signature (IBS) scheme from a standard signature (SS)
scheme. A typical SS comprises three algorithms: key gener-
ation (K), signing (Sign) and verification (Ver). PUF-based
Cert-IBS uses a key generation authority. To setup PUF-based
Cert-IBS, the authority generates master key-pair (msk, mpk)
using K. We denote a camera-platform with a unique identity
I and a PUF by CAM(, PUF). For CAM(I, PUF), the
authority generates a unique signing key pair (sk;, pky) using
the key generation algorithm K of SS and binds sk; with
the on-chip PUF' using the PUF framework i.e., Wy,
Gen(ry, skr). Further, the authority issues a certificate on the
corresponding public key given by cert; < Signmsi(pkr, I).
PUF-based Cert-IBS signature of CAM(I, PUF) on video
data frames[l: N] is given by (o,cert;), where o <«
Signgi, (frames[l: N]). PUF-based Cert-IBS verification
is successful if Verpg, (frames[l: N],c) = 1 and
Vermpr(I, certy) = 1. Successful Cert-IBS verification en-
sures that data frames[l: N] is signed by CAM(I, PUF)
with its platform-bound private key, assigned and bound to

CAM(I, PUF) by the legitimate authority. For detailed con-
struction and security properties of PUF-based Cert-IBS, we
refer the reader to [9][11].

C. Fingerprint Extraction

In our scheme, TA serves as the key generation authority. To
setup our scheme for private space monitoring, TA generates
a master key pair (msk, mpk). Further, it assigns each camera
a unique identity I and instantiates a PUF. Serial number of
the sensor or a unique bit-string written to on-chip one-time
programmable (OTP) memory can be used as I. We denote
camera with identity I and on-chip PUF instance PUF as
CAM(I, PUF) and the trusted authority with master key pair
as TA(msk, mpk). During fingerprint extraction, the authority
TA(msk, mpk) binds a signing key pair (sk, pk) and an AES-
encryption key (kg) to the camera node CAM(I, PUF') using
the camera fingerprint as follows:

1. CAM(I, PUF): Presents its identity [to the TA
2. TA(msk, mpk): Chooses two challenges (cy,c2) and
feeds them to the PUF on CAM
3. CAM(, PUF): Obtains the PU F' responses to the chal-
lenges as 1 <~ PUF(cq) and ry <~ PUF(c3) and
returns (r1, r9) to the TA
4a. TA(msk, mpk): Generates a signing key-pair (sk, pk)
using key generation algorithm of PUF-based Cert IBS.
Using the key-binding algorithm of PUF-framework, it
binds the private-half of the key-pair to PUF using 7;
i.e., Wi < Gen(r1, sk). Further, TA issues a certificate
consisting of its signature on the CAM’s identity and
public half of the key-pair i.e., cert < Signmsk (I, pk)
4b. TA(msk, mpk): Picks a random key kg and binds it to
the PUF on CAM using 7y i.e., Wo « Gen(ra, kg)
5. (W1,Ws, cert) are stored in non-volatile memory (NVM)
on camera

D. Key Exchange

Before an end user deploys the camera, she transfers identity
1, certificate cert, verification key pk, and decryption key
kg to her monitoring device (smartphone, tablet etc.) using
a local interface such as NFC. Since the transfer is done
in a private space using a local connection, it is assumed
that kg is not transferred to a third party. Securing the keys
on mobile devices with vulnerable software stack is out of
scope of this work however, well established techniques such
as virtualization [12] (isolates applications requiring trusted
infrastructure) and secure vault can be leveraged for this

purpose.

