
Towards a Secure Key Generation and Storage Framework on
Resource-Constrained Sensor Nodes

Michael Höberl
Alpen-Adria-Universität Klagenfurt

Technikon Forschungs- und
Planungsgesellschaft mbH

hoeberl@technikon.com

Ihtesham Haider
Institute of Networked and

Embedded Systems
Alpen-Adria-Universität Klagenfurt

ihtesham.haider@aau.at

Bernhard Rinner
Institute of Networked and

Embedded Systems
Alpen-Adria-Universität Klagenfurt

bernhard.rinner@aau.at

Abstract
Sensors have an essential role in the currently emerging

Internet of Things (IoT) whereby these resource constrained
nodes sense the environment, process the sensed data and
forward it to a central entity. As some of this data might
be sensitive in nature, it is crucial to ensure certain secu-
rity guarantees on the sensed data such as integrity, con-
fidentiality, and authenticity. Certain cryptographic primi-
tives offer these security properties based on the assumption
that each node is capable of generating and storing its se-
cret key securely. Existing solutions for secure key storage
are based on secure non-volatile memory. Physically Un-
clonable Functions (PUFs) are lightweight hardware secu-
rity primitives that bind a unique key to each device and pro-
vide resistance against key compromise attacks as the key
exists in form of hardware manufacturing variations, which
are difficult to read as compared to memory based alternative
solutions. Therefore, in this work we present a PUF-based
lightweight, secure key generation and storage framework
for resource constrained sensor nodes. Our implementation
of a ring oscillator (RO) PUF based key generation scheme
shows that the PUF based key generation consumes only a
small part of a typical visual sensor node’s resources.

Categories and Subject Descriptors
H.3.4 [Information Systems]: Information Storage and

Retrieval—Systems and Software

General Terms
Design, Security

Keywords
sensor nodes, IoT, physically unclonable functions, key

generation, key storage

1 Introduction
Sensor networks have shown great promise for enabling

a variety of applications including monitoring for safety and
security, identifying environmental pollution sources, track-
ing personal health parameters, and measuring traffic flows.
A number of attacks on these sensor networks have been
reported in literature, which necessitate protection of sen-
sor nodes, sensed data, and communications in these net-
works [12]. A lot of research on how to secure sensor nodes
and networks is currently underway. However, many of the
proposed solutions do not explicitly address the protection
of secret keys, which makes the key compromise a serious
security vulnerability. In this work, we address key com-
promise vulnerability by proposing a secure key storage and
generation framework for resource-constrained sensor nodes
based on Physically Unclonable Functions (PUFs).

In today’s age of pervasive computing, sensor networks
are increasingly becoming ubiquitous as well. Our motiva-
tion for this work are today’s emerging ubiquitous sensing
paradigms such as Internet of Things (IoT) and Participa-
tory Sensing (PS). These sensing paradigms have the poten-
tial to impact every day human life by applications spanning
health-care, urban sensing, citizen journalism, and law en-
forcement etc. The reliability of services offered by these ap-
plications, however, depends on the security of sensor nodes,
sensed data and communications. Security should therefore
be considered for next generation platforms in a systematic
way.

The scale and ubiquitousness of these networks present a
multitude of challenges in formulating a holistic security so-
lution [12]. First, the attack surface has immensely increased
potentially leading to new, unidentified attacks. Second, sen-
sors for these paradigms are envisaged to be heterogeneous,
so presenting a generic solution for a wide spectrum of sen-
sors is another challenge. Finally, the security solution must
be lightweight for resource-constrained sensors. A key issue
while addressing all these security challenges is the secure
key storage, which must be lightweight and cost-effective.
Physical Unclonable Functions [5] are promising candidates
for enabling a secure and lightweight key storage solution.

We propose a lightweight secure key generation and stor-
age framework based on PUFs for resource-constrained dis-
tributed sensor nodes. We implement the proposed key gen-
eration framework on a SoC, that is compatible with SoCs
used in today’s sensor nodes.



