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Abstract Small-scale unmanned aerial vehicles (UAVs)
are an emerging research area and have been recently demon-
strated in many applications including disaster response
management, construction site monitoring and wide area sur-
veillance where multiple UAVs impose various benefits. In
this work we present a system composed of multiple net-
worked UAVs for autonomously monitoring a wide area
scenario. Each UAV is able to follow waypoints and cap-
ture high-resolution images. In order to overcome the strong
resource limitations we implement an incremental approach
for generating an orthographic mosaic from the individual
images. Captured images are pre-processed on-board, anno-
tated with other sensor data and transferred by a prioritized
transmission scheme. The ultimate goal of our approach is
to generate an overview mosaic as fast as possible and to
improve its quality over time. The mosaicking exploits posi-
tion and orientation data of the UAV to compute rough image
projections which are incrementally refined by scene struc-
ture analysis when more image data is available. We evaluate
our incremental mosaicking in the strongly resource limited
UAV network composed of up to three concurrently flying
UAVs. Our results are compared to state-of-the-art mosaick-
ing methods and show a unique performance in our dedicated
application scenarios.
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1 Introduction

There are many applications which require an overview in our
public life. In some aspects aerial photography from airplanes
satisfies such requests, but often more details, more recent
views or different perspectives of scenes are requested.

Among such ambitious scenarios we find the monitor-
ing of large construction sites where frequent flights and
many different view points allow a detailed progress moni-
toring. In sensitive situations during response management
after severe disasters we cannot resort to existing cameras or
(communication) infrastructures. Areas may be restricted or
inaccessible for manned vehicles. But an overview mosaic
generated from individual images is required virtually in an
instant to successfully complete required missions.

In our main use case of emergency and disaster response
the overall goal is to build overview mosaics from large
unknown areas quickly. We employ multiple small-scale
quad-rotor unmanned aerial vehicles (UAVs) that are able to
vertically take-off and land (VTOL) concurrently to improve
the time of coverage.

The usage of such easy to operate autonomous aerial
sensing platforms since human resources are limited in emer-
gency situations. The coordination of the UAVs, the data
transmission and the quick and efficient overview mosaic
generation is still an open topic in many state-of-the-art
image processing methods. To successfully transmit, mosaic
and merge high resolution images, we propose an incremen-
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tal image processing and mosaicking where we are able to
increase the mosaic quality over time.

1.1 UAV system

Small-scale UAV platforms have been introduced in the past
by companies such as Ascending Technologies1 or Micro-
drones.2 They offer battery powered devices with different
control and sensing capabilities. With a take-off weight
between one and five kilograms the UAVs can still carry
sufficient payloads such as high resolution cameras and oper-
ate for 12–45 min. The presented system is designed to be
deployed on any kind of small-scale UAV platform consid-
ering adaptations to UAV specific commands. Our UAVs
incorporate two processing units with various sensors, such
as inertial measurement unit or global navigation systems,
and at least one camera.

1.2 Contribution

The contribution of this work covers the resource aware
and incremental improvement of an overview mosaic from
high resolution images transmitted via an aerial network
from small scale UAVs. This approach fills the gap between
panorama mosaics and expensive full 3D reconstructions by
delivering results in an increasing quality in a very short time.
Therefore the flight routes are optimized to reduce redun-
dant data, such as overlap between images, which ends up in
a challenge for the mosaicking approach, that is addressed
here.

1.3 Outline

The remainder of this article provides details on the deployed
UAV system in Sect. 3 after discussing related work in Sect. 2.
First in Sect. 4.1 we present the prioritized image transfer and
second the incremental registration in Sect. 4.2. Section 5
evaluates real world case studies and Sect. 6 concludes this
work.