E. Monitoring

On camera power-up, the signing and encryption keys are
generated from noisy PUF' responses using key extraction
phase of PUF-framework i.e., sk <= Rep(r}, W1) and kg <
Rep(rh, W3). In case of an event, each video frame is en-
crypted using AES128 algorithm to ensure confidentiality. The
non-repudiation on the data is ensured by using MAC-then-
sign technique. First, each encrypted frame is hashed using

Fig. 3. Zynq7010 SoC and OV5642 image sensor based smart camera: It
ensures video data integrity, authenticity, confidentiality and freshness using
camera fingerprint extracted from hardware using on-chip PUF

HMAC algorithm to ensure integrity. Second, hash-chain from
all encrypted frames in the footage is signed using PUF-based
Cert-IBS scheme. Signing the entire hash-chain together pre-
serves the frame order. A timestamp (7) is also included in the
signature to ensure freshness of data and thwart replay attacks.
We denote the camera with identity I, on chip PUF instance
PUF and helper data (W7, Wy) as CAM(I, PUF, W1, W5);
and the associated end-user monitoring device with camera’s
identity I, signature verification key pk, certificate cert and
decryption key kp as MOBILE(/, pk, cert,kg). The steps
during the monitoring phase of security scheme are listed as
follows:

1. CAM(I, PUF, W7, W5): Keys extraction from PUF
sk < Rep(ry,W1); kg <+ Rep(rh, Ws)
2. CAM(I, PUF, Wy, W5): Encrypt each frame
C; + Encg,(frameli])] ; = 1.N
3. CAM(, PUF,W1,W5): Hash the encrypted frames
hi < HMAC(CZ)‘ i = 1...N
4. CAM(, PUF, W, W53): Timestamp and sign the footage
T = SHA256(I || event_count)
o« Signgg(hi|[hi-1 ||+ |[hi-n || T)

5. CAM(I, PUF,W;,W5): Upload the encrypted-then-
MACed-then-signed frames {C;, 7, 0 };—; . n to the cloud
storage

6. MOBILE(/, pk, cert, kg): Download the footage on-

demand
7. MOBILE(, pk, cert, kg): Verify the Cert-IBS signature

1+ Vermpr(cert, (I, pk))

?
1= Verpi(o, (hillhi-1|[- || hi-n || 7))
8. MOBILE(, pk, cert, kg): Decrypt the frames to get
video data

frameli] < Deck,(Ci)| i = 1.~

IV. PROTOTYPE

The prototype (Fig. 3) is based on SMP OV5642 image
sensor module and MicroZed board, which houses Zynq7010
SoC clocked at 666MHz, 1 GB external RAM for frame
buffering and a gigabit Ethernet interface to upload video

Task 1 Task 2 ‘ Task 3 ‘

Application Framework

‘ Task N

System Libraries ‘ User Libraries

Linux Kernel

ARM Cortex A9 MP Core

CPl | RGMII

5MP OV5642 FPGA

Image Sensor

1GB DDR3

SDRAM Gb Ethernet

Fig. 4. Hardware (gray) and software (white) stack of Zynq SoC-based camera
prototype. Hardware comprises of SMP OV5642 image sensor, Zynq7010
SoC having FPGA and ARM Cortex A9 core. The software stack comprises
embedded Linux kernel, system and user libraries and application framework

footage to cloud server. A custom board (green) was designed
to interface the image sensor with the MicroZed board and
regulate power to both the modules. Our Zynq SoC-based
smart camera leverages on-chip PUF to extract camera hard-
ware’s fingerprint which serve as basis for on-camera data
protection. Data security is rooted in the system hardware
making it an intrinsic element of the device and therefore
harder to bypass. Video data processing and protection is done
inside the SoC and the data leaves the chip with integrity,
authenticity, confidentiality and freshness guarantees. This
makes the platform suitable for monitoring applications that
use untrusted cloud storage services for short or long term data
archival. The prototype is able to protect 30 fps at 640 x 480
resolution.

Hardware and software stack of the camera node are de-
picted in Fig. 4. The camera hardware consists of OV5642
SMP CMOS image sensor, Zynq7010 SoC, 1GB SDRAM
and a gigabit Ethernet interface. The SoC comprises ARM
Cortex A9 processor clocked at 666MHz and FPGA fabric.
The processor runs embedded Linux that hosts system libraries
(OpenSSL, GMP, libjpeg etc.) and user libraries (pbc, motion-
detection etc.) to be used by the applications. The application
framework (Fig. 5) is divided into four stages: sensing tasks,
processing tasks, security tasks and communication tasks.