The reminder of the paper is structured as follows: Sec-
tion 2 introduces the concept of PUFs and highlights related
work. Section 3 discusses the PUF-based key generation
framework and its building blocks such as the helper data
algorithm and the PUF source. Section 4 describes the de-
sign of the framework’s building blocks. Section 5 gives an
overview of the implementation work done so far. Section 6
concludes this paper and summarizes next steps.

2 Related Work
A PUF is a function embodied in a physical object that

maps an input to an output. This mapping is based on the
physical structure of the object, whereas this structure is in-
fluenced by uncontrollable variations during the manufactur-
ing process and is believed to be unique for each instance.
Thus, two PUF instances have never the same mapping, as
the chip manufacturer is not able to control these process
variations. As the response is based on the physical structure
of the integrated circuit (IC), two responses from the same
instance differ also slightly from each other. A commonly
used measure for these variations is the so-called Hamming
distance, which is defined as the number of bits in which the
two responses differ. In the PUF context the intra-Hamming
distance is used to quantify the error rate, wheras the inter-
Hamming distance is a measure on how different two re-
sponses from two PUF instances are. Another prominent
feature of a PUF response is its Hamming weight, which is
defined as the sum of the bitstring and is thus a measure of
the ratio between ones and zeros.

In [6] a comprehensive overview of different PUF types
is given. Two well-known types are the SRAM and the ring
oscillator (RO) PUF. The former is based on the random
start-up values of SRAM cells and is therefore a member
of the memory based PUFs. The latter is based on the
delay within a ring oscillator and is thus a member of the
delay based PUFs. An additional classifier between PUFs
is their available challenge space which defines how many
challenges are available to generate independent responses.
The so-called strong PUF has a large challenge space and
is often used for authentication proposes, whereas the weak
PUF has a small challenge space and is often used for key
generation. Note, that the terms strong and weak do not
reflect the security of this PUF type in any kind.

Many cryptographic systems do not specify how the se-
cret key has to be stored in a system in order to circumvent
a possible key compromise. The underlying assumption is
that a system is capable of storing the sensitive key mate-
rial in a secure way for instance as in ZigBee [1]. Existing
solutions such as [4], [11], [9] and TrustEYE [10] rely on
TPM based secure non-volatile memory, which makes the
solution costly, resource consuming, and vulnerable to phys-
ical attacks. Authors of [14] proposed PUFs for secret key
generation for ARM Trustzone as an alternative to a secure
memory. However, the solution uses an external SRAM as
PUF source and thus this solution is not embedded anymore.

In this work we propose a PUF based secure key gen-
eration and storage as a framework for extremely resource-
constrained distributed sensor nodes. In comparison to se-

cure NVM, PUFs offer better physical security and enable
more tightly integrated solutions. Moreover, PUF based key
generation is extremely resource efficient and fast. As proof
of concept, we also implemented a PUF based key genera-
tion mechanism to secure a visual sensor node.
3 Secure Key Generation & Storage Frame-

work
Using a PUF for key generation on a sensor node has

the main advantage that the generated key is unique on each
node. This is based on the intrinsic variations of the hardware
structure which are extracted and used as a basis for the gen-
erated key. Thus, a PUF-based key generation framework is
not only able to generate and store a key in a secure way, but
also to bind the key to the node. Compared to a secure on-
or off-chip memory a PUF based solution is much cheaper
as the helper data can be stored in an insecure non-volatile
memory.

The framework consists of two main building blocks,
where the choice of the first one has a direct influence on
the design of the second one. The first building block is
the deployed PUF instance which has to be chosen accord-
ing to the given system. The parameters of the PUFs such
as intra-Hamming distance and Hamming weight of the re-
sponse must be considered when designing the second block,
called the helper data algorithm. The aim of the helper data
algorithm is to ensure that the generated key fulfills its cryp-
tographic features and that the system is able to regenerate
the key from the noisy PUF response.