2 Related work

In recent times, aerial photogrammetry technologies
expanded to higher altitudes such as satellites that provide
already high resolution photos of the earth surface, unfortu-
nately in no-real-time. Typically, individual images are taken
from a single airplane and processed offline after landing. We
studied related works of (aerial) camera networks and online

1 http://www.asctec.de/ last visited November 2013.
2 http://microdrones.com/ last visited April 2013.

mosaicking for wide area application which has been rarely
investigated before. In the work of Akyildiz et al. [2] wireless
sensor networks built from off-the-shelf cameras are able to
ubiquitously retrieve video and still images from the environ-
ment. A clear trend is to use state-of-the-art communication
interfaces within camera networks with all their advantages
and drawbacks. The evolution reaches from single cameras
on UAVs flying at high altitude (e.g, [1,9]) to networks
of cameras also deployed at low altitudes (e.g, [12,23]).
When live data streaming is necessary UAV camera net-
works require more complex and active communication links
to transmit the sensed data. To achieve live updated images
after severe disasters the work of Pratt et al. [21] presents indi-
vidually and manually steered UAVs to transmit live images
from the scene.

Moreover, in the project AggieAir [11] two separated
network architectures are employed. One link is used for
control data such as manual steering and the other one is
utilized for the transmission of sensed data with higher band-
width. Besides the networking challenges, most of the aerial
mosaicking approaches, rely on orthogonal images from high
altitudes where the structure of the scene is negligible. On the
contrary, in the online aerial mosaic generation proposed by
Turkbeyler et al. [28] images from low altitude are treated as
orthogonal and the image transformations are estimated by
employing the homography. This results in distortions when
the covered area contains a structured scene, as explained
and compared in our previous work [30].

The recent review [10] presents an detailed overview of
UAV technologies, the available payload and consequent
fields of applications. In other domains, such as underwa-
ter mapping, unmanned vehicles are well established [13].
Recently multiple vehicles are combined to increase their
resource efficiency and operating range. In this work we are
addressing the combination of efficient data transmission and
mosaicking from low altitudes.

3 Overview

Our system mainly deals with the response management after
severe disasters where mosaics should be generated as fast as
possible from images captured by small-scale, low-altitude
UAVs. Figure 1 shows the individual components are pre-
sented where weak points arise in a typical image processing
chain.

We investigate why an incremental strategy that consid-
ers the scene structure is potentially more successful than
traditional offline mosaicking methods.

Hence, we divide the mosaicking process into multiple
stages that reuse already processed data and present interme-
diate output mosaics after each step (Fig. 2).

123

http://www.asctec.de/
http://microdrones.com/


Resource aware and incremental mosaics of wide…

Image transmisson

Feature extraction

Feature matching

Image transformation

Network communication

Challenges

Large dataset,
little overlap

Structured scene

Overview mosaic Large areas, 
spatial accuracy

Image Processing Tasks
P

ro
ce

ss
in

g 
C

ha
in

inputs

outputs

Fig. 1 Key processing steps and their associated challenges

We have designed a system that covers three main com-
ponents: First the highly mobile small-scale UAVs equipped
with various sensors and processing units; second the wire-
less communication network for control and data transmis-
sion; and third, the ground station where routes are planned,
the data is collected, processed and visualized. In Fig. 3 the
light grey arrow in the background sketches the data flow of
our process through the blocks marked in green which are
covered by this work on the application layer. On the left
side multiple user interfaces are shown. One interface allows
the operators to input their requirements. Another interface
is available for observing the results.

3.1 Mission

The main requirements for a mission are a bundle of available
resources, i.e, multiple participating heterogeneous UAVs,
the area to cover and constraints required by the application.

The user specifies the time to complete the mission and
the temporal and spatial target resolution. From these inputs,
predefined routes are generated and included as mission plan
into the mission. Hence, the route planning itself is an emerg-
ing research topic covered by other works such as Mersheeva

et al. [20]. In this work we accept already generated route
plans with dedicated picture points, which are 3D locations
in the world coordinate system, where images shall be taken.
The planned routes are sent to the UAVs via the communi-
cation network.