Sensing tasks entail reading the image sensor and format
adaptation. OV5642 image sensor is configured to provide
data in 640x480 (resolution) 8-bit YUV422 (color-space)
format. Processing tasks subsumes video compression and
event detection by behavioral analysis of video data. Video
compression is achieved using JPEG compression engine on
the OV5642 sensing unit. Motion is detected using three-
frame differencing algorithm by Collins et al. [13], where
image difference between frames at time ¢ and ¢ — 1 and the
difference between t and t — 2, is performed to determine
regions of legitimate motion and to erase ghosting. The event
is triggered if motion is greater than a predefined threshold.
Frames are conditionally forwarded to security tasks in case
of event detection.

Security tasks implement data security as well as node
security. Data security related tasks perform the following:
After device power-up, encryption and signing keys are ex-
tracted from the ring oscillator (RO) PUF implemented using

reprogrammable fabric and are loaded into cache. Each frame
is encrypted using AES128 to ensure data confidentiality. The
encrypted frames are MACed-then-signed to ensure integrity
and authenticity of data. MAC checksum of each encrypted
video frame is computed using HMAC-SHA256. Checksums
from all frames in the video are concatenated and signed
together using the PUF-based Cert-IBS scheme with BLS [14]
as underlying standard signature scheme; this preserves frame
order and protects against attacks aimed at manipulating order
of the frames. Freshness of data is ensured by including a
timestamp 7 before signing the checksums. For timestamp
generation, the camera uses an event counter that increments
whenever an event is detected. Given that an event is detected
by motion detection algorithm and the event counter is incre-
mented to event_count, then timestamp is calculated as 7 =
SHA256(! || event_count). A time-stamp value holds true
only for a specific event event_count detected by camera
device I. Following the event event_count, the footage is
timstamped with 7. The value of 7 should not repeat among
footages of different events detected by the same camera or
among footages from different cameras. This simple check
deters replay attacks. It is important to note that encryption
and hashing is performed on frames whereas time-stamping
and signing is performed on the complete footage.

Node security is enforced by secure boot of SoC and on-
chip PUF. Zynq7010 SoC provides secure boot functionality as
part of its boot procedure that verifies authenticity and integrity
of the camera firmware based on digital signatures, message
authentication code (MAC), and encryption. Boot-chain of
Zynq7010 SoC is depicted in Fig. 6. Secure boot foundation
is established by the placing boot ROM code in masked
ROM (one-time programmable memory). Each successive
component of the boot-chain is signed using RSA key and
MACed-then-encrypted using HMAC and AES256 algorithms.
During every boot up, the chain of trust is established by
the successive verification of signature (authentication), MAC
(integrity) and decryption (confidentiality) of all software i.e.,
FSBL, bitstream, u-boot, OS, and apps. This prevents an
adversary from tampering with software or the bitstream file.
Zynq SoC contains hard IP cores for AES decryption and
HMAC computation. The boot time of a secure Linux system
is approximately the same as a non-secure system. Incorporat-
ing PUF into a chip makes the chip tamper evident [15]. Since
PUF behavior depends on the underlying silicon fabric, any
tampering with this fabric modifies the PUF behavior, thereby
modifying the camera fingerprint. This leads to generation
of incorrect signing and encryption keys thereby incorrect
signature and cipher text, which is detected by the verifier.

Data with confidentiality, integrity, authenticity and fresh-
ness guarantees is then forwarded to Ethernet module for
uploading. The prototype merely demonstrates proof of the
concept and can be extended with wireless communication
capabilities such as WiFi. The block diagram of the node
showing core modules of video data path and their mapping
on hardware components is depicted in Fig. 7.