The key on the sensor node can be used to implement a
range of security functions for instance integrity, authentic-
ity, and confidentiality of sensed data. Using the key, the
design of the sensor node could be protected by ensuring ac-
cess control and secure boot etc.
3.1 PUF Source

The main building block in the key generation framework
is the PUF instance, which has to be chosen at first in or-
der to design the remaining blocks. As most of today’s de-
ployed sensor nodes are composed of a processing unit (e.g.
SoC) and several peripherals an additional SRAM might be
available on the platform as well. If this SRAM is not ini-
tialized during the start-up of the system, it can be used as
a PUF source. The on-chip memory of the processing sys-
tem is also based on an SRAM, however, it is most of the
time initialized during start-up and cannot be used as a PUF
source. Another well-known PUF type is the ring oscillator
PUF, which uses frequency variations of ring oscillators to
generate a binary response. This PUF type has the advan-
tage that it can be implemented on an ASIC as well as on an
FPGA and the response’s length can be scaled according to
the system’s requirements by varying the number of oscilla-
tors.
3.2 Helper Data Algorithm

A PUF response does not fulfill the requirements imposed
in a cryptographic key such as reproducibility, unfirom dis-
tribution of bits and full entropy, therefore post-processing
measures have to be taken into account. The reproducibility
of a PUF response is ensured by applying error-correcting
codes, which have to be designed based on the PUF’s error



Helper Data

Key

Random
Secret

PUF
Response

Encode
Secret

Entropy
Extractor

Figure 1. Generating a PUF-based key and helper data
(enrollment phase).

PUF
Response

Helper
Data

Error
Correction

Entropy
Extractor

Key

Figure 2. Reconstruction a PUF-based key using helper
data (reconstruction phase).

rate. The error rate is often quantified, as already defined,
by calculating the intra-Hamming distance that indicates the
number of digits in which two bit strings differ.
In general a helper data algorithm consists of two stages. The
first stage is often referred to as information reconciliation
phase which deals with the noise. The second stage or pri-
vacy amplification deals with the non-uniform distribution
of the responses. Both stages need so-called helper data that
is generated during the enrollment phase. This phase must
be executed in a secure and trusted environment. Later, the
reconstruction phase uses the helper data as an input to re-
produce along with a noisy PUF measurement the key in an
insecure environment.

3.3 PUF-Based Secure Key Generation
The goal of a secure key generation framework is twofold.

First, a key has to be generated with a pre-defined entropy
(e.g. 64 bit or 128 bit) and stored in a secure way. Second,
the key has to be reconstructed at any given time with a low
failure rate (e.g. Pfail ≤ 10−6). Figure 1 depicts the enroll-
ment phase which generates a key and the helper data that
can be stored in a non-secure NVM such as an SD card.

Figure 2 depicts the reconstruction phase that aims to re-
generate the key by reading out the PUF again, loading the
helper data and using the error correcting code to correct the
noisy bits within the response to be able to generate the key.

4 Design
The design of the key generation framework is crucial in

order to fulfill the required parameters such as failure rate
and entropy of the generated key. The failure rate of the
system is mainly influenced by the deployed PUF and the
corresponding error-correcting code within the helper data
algorithm. A very noisy PUF needs a more sophisticated and
complex error-correcting code than a less noisy PUF in order
to cope with all possible bit errors. Thus, a sophisticated
error-correcting code has to be used, which also increases
the hardware utilization of the framework. Therefore, a low
bit error rate is targeted when choosing the PUF to enable
the usage of a less complex error-correcting code.