Figure 3 depicts two scenarios for our mosaicking sys-
tem. In our first scenario, a fire fighter practice scenario we
planned five consecutive missions by a single UAV to update
the final overview image frequently by more recent data. The
flight time of each route was about 620 s over the area of about
12,000 m2. In a second scenario three UAVs complete one
mission concurrently. The whole area of more than 45,000 m2

is covered in less than 500 s. Since, a maximum flight time
of any of our UAVs in one mission is not allowed to exceed
840 s. After completing a flight each UAV autonomously
lands and stays active to complete unfinished tasks.

3.2 Networking

In wide area scenarios we cannot rely on an existing com-
munication infrastructure with sufficient bandwidth available
for transmitting high resolution images. The typical period
between capturing images is about 10–15 s on an individual
UAV. But the amount of raw data exceeds more than 10 MB
per image and we have multiple UAVs in operation con-
currently. Because of the limited resources on the UAV and
requirement of online mosaicking an efficient strategy needs
to be realized to process and transmit the captured data.

We utilize a wireless LAN infrastructure based on
IEEE 802.11a at 5 GHz with three antennas attached in mul-
tiple input and multiple output mode (MIMO). The antenna
setup is optimized to emphasize on best connectivity, even
during motion and tilt of the UAV [31]. Extensive tests have
shown that the deployment of elected off-the-shelf wireless
LAN components deliver a stable communication within the
proposed scenario, but with limited rates. There the max-

Fig. 2 Our system is composed by the small scale UAVs, the communication network and the ground station with its GUI
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Fig. 3 The planned routes for the single UAV scenario (above) and the
multi-UAV scenario (below)

imum achievable data rate is 54 Mbit/s in close regions.
For independence of any existing wireless infrastructure, we
deploy our own wireless base station and mount it at an
exposed position to increase network coverage and reliability.

Due to bandwidth limitations and variations the transmis-
sion of complete high-resolution images is time consuming.
Limitations emerge from the scenario requirements of cov-
ering a wide area in a very short time. Bandwidth limitations
result from non-existing infrastructures, long distances or
occlusions due to the scene structure. On the other hand,
variations in the available bandwidth also occur due to the
dynamics in the mission. If UAVs fly along their routes they
interfere each other depending on their distance and location
to the ground station.

3.3 Imaging

On our small-scale UAVs we utilize high resolution cameras
for RGB still images, such as lightweight off-the-shelf digital

consumer cameras with resolutions up to 12 megapixels and
remote control capabilities. The cameras are mounted on our
adaptive camera mount which is stabilized and able to adjust
its view angle. This camera is directly connected via USB to
the onboard processing unit, an Intel� AtomTM embedded
unit for controlling of the capture settings and triggering the
shutter.

The image processing on-board the UAV is implemented
using shell and Python scripts and the Kakadu JPEG2000
library3 while mathematical operations are implemented
utilizing different libraries, such as approximate nearest
neighbors (ANN) [4], basic linear algebra subprograms
(BLAS) [5] and the linear algebra package (LAPACK) [3].
During our demonstrations we have deployed one Pentax
A40 RGB compact camera with 12 megapixel resolution
and modified Canon PowerShot S80 compact cameras with
8 megapixel.

4 Efficient overview image generation

For efficient and resource aware mosaicking we pre-process
and annotate images with meta-data already on the UAV. This
data is transmitted for immediate presentation to the ground
station where it is merged to an initial mosaic. The trans-
mission is based on data prioritization to transfer important
data first in limited bandwidth scenarios. Already processed
results from previous mosaics are integrated to reduce over-
all processing effort only to fresh data. According to our
assumptions to have further image resolutions or structure
data available we aim for improving the quality over time.
Fresh image data is defined to be either images of uncov-
ered areas that are not transmitted before or higher resolution
representations of already covered areas. Basically three indi-
vidual steps in our incremental mosaicking are considered for
quality improvement:

A Meta-data based mosaic is generated by simple image
placement using only meta-data, such as UAV positions
tc, orientations Rc and intrinsic camera parameters Kc.