Sensing Tasks

Processing Tasks

Motion
detection

Configure Read the Format
sensor sensor adaptation

Compression[—>|

Communication Tasks

double Encrypt | || Sign double Upload via
buffer, frame footage buffer Ethernet

e

| Key Extraction from PUF |

> 640x480 JPEG

> > 640x480 Enc-MAC-Signed JPEG >

Fig. 5. Application framework of proposed camera comprises sensing tasks, processing tasks, security tasks and communication tasks. The sensing tasks
read image data from the sensor gives it desired format. The processing tasks include the application logic (e.g., event trigger based on motion detection).
Data is conditionally forwarded to security tasks in case of event detection, where frames are encrypted-MACed-signed. Protected frames are forwarded to

communication tasks for upload

BOOtROM [y | gp. (| _FPGA Lyl i goot | Linux0s Apps
Code Bitstream

Fig. 6. Chain of trust for secure boot of Zynq7010 SoC

0V5642 Sensing Unit | RDRSISDRAW |
o c c
g . S S |o)
I} o) B E= <)
15} 2| 8 8ol 8 | o
5 s | g |23 |8
lll:l 3 g— ola é LE 5 Ethernet|
) = = |25l < =)
© =3 c |low

S E1S el 2ls |&
= S (O] < o Y
g i w =
E o T

= < ’fl:‘f sk *

1 1

| Keys Extraction |<—| PUF |

Control Input

Fig. 7. Block diagram of SoC-based secure camera that depicts core
components of camera hardware (gray) and software tasks (white) performed
by these components

FPGA

V. EVALUATION

This section discourses on security properties of the pro-
posed scheme and provides overhead incurred on camera node
as well as end-user monitoring device due to the proposed
scheme in terms latency, storage, hardware and transmission.

A. Security Properties

Data and node security properties of the proposes scheme
are as follows:

o Secure Key Storage. Secure storage of the keys is
ensured by on-chip PUF. On camera power up, the keys
are generated from intrinsic variations of the hardware
structure and are loaded into cache. When the camera de-
vice is off, the keys exist in form on unreadable variations
introduced in the hardware by the CMOS manufacturing
process. Compared to secure memory alternatives, PUF
offers much cheaper secure storage.

« Platform-bound Keys. The PUF-framework binds sign-
ing and encryption keys to the camera platform. The
signing key never leaves the platform thereby minimizing
the risk of key compromise.

« Data Non-repudiation. All video data leaving the cam-

era carry integrity and authenticity guarantees. Authen-
ticity is ensured by signing the video data using platform
bound signing key. PUF-based Cert-IBS with BLS [14]
as underlying standard signature scheme is existentially
unforgeable under chosen message attack (uf-cma se-
cure), which is the standard security notion for a digital
signature algorithm. Any modification or fabrication of
data during delivery or archival can be detected at the end
user monitoring device. Spoofing using offline images can
be addressed by using multiple sources for event detection
e.g., on-camera motion detection and sound detection.
Data Confidentiality. Privacy of the monitored individ-
ual(s) is ensured by end-to-end encryption of each frame
using AES128 algorithm.

Access Authorization. Secure key exchange and key
storage on end-user monitoring device ensure that only
legitimate end-user can access the decrypted video data.
Data Protection Lifetime. Data is protected close to the
source (sensor) and the security guarantees on the data
remain valid for entire lifetime of the data (i.e., during
transmission, storage on cloud and delivery to monitoring
device of end user). On the monitoring device, the data
is consumed after successful verification of the security
guarantees.