4.1 Architecture
The RO PUF generates response bits by comparing the

counter value of two ring oscillators. An additional reference
counter is used to stop the two RO counters at the same time
to ensure a fair comparison of the oscillators. In total the
design contains b×a oscillators, which are organized in so-
called batches. A batch consists of a ring oscillators and an
address decoder to choose the desired RO within each batch
and to forward its output to the corresponding counter. In
order to make the solution as lightweight as possible only
two global RO counters and one reference counter have been
implemented for the entire design.
4.2 Finding RO Pairs

A comparison of two ROs results in one response bit and
as there are n! possible combination to combine n ROs a well
thought-through strategy has to be applied to find RO pairs.
Such a strategy aims to find RO pairs which (i) generates
responses with a low intra-Hamming distance by only using
pairs with a high frequency mismatch and (ii) uses a RO just
once to ensure independent bits.

The most natural strategy is to compare always neigh-
boring oscillators. This might result in a high error rate, if
neighboring oscillators have a very similar frequency. In [13]
an algorithm is presented, referred to as Sequential Pairing
Algorithm (SPA), which aims to find oscillators with a pre-
defined frequency mismatch fth. This is done by measur-
ing each oscillator multiple times at the highest and lowest
temperature for which the system is designed and choosing
from these measurements RO pairs with a frequency mis-
match > fth. The generated link-list contains the RO pairs
and has to be stored afterwards with the helper data to ensure
that these pairs are always used when the PUF is evaluated.
4.3 Helper Data Algorithm

The used error correcting code within a HDA has to be
designed carefully based on the PUF’s error rate as well as
on the available entropy within the response. In particular
the bit error probability pb is used, thus the probability that
a bit does not flip is 1− pb. We assume that all bits are
independent of each other, therefore it is possible to calculate
the probability that a string of n bits has more than t errors
with Equation 1.

Pfail =
n

∑
i=t+1

(
n
i

)
pi

b(1− pb)
n−i = 1−

t

∑
i=0

(
n
i

)
pi

b(1− pb)
n−i

(1)
As already stated, a helper data algorithm is a two step

approach, where the first stage generates the key but also the
helper data. The second stage uses the helper data along with
a noisy response to regenerate the response used during the
enrollment phase. There are two architectures known for this
purpose namely the Code-Offset and the Syndrom construc-
tion [3].

The code-offset construction’s helper data generator
Gen(r) takes a random input word m, encodes it to a code-
word c and forms the helper data by p ← r⊕ c. The re-
construction procedure Rep(r′, p) is implemented as follows.
First, the noisy codeword c′ is obtained by r′⊕ p. Second,
the decoding algorithm of the error correcting code generates



c by decoding the noisy codeword. Finally, the response r is
computed by an additional XOR between of the corrected
codeword and the helper data.

The Syndrom construction generates the helper data by
calculating a matrix product of the response and a parity
check matrix. More precisely, the helper data generator
Gen(r) is implemented as p← r ∗HT . The reconstruction
algorithm Rep(r′, p) is implemented as follows. First, the
syndrome is determined by s = p− r′ ∗HT and with the help
of the underlying decoding algorithm of the error correction
code the error vector e is computed. Second, with the error
vector e it is possible to compute the response by r← r′− e.

In a PUF framework it is common to use block codes as
an error correcting code [3], which are defined by four pa-
rameters. First, the message length of a binary linear code
C is denoted with n and the corresponding codeword length
with k. Second, the minimum Hamming distance dmin cor-
responds to the minimum distance of two valid codewords
of C. Third, a [n,k,dmin]-code is a binary code C of length
n, a message length of k, and a minimum distance of dmin.
Thus, a linear code with a given minimum distance d is able
to correct up to t = b(dmin−1)/2c errors.