Feature based mosaicking is executed with feature extrac-
tion and registration of images by a similarity transfor-
mation if an immediate improvement is required by the
application. We are reducing the overlapping image areas
already during planning to reduce redundant data during
transmission. This reduces the quality but is efficient as
first part of the image-data based mosaicking.

Structure based mosaicking is the last leap of improvement
when employing the structure analysis of the scene. A
sparse 3D model is constructed from the extracted key-

3 Kakadu JPEG2000 Encoder, http://www.kakadusoftware.com; last
visited on April 2nd 2013.
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Fig. 4 This block chart sketches the incremental mosaicking process at the base station and the principle blocks on each UAV

points Xi and we estimate a common projection plane
within this 3D structure. Images are mapped on to this
common ground plane, which concludes the image-data
based mosaicking.

On the ground station the pre-processed data from the UAVs
is collected and images are placed in their available resolution
representation immediately on the mosaic.

Ti =
{

Tcami = f (tc, Rc, Kc) if qimage < γ,

Timagei
= f (Tcami , Xi ) if qimage ≥ γ.

(1)

Common ways to compute image transformations Ti in
Eq. 1 for an individual image Ii are (a) the direct geometric
projection from the camera extrinsic and intrinsic parameters
Tcami , or (b) the more time consuming estimation based on
the image data known as image registration. The transforma-
tion function f from described in Sect. 4.2. The image-data
based mosaicking Timagei

is applied if sufficient image data is
available or the individual images are available with a better
quality measured by qimage, later elaborated in Eq. 5. Typi-
cally, we define the threshold γ = 0.5 but this parameter is a
function of the application constraints. γ should be increased
if a higher quality is preferred.

In Fig. 4 the basic processing blocks and layers of our
mosaicking are presented. On the left the internal sensing
units on the UAV platform encode data and transmit it to the
base station. Data is collected and organized with already
processed data in the buffer. In the computation layer the
different processing stages are covered while the presenta-

tion layer executes the image transformations and provides
different quality levels of mosaics. Apparently, these outputs
depend on the achieved computation results.

Immediately, after receiving image data it is directly pre-
sented as meta-data based mosaic through the presentation
layer. Based on these transformations neighboring and over-
lapping images are determined for further processing steps.
An improved mosaic can be generated by registering images
if the available resolution of the received image is sufficient.
In the last improvement stage the extracted features are input
to the structure estimation and can provide a final mosaic
which considers image transformations computed from the
3D scene structure.

4.1 Prioritized image transfer

In wide area scenarios, such as disaster scenarios we cannot
rely on an existing infrastructure with sufficient bandwidth
available for transmitting high resolution images. Through-
out the mission multiple UAVs capture more and more
images. The typical period between capturing images is about
10–15 s. But the amount of raw data exceeds more than
10 MB per image which is challenging to transmit. The lim-
ited resources on the UAV require an efficient strategy to
process and transmit the captured data.

On the UAV images or fragments of images are prioritized
before transmission according to their forecast benefit to the
whole overview mosaic. Basically, data from newly explored
areas, which can be a complete image or a rectangular frag-
ment of one image, has the highest priority and should be
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transferred immediately. The route and coverage planning
divides the total area into a grid of elements Gk of a square
of the size g2. For scenarios of an area to cover of dozens
of hectares the planning component prefer grid elements of
a dimension of g = 5 m. This dimension is the smallest unit
and is application specific because it has an impact on the
computational effort [22].

For efficient scheduling we split the image to patches
according to the grid size. By the meta-data of the UAV
we are able to determine if one grid element is visible in
the image completely or which portions of the image share
the covered area. The highest priorities for new images are
assigned according to the number of grid elements NG newly
covered and not contained by any other image on this UAV.
Individual fragments Gk of the size g2 are scheduled by the
priority pki for each image Ii . The priorities are related to
the number of participating images covering the same area
beforehand and the total number of images N , Eq. 2. If more
than 50 % of the whole image area A(I) is newly covered,
the whole image is considered. This is defined by pI in Eq. 3.