Camera Firmware Protection. During camera devel-
opment, using secure-boot feature of Zynq SoC, each
component of boot-chain (BootROM Code, FSBL, FPGA
Bitstream, U-Boot, OS and Apps) is hashed (HMAC),
signed (RSA) and encrypted (AES256). During moni-
toring, at every boot-up, for every component of boot-
chain the signatures are verified, decryption is performed
and HMAC checksum is verified. This ensures integrity,
authenticity and unclonability of camera firmware.
Physical Security. First, On-chip PUF offers resistance
against hardware tampering of camera hardware. Since
the PUF extracts device fingerprint as a function of
intrinsic details of the hardware, any hardware tampering
is detected as it results in incorrect device fingerprint
and keys. Second, in a TPM based solution, data is
transferred from host processor to TPM chip (external to
the host), where data protection mechanisms are applied.

This results in exposed interface with unprotected data
which can be tapped to bypass security mechanism. With
incorporation of PUF in host SoC, these exposed inter-
faces are eliminated resulting in better physical security.

Next, we enlist some limitations of our scheme and identify
some additional countermeasures that may be appended with
our scheme to overcome these limitations:

o Side Channel Attacks. First, although security keys are
generated securely inside the SoC, keys generation on
every power-up opens up electromagnetic and power side
channels. Analysis of the side channel information be
result in partial recovery of keys at the hands of attackers.
Approved effective techniques, masking (e.g, reversible
process in which intermediate values of variables are
randomized by masked with random numbers) and hiding
(e.g., use of dual rail logic to flatten the data depen-
dent leakage) can be leveraged to thwart side-channel
attacks. Second, data upload is triggered upon every event
detection, the transmission pattern of the camera opens
up another side-channel that leaks e.g., whether or not
someone is at home. Transmitting dummy data at random
intervals is a simple countermeasure that can be added to
the system to mitigate this threat.

o Denial of Service. Denial of service attacks by (i)
the cloud, such as deleting the archived data, blocking
the downloads or (ii) a third party, such as corrupting
the video or control data in transit or storage are not
addressed by this scheme.

o Monitoring Device Security. The scheme uses symmet-
ric key encryption (i.e., same key for encryption and
decryption) since it is orders of magnitude faster and
less power hungry than an asymmetric key encryption.
However, symmetric key encryption requires secure key
exchange between the camera and monitoring device and
secure storage of key in the monitoring device. Key
exchange is done by the end-user in a private space
using a local interface, so the risk of key is relatively
low. On monitoring device with untrusted software stack,
virtualization, secure key vault or PUF can be used to
securely store the key.

B. Camera Node Overhead

This section computes overhead on camera node in two
phases: First, we discuss implementation of PUF framework
for secure storage and generation of signing and encryption
keys and compute overhead incurred by the framework on
camera node wrt. latency, storage and hardware. Second, we
evaluate the total overhead on the camera node due to sensing,
processing, security and communication tasks.

PUF Framework. We implemented 1040 3-stage ring oscil-
lators in FPGA fabric of the Zynq7010 SoC and evaluated
the PUF responses for noise, randomness, and uniqueness. A
total of 800 responses were obtained over a temperature range
of 0 — 60°C and HD™' (measure of noise/error-rate) and
HW (measure of randomness) were calculated. The same PUF

7 T 55 B
9 _ |
s R 545 ‘
£
£ =
a 54
I3 T

‘ 535
1 i i

Fig. 8. Quality parameters of RO PUF implemented on Zynq7010 SoC.
The PUF is comprised of 1040 3-stage ROs. Parameters are computed from
800 responses obtained over temperature range of 0 — 60°C. The mean and
max. error-rate (HD™*"®) is ~ 3.6% and 6.97%. The randomness of PUFs
(HW (mean)) = 53.95%.

was instantiated on 9 different Zynq7010 SoC based Microzed
boards and HD™™*¢" (measure of uniqueness) was computed.
The results of PUF error-rate and randomness are depicted in
Fig. 8. Average HD"** of PUF responses obtained the same
PUF replicated on 9 Zynq devices was computed as 49.1%.