The HDA takes a response as input and compresses it to a
key k by using a hash function. The number of response bits
needed for a key with a certain length is based on the entropy
of the PUF’s response. When deploying the already in Sec-
tion 4.2 discussed SPA strategy every ring oscillator is just
used once to generate a response, therefore the bits can be
assumed to be independent and thus every bit has an entropy
of 1. Therefore, if a key with full entropy and a length of 128
bits is demanded from a RO PUF the response length must
be at least N. Based on this result an error correcting code
can be chosen. First, the amount of source bits have to be
calculated, which yields in this case to 128. Second, it has to
be assumed that all bits within the response are independent
and therefore the probability Pfail, that a response r with n
bits has more than t errors, is given by Equation 1. Third, the
bit error probability pb has to be known. If the experiments
resulted in an error probability of pb it is a good practice
to add a minor margin to be on the safe side. Furthermore,
a failure during the decoding step should happen with the
probability Pfail ≤ 10−6. Now it is possible to take certain
error correcting codes into account and evaluate them.
4.4 Securing the Framework

Using a PUF as a security anchor in a system is quite
new approach and thus there are frequently new attacks re-
ported on this technology. Most of these attacks are aim-
ing at manipulating the public available helper data to gain
information on the response. Storing the helper data in a
secure memory would undermine the entire PUF principle,
thus it is necessary to apply other countermeasures. In [3]
an approach is presented, that detects helper data manipula-
tion. During the enrollment phase an additional Hash value
z = Hash(p,k) is stored. During the reconstruction z′ is cal-
culated and if z 6= z′ the key generation is aborted. If an
additional link-list for choosing the RO pairs has to be stored
as well, it has to be included to the Hash as well.

Another potential attack target is the error correction code
if used in a code-offset construction as pointed out in [7].

Table 1. Intra-Hamming distance and Hamming weight
of the implemented RO PUF based on two different eval-
uation strategies.

Neighboring ROs SPA
Intra-Hamming Distance 7% 1.4%

Hamming Weight 49.3% 51.2%

The authors propose a technique called codeword-masking,
which uses the linearity of the used code, as a countermea-
sure.

5 Implementation
This section discusses initial results from our prototype

implementation of the RO-PUF based key generation core
and a visual sensor node. We used a MicroZed board as
a platform for implementation. Some prominent features
of this platform are (i) the Zynq7010 SoC, which consists
of a programmable logic equivalent to ≈ 430K ASIC gates,
(ii) a dual core ARM Cortex-A9 MPCores and (iii) 1 GB
DDR3 SDRAM. For detailed specifications, readers are re-
ferred to [2].
5.1 RO PUF

The RO PUF is based on a number of symmetric ring os-
cillators. The ring oscillators have to be symmetric in terms
of their routing to prevent a biased response. The Xilinx tool-
chain offers for this purpose so called Hard Macros, which
assign the same routing to each RO instance. As 2n ROs
are needed to form a response with n bits, we decided to
implement a 3-stage ring oscillator which fits into one Slice
in order to minimize the hardware utilization. Two ROs are
chosen via selecting their corresponding batch and their ad-
dress within the batch. As soon as the measurement circuit is
triggered, both ROs start to oscillate, their counter counts the
rising edges of the oscillation and a reference counter, which
uses the board’s clock as an input, starts to count as well.
When the reference counter reaches a predefined threshold
it stops both ROs’ counters and their result is forwarded to
a register in order to read it on the ASIC. On the ASIC the
comparison of both counter values yields to a response bit.
This is done for all ROs in order to generate a response with
n bits. The entire control overhead of the circuit such as ad-
dressing or resetting is done via dedicated registers on the
ASIC to make the system as flexible as possible during the
prototyping stage. Note that the final system should not han-
dle the sensitive counter values separately and perform the
comparison directly on the programmable logic.

The implemented RO PUF was used to perform a first as-
sessment of its parameters as intra-Hamming distance and
Hamming weight. The results of this analysis are summa-
rized in Table 1. It can be seen that the SPA algorithm
decreases the error rate from 7% to 1.4%. Note that at
this stage only measurements at room-temperature are avail-
able and therefore the SPA algorithm uses only measure-
ments obtained at room temperature. In order to assesses the
uniquness of the PUF response and thus the resulting key, the
PUF instance was implemented on 9 different Xilinx boards
and the inter-Hamming distance between these responses’



Figure 3. High level architecture of ProSecCo visual sen-
sor node.

was caluclated. This evaluation resulted in an average inter
distance of ≈ 49%, which indicates that each PUF instance
generates a unique response.