pki = N − |{Ii |Gk ∈ A(Ii )}| (2)

pI =
A(Ii )

g2∑
i=0

pki (3)

We have developed a scheduling scheme that orders the
priorities of image data and utilizes region of interest (ROI)
encoding before transmission. On each UAV it considers the
UAVs meta-data and already transmitted image data. In Fig. 5
an example of two overlapping images is presented where
image Ia is captured first. It covers only new areas it is com-
pletely scheduled with a high priority. The image area is
not cropped but scheduled at a low resolution, sketched by
the larger grid. For image registration on the ground station
higher resolutions are required. Thus, the remaining image
data in higher resolutions is scheduled for transmission with
a lower priority later.

The second image Ib is captured a few seconds later. The
data of the newly covered area is determined by the meta-data
projection and is scheduled with the highest priority again.
Redundant areas are mainly required for the image registra-
tion but are not essential for the quick output generation.

The described assignment of different priorities a-priori
can be efficiently mixed in one image. For example, impor-
tant regions within one image are encoded with a higher bit
rate than already covered areas from other images [6].

4.1.1 Progressive image encoding

In our approach we exploit JPEG2000 motivated by the work
of Frescura et al. [15] who presented a wireless network with
JPEG2000 image transmission. JPEG2000 encoding serves
various features such as ROI encoding, resolution or layer
progressive encoding, and tiling. Images are split into lower
resolution representations during the encoding of high res-
olution still images with JPEG2000. In progressive image
encoding the number of intermediate resolutions or quality
levels is defined by the applied method and the size of each
image. In JPEG2000 encoding we can arbitrarily define the
number of quality layers. The lowest resolution representa-
tion in the lowest quality is allocated at the beginning of the
JPEG2000 stream followed by the remaining resolutions. In
general the packets of one JPEG2000 image can be inter-
leaved by four different ways, i.e, ordered by resolution (R),
position (P), component (C), or in layers (L). The primary
selector employed in this work is the resolution resulting in
a progression order denoted as RLCP.

Each image is received at the ground station at a reso-
lution κI and validated against the resolution requests for
the image-data based mosaicking. If κI is within the interval
[κL , κU ] it is included to the current patch for image regis-
tration. This interval is application specific and depends on
the timing and resolution constraints of the applications. We
allow to constrain two parameters: (a) the target resolution
which directly represents the value κU and (b) the penalty
from pe = [0.0, 1.0] of not achieving the target resolution.
This penalty defines the relation of κL to κU as κL = pe ·κU .
The maximum resolution of the full sized image is denoted
as κF . In typical disaster response scenarios we define κU

to be 800 px. On the base station the received resolutions
are evaluated to a resolution quality, to decide if one image is
included into the image-data based mosaicking or just placed
by its meta-data.

qres =

⎧⎪⎨
⎪⎩

0 if κI < κL ,
1
2

κI −κL
κU −κL

if κI <= κU ,
1
2 + κI −κU

2(κF −κU )
if κI > κU .

(4)

When receiving the JPEG2000 bit stream, image frag-
ments are concatenated to decode the data. The image
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resolution layers are decomposed to determine the maximum
image resolution for the mosaicking and visualization. The
benefit of this resolution is represented by resolution quality
qres in Eq. 4.

If the current resolution is less than κL the quality rep-
resentative qres = 0. Such images are not eligible for the
image-data based registration and are only placed by their
meta-data transformation Tcam.

4.1.2 Application layer scheduling

Basically, images are split into fragments and prioritized
according to their resolution and qualities. In our previous
work [29] we evaluated the fair use of the available band-
width. On each UAV the images are progressively encoded by
JPEG2000 and buffered. The initial priorities for the whole
image pI and for regions pg2 in the image are processed
by the JPEG2000 resolution layer encoding. Thus, each
encoded resolution layer represents the resolution related to
the assigned priority p′

I = pI
κI
κF

and is enqueued for trans-
mission.