The framework uses error correcting codes to correct PUF
error-rate/noise which results in perfectly reproducible keys
every time PUF-based key extraction is performed. Since the
maximum recorded error-rate amounts of 6.97%, we employed
two codes capable of correcting 10% error-rate: (i) a simple
code i.e., BCH(492,57,171) and (ii) a concatenated code i.e.,
RM(16,5,8)||Rep(5,1,5). The node uses 160 bit signing key
(sk) for BLS signature scheme and 128 bit encryption key
(kg) for AES128 encryption algorithm. Implementation results
for PUF framework for sk and kg generation are summarized
in Table II.

PUF Source Key Error Correcting | Hardware Latency Storage
Code (= Logic Gates) | (Key Extraction) | (Helper Data W)
ks (12B-biD) BCH 1106 1105 bits
RO RM || Rep 2049 < 100 ms 2048 bits
sk (160-bi0) BCH 1382 1381 bits
RM || Rep 2561 2560 bits
TABLE II

OVERHEAD DUE TO PUF FRAMEWORK FOR 128 BIT kg AND 160 BIT sk

Latency Overhead. Since keys extraction is performed only
once at power up whereas timestamping and signing are
performed once per footage, they do not incur latency during
runtime. At a resolution of 640 x 480, latency of camera’s
computer vision pipeline is 27ms (i.e., 37 fps). However
at the given resolution, the image sensor can only provide
30 fps. Therefore the prototype is able to secure 30 fps at
640 x 480 resolution. The running times for individual tasks
of the camera application framework are given in Table III.

Storage Overhead. Breakdown of memory overhead due to
components of the proposed security mechanism is given by
second and third rows of Table IV. First row shows size of
a double frame buffer used by event detection and Ethernet
tasks. In comparison to memory consumed by frame buffer

Module Runtime
PUF-based Keys Extraction (once at power-up) <100 ms
Event Detection 21.1 ms
Frame Encyption (AES128)f 3.4 ms
HMAC-SHA2561 2.5 ms
Footage Signing (BLS) 6.27 ms

1 values are averaged over 1000 frames

TABLE III
RUNTIMES FOR INDIVIDUAL MODULES OF APPLICATION FRAMEWORK
FOR THE ZYNQ7010 SOC-BASED SECURE CAMERA

(used by application logic), total storage overhead on the
camera due to proposed security mechanism is insignificant.

Module Memory

Double frame buffer
PUF-based Keys Extraction
Footage Signing

2x600kB
311B (helper data)
60B (cert, pk)

TABLE IV
MEMORY CONSUMPTION OF INDIVIDUAL MODULES OF APPLICATION
FRAMEWORK FOR THE ZYNQ7010 SOC-BASED SECURE CAMERA

Hardware Overhead. Hardware overhead is incurred on
camera node only if ring oscillators (RO) PUF is implemented
in FPGA part of SoC. This can be avoided by exploiting either
uninitialized SRAM or fixed pattern noise of image sensor,
which are inherently present in a typical camera platform.
Since SRAM on Zynq7010 gets initialized during SoC boot
up, it cannot be used as PUF. We implemented RO PUF to
generate the signing and encryption keys. The total hardware
overhead (Table II) for generating 160 bit sk and 128 bit kg
sum up to 2488 logic gates which is negligible as compared
to a TPM chip.

Communication Overhead. Given a private space monitor-
ing scenario, a camera with proposed security mechanism
uploads encrypted-MACed-timestamped-signed footage i.e.,
{C;,T,0}i=;. N to the cloud storage. The encrypted frame C;
is same size as original image. A 256-bit timestamp 7 and a
160-bit signature o are added to the footage for uploading.
For a footage comprised of N frames, total communication
overhead incurred on the camera device due to the proposed
scheme amounts only to 416 bits, which amounts to 0.008%
of a single frame’s size.

C. Monitoring Device Overhead

We carried out integrity, authenticity, confidentiality and
freshness verification on video data at monitoring device
side (see section III-E). We implemented the BLS signature
verification, AES decryption and HMAC-SHA256 algorithms
on ARM Cortex A9 processor running at 666MHz that is
compatible with today’s smartphone processor. The results of
verification are summarized in Table V.