5.2 HDA Building Block
Based on the PUF’s intra-Hamming distance presented in

the last section a tailored HDA can be designed and imple-
mented. This HDA has to cope with an error-rate of ≈ 2%.
As the bit error probability pb and the response’s entropy is
known the error-correcting code can be parametrized by ap-
plying the concept presented in Section 4.3. We considered a
Repetition, BCH and Reed Muller code with the parameters
presented in Table 2.

Table 2. Three different error correcting codes for a bit
error-rate of 2%.

Code (n,k,d) Pfail # of source bits
RM (16,5,8) 2.401331∗10−3 410
Rep. (9,1,9) 3.770032∗10−7 1152
BCH (31,6,15) 1.338228∗10−7 662

Based on the results presented in Table 2 the
BCH(31,6,15) code was chosen and implemented as it (i)
provides a failure rate ≤ 10−6 and (ii) the number of source
bits is by a factor of≈ 2 smaller than for the Repetition code.
The disadvantage of the BCH code’s more complex decod-
ing algorithm can be neglected as only half of the ROs are
needed in comparison with the HDA based on a repetition
code. The BCH code was implemented in the code-offset
construction to generate the key and the helper data.

5.3 Visual Sensor Node
To demonstrate the comparison of resource consumption

between a typical sensor node and PUF based key genera-
tion core, we used the ProSecCo visual sensor node, which
uses a Zynq7010 SoC as a development platform [8]. Read-
out for the Omnivision’s 5642 image sensor utilizes re-
programmable fabric of the SoC, whereas image process-
ing functions are implemented using the ARM Cortex-A9
cores. We have implemented a 42× 32 based PUF circuit
on the FPGA part of the SoC, which generates a response
with 672 bits, and the associated HDA on the ARM proces-
sor core. Table 3 shows a comparison of FPGA logic area
utilization between the PUF core and the two cores of image
sensor readout implemented on FPGA, i.e., Format Adapter
and DMA as illustrated in Figure 3. The results show that
PUF based key generation consumes negligible resources as
compared to the total resources of the considered sensor.

Table 3. Utilization of the implemented RO-PUF solution
on the FPGA.

Registers Look Up Tables
Available 35,200 17,600

PUF Utilization 11% 22%
VSN Utilization 24.2% 40.7%

6 Conclusion
In this paper we presented a PUF-based key generation

and storage framework and preliminary results of a visual
sensor node that features this framework. The framework
generates a cryptographic 128 bit key and is able to re-
generate the key on-the-fly. Thus, only helper data has to
be stored and as the helper data does not contain any infor-
mation about the key itself, an insecure NVM is feasible as
storage. The presented framework is also resistent to known
attacks on a RO PUF based key generation scheme by apply-
ing the corresponding countermeasures.

Before this framework is deployable on a sensor node
in general, further steps are necessary. A detailed charac-
terization of the implemented PUF instance is mandatory,
since up to now only measurments at room temperature have
been contucted. However, the PUF’s error rate depends on
the temperature and also on the applied voltage, therefore
an evaluation of the error rate under different environment
and operating conditions is part of our future work. Whereas
different environment conditions will not influence the error
rate as the applied sequential pairing algorithm is designed
to find RO pairs, which result in a stable bit over the en-
tire temperature range. Addtional to variations of the sup-
ply voltage, the error rate is also influenced by aging effects,
which have to be analyzed and addressed. Therefore, for the
final design we also have to consider the usage of concate-
nated codes instead of a single code for the error correction
part of the HDA in order to achieve a negliable failure rate.
When comparing the hardware utilization of the VSN sys-
tem to the key generation framework it can be seen that the
key generation framework uses considerably less silicon area
than a basic VSN system. Thus it can be argued that the ad-
ditional security feature comes with a low cost in terms of
hardware utilization, but enhances the security of the system
significantly. A detailed comparison of consumed resources
by PUF-based key generation and VSN including logic area,
time and energy is work in progress. We also plan to imple-
ment the key generation framework on a variety of resource
constrained sensors.