The highest priority is assigned to image fragments of
the lowest resolutions and uncovered regions, determined
earlier in Eq. 2. Image fragments of the next higher resolution
and lower priority are attached to the second highest priority
queue as demonstrated in Fig. 6. The first packet is denoted
as layer L0 and includes the basic image data combined with
all JPEG2000 headers and the meta-data M . The meta-data
contains the rough transformation estimation Tcam besides
some status information. This data is required for continuous
monitoring and immediate feedback to the global planning at
the ground station. For example, to observe uncovered areas
by inspecting the meta-data projections and to trigger a re-
planning. Since our scheduling is assigned to the application
layer it can be built on top of any transport protocol. In our
approach we are using UDP as transmission protocol because
it performs well in the utilized wireless LAN infrastructure
and is well integrated in the hardware and system components
of our UAV systems [19].

4.1.3 Prioritized transmission queues

Our transmission scheme conducts q queues with different
priorities, sketched in Fig. 6 where we distinguish between
the important data for the first mosaic and quality improve-
ments. The number of image layers l can be different for
heterogeneous UAVs and different images. The scheduling
is managed on the UAV in the manner of transmitting and
emptying higher prioritized queues, i.e, Q0 and Q1, before
transmitting the remaining image layer data from lower pri-
oritized queues. If the image layer L2 already contains the
minimum resolution κL the image-data based mosaicking
can be integrated. For every new image the meta-data M and
lowest resolution L0 is put to the highest priority queue Q0.
The data transmission of one queue element should not be
interrupted by any other transmission. However, an image
layer of a large size should not be enqueued entirely, but
divided into smaller chunks added to the same queue. By
this approach we can interrupt the transmission of lower pri-
oritized queues at any point (depending on the chunk size,
e.g, 50 kB) if a higher prioritized queue is filled meanwhile.
Otherwise, in low bandwidth scenarios the transmission of
a larger image layer would block more important data if the
transmission is stalled.

Our scheme is designed to be robust against link failures
due to limited communication range caused by obstacles,
long distances or the number of concurrently active UAVs.
Missing packets of one data chunk are optionally requested
after the transmission of the corresponding chunk. This
consolidated kind of packet re-transmissions is efficient in
wireless networks since it does not require a transmission
control in the underlying network layer and still goes well
along the JPEG2000 decompression, if single packets are
mission of one chunk.

4.2 Incremental registration

The core of the incremental mosaicking is the iterative refine-
ment of the output image by considering different kinds of
data incrementally received via our network scheduling and
by applying different mosaicking methods. This method is
sketched in Algorithm 1 which is triggered on any newly
arriving image-data. The simplest method to generate a
mosaic from this data is to compute the transformation from
averaged UAV meta-data and use a direct geometric projec-
tion. This method is initially applied to every newly incoming
image extremely quick. If the current image Ii is available in
a sufficient quality for further processing it is mosaicked by
well-known image registration methods (feature extraction
and feature matching). After feature extraction on individ-
ual images, we improve the processing time by determining
neighboring images before matching images to reduce the
computational effort. The resulting image transformations
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replace the previously estimated geometric projections and
can update the mosaic by new image transformations Ii .
In real non-planar scenes such image registrations result in
high distortions, already discussed in Sect. 1. Furthermore,
by re-using results from the meta-data and feature based
mosaicking such as the initial transformation and the match-
ing keypoints of all available images we are able to estimate
a rough 3D structure for further analysis. The computed 3D
structure is the base of finding a common projection plane to
further improve the image transformation. If sufficient image
data is available we end up in the estimation of improved
image transformations by limiting the considerable feature
keypoints from previous results.