VI. CONCLUSION

We presented SoC-based camera platform for secure moni-
toring applications where data and node security, rooted in the

Module Runtime
Frame Decryption 3.52 ms
HMAC-SHA256 2.5 ms

BLS Signature Verification 638.2 ms

TABLE V
RUNTIME OF VERIFICATION TASKS ON MOBILE DEVICE

hardware, are intrinsic features of the device. We demonstrated
capabilities of our Zynq7010 SoC-based camera with a private
space monitoring application. Platform bound unique keys
and local key exchange between cameras and monitoring
devices provide a scalable solution for secure data delivery
without trusting the cloud service provider. Ongoing work
includes exploring other nuances of privacy between end-
to-end encryption and full access. Image cartooning [6] is
one such intermediate privacy protection approach. Further
performance evaluation of the prototype for higher frame
resolutions is also under investigation.

ACKNOWLEDGMENT

This research has been supported by the Austrian Research
Promotion Agency under grant number 842432 and through
the research initiative “Intelligent Vision Austria”.

REFERENCES

[1] T. Winkler and B. Rinner, “Security and privacy protection in visual
sensor networks: A survey,” ACM Computing Surveys (CSUR), vol. 47,
no. 1, p. 2, 2014.

[2] M. Rahimi, R. Baer, O. I. ITroezi, J. C. Garcia, J. Warrior, D. Estrin,
and M. Srivastava, “Cyclops: in situ image sensing and interpretation in
wireless sensor networks,” in ACM Proc. SenSys 2005.

[3] P. Chen, P. Ahammad, C. Boyer, S.-I. Huang, L. Lin, E. Lobaton,
M. Meingast, S. Oh, S. Wang, P. Yan et al., “Citric: A low-bandwidth
wireless camera network platform,” in ACM/IEEE Proc. ICDSC 2008.

[4] A. Chattopadhyay and T. E. Boult, “Privacycam: a privacy preserving
camera using uclinux on the blackfin dsp,” in IEEE Proc. CVPR 2007.

[5] T. Winkler and B. Rinner, “TrustCAM: Security and privacy-protection
for an embedded smart camera based on trusted computing,” in /EEE
Proc. AVSS 2010.

[6] T. Winkler, A. Erdélyi, and B. Rinner, “TrustEYE. M4: Protecting the
sensorNot the camera,” in IEEE Proc. AVSS 2014.

[7]1 S. P. Mohanty, “A secure digital camera architecture for integrated
real-time digital rights management,” Journal of Systems Architecture,
vol. 55, no. 10, pp. 468-480, 2009.

[8] P. Stifter, K. Eberhardt, A. Erni, and K. Hofmann, “Image sensor for
security applications with on-chip data authentication,” in SPIE Proc.
Defense and Security Symposium 2006.

[9] 1. Haider and B. Rinner, “Securing Cloud-based IoT Applications with

Trustworthy Sensing,” in EAI Proc. CN4IoT 2017.

P. Tuyls and L. Batina, “RFID-tags for anti-counterfeiting,” in Springer

Proc. RSA 2006.

M. Bellare, C. Namprempre, and G. Neven, “Security proofs for identity-

based identification and signature schemes,” Journal of Cryptology,

vol. 22, no. 1, pp. 1-61, 2009.

[12] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Wald-

spurger, D. Boneh, J. Dwoskin, and D. R. Ports, “Overshadow: a

virtualization-based approach to retrofitting protection in commodity

operating systems,” in ACM Proc. SIGARCH 2008.

R. T. Collins, A. J. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin,

D. Tolliver, N. Enomoto, O. Hasegawa, P. Burt et al., “A system for video

surveillance and monitoring,” 2000.

D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil

pairing,” in Springer Proc. TACIS 2001.

R. Maes, “Physically unclonable functions: Constructions, properties and

applications,” Ph.D. dissertation, University of KU Leuven, 2012.

[10]

[11]

(13]

[14]

[15]