Acknowledgments
This research has been funded by the Austrian Research

Promotion Agency (FFG) under grant number 842432.
Michael Höberl was supported by the FP7 research project
MATTHEW under grant number 610436.

7 References
[1] Z. Alliance. Zigbee specification, 2006.
[2] AVNET. Microzed board, 2015. http://zedboard.org/product/

microzed, [Online; accessed 04-November-2015].

http://zedboard.org/product/microzed
http://zedboard.org/product/microzed


[3] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede. Helper Data
Algorithms for PUF-Based Key Generation: Overview and Analysis.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 34(99):889–902, 2014.

[4] A. Dua, N. Bulusu, W.-C. Feng, and W. Hu. Towards trustworthy
participatory sensing. In Proceedings of the 4th USENIX conference
on Hot topics in security, pages 8–8. USENIX Association, 2009.

[5] R. Maes. Puf-based key generation. In Physically Unclonable Func-
tions, pages 143–168. Springer, 2013.

[6] R. Maes and I. Verbauwhede. Physically unclonable functions: A
study on the state of the art and future research directions. In Towards
Hardware-Intrinsic Security, pages 3–37. Springer, 2010.

[7] D. Merli. Attacking and Protecting Ring Oscillator Physical Un-
clonable Functions and Code-Offset Fuzzy Extractors. PhD thesis,
München, Technische Universität München, 2014.

[8] ProSecCo. Smart camera prototype. http://trusteye.aau.at/
prosecco/, [Online; accessed 16-December-2015].

[9] S. Saroiu and A. Wolman. I am a sensor, and i approve this message. In

Proceedings of the Eleventh Workshop on Mobile Computing Systems
& Applications, pages 37–42. ACM, 2010.

[10] T. Winkler, A. Erdelyi, and B. Rinner. TrustEYE.M4: Protecting
the Sensor - not the Camera. In Proceedings of the IEEE Interna-
tional Conference on Advanced Video and Signal-Based Surveillance
(AVSS), Seoul, Korea, 2014.

[11] T. Winkler and B. Rinner. Securing Embedded Smart Cameras with
Trusted Computing. EURASIP Journal on Wireless Communications
and Networking, 2011:1–20, 2011.

[12] T. Winkler and B. Rinner. Security and Privacy Protection in Visual
Sensor Networks: A Survey. ACM Comput. Surv., 47(1):2:1–2:42,
May 2014.

[13] C.-E. Yin and G. Qu. LISA: Maximizing RO PUF’s secret extrac-
tion. In Proceedings of the International Symposium on Hardware-
Oriented Security and Trust, pages 100–105, June 2010.

[14] S. Zhao, Q. Zhang, G. Hu, Y. Qin, and D. Feng. Providing Root of
Trust for ARM TrustZone using On-Chip SRAM. Cryptology ePrint
Archive, Report 2014/464, 2014. http://eprint.iacr.org/.

http://trusteye.aau.at/prosecco/
http://trusteye.aau.at/prosecco/
http://eprint.iacr.org/

	Introduction
	Related Work
	Secure Key Generation & Storage Framework
	PUF Source
	Helper Data Algorithm
	PUF-Based Secure Key Generation

	Design
	Architecture
	Finding RO Pairs
	Helper Data Algorithm
	Securing the Framework

	Implementation
	RO PUF
	HDA Building Block
	Visual Sensor Node

	Conclusion
	References