Algorithm 1 Incremental mosaicking code
1: while images Ii arrive do
2: if qimage(Ii) ≥ γ then
3: extract features of Ii
4: determine neighbors by the meta-data M
5: match features among neighbors
6: if operator requests mosaic then
7: find similarity and apply Timagei
8: end if
9: estimate or update structure
10: find or update the common plane
11: compute image transformation on plane Timagei
12: if operator requests mosaic then
13: update mosaic with Timagei for all images
14: end if
15: else
16: place image Ii by Tcami

17: end if
18: end while

We evaluate the projective quality qproj that is represent-
ing the spatial accuracy of the image transformation and the
image quality qres for each image.

qimage(Ii ) = f (qproj (Ii ), qres(Ii )) (5)

The emphasis of each component in this evaluation
depends on the application constraints and defines where
individual images are used. Bad images are neglected later
since they will not improve the output mosaic due to high dis-
tortions. On the other hand, images that are only available in
a low resolution but with good projection quality can easily
and quickly be included into the output mosaic. In our set-
tings we have been using a distribution of 2

3 norm(qproj ) +
1
3 norm(qres).

The quality qproj is computed from the UAV’s meta-data
and camera parameters over the photo release interval and
elaborated in Eq. 15. The other quality component qres rep-
resents the image quality in terms of spatial resolution was
earlier elaborated in Eq. 4.

sampling trace 

deviation boundaries k

o

sampling period 

0

n

Pc c I

c 0

rIx 0

Fig. 7 Projection of the camera extrinsics to an arbitrary ground plane

4.2.1 Meta-data based mosaic

The first transformation estimation is executed on the UAV
platform utilizing all available sensor data from the UAV’s
meta-data as the extrinsic parameters of the cameras. The
image pixel coordinates are mapped into the world coordi-
nate system by the intrinsic camera matrix. Since we know an
estimate position and orientation of the camera in the world
coordinates we are able to project the image based on the
intrinsic camera model to the mosaic. In ideal systems, these
transformations are directly computed from the camera cal-
ibration and UAV’s sensor data, Eq. 6. Our camera extrinsic
parameters are afflicted by sensing errors on the UAV and
the intrinsic parameters from the camera calibration are also
inaccurate because of different conditions between indoor
calibration and outdoor use (such as focal distance and aper-
ture). We employ simple statistical filters to achieve a first
approximation and have noticed that the mean of the position
and view angles are sufficient as initialization, elaborated in
Eq. 13. The most severe inaccuracies arises due to the poor
synchronization between the flight controller (GPS and IMU
sensors) and the camera. The point of time when taking an
image cannot be determined exactly because of the design
of the camera and unknown internal delays. During image
capturing the UAV encounters environmental influences that
disturb the position and attitude angles heavily. Roll and pitch
angles are typically more afflicted by the system dynamics
and cause arbitrary perspective views. The horizontal yaw
angle is exposed to a steady drift and offset.

Figure 7 depicts the estimation of the extrinsic parameters
on the vehicles attitude data over a certain sampling period
τ . Within this period τ the projection of each image cen-
ter c′

I on an arbitrary ground plane Π0 is estimated from
theintrinsic and extrinsic camera parameters Pc. This allows
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a rough estimation of the projection quality qproj for each
captured image defined in Eq. 15.

Pc = [
I tc

]
Rc Kc (6)

tc = (xc, yc, zc)
T = f (OGPS, XGPS) (7)

In Eq. 6 the extrinsic camera parameters are derived from
the 3D coordinate translation tc related to the GPS position in
Eq. 7, the 3D rotation matrix Rc = R(Ψ ) R(Φ) R(Θ) deter-
mined from the IMU angles for yaw, pitch and roll {Ψ,Φ,Θ}
and the camera intrinsic parameters Kc.

Π0 := {n, x′
0} (8)

The horizontal ground plane Π0 (Eq. 8) is defined by
the normal vector n = (0, 0, 1)T through the origin x′

0 =
(0, 0, 0)T . If we transform images to this ground plane Π0

by the approximated view from Pc we still explore perspec-
tive distortions in the transformed images. These distortions
cannot be compensated by the meta-data only, instead the
image-data itself has to be considered to estimate more accu-
rate camera projections.

These parameters are converted from the UAV specific
format to a unified format and coordinate system. The pre-
ferred orientation of the camera is the nadir view (vertically
downwards) to a horizontal scene. The camera translation is
a function of the scenario origin O and the current position
within the sampling period τ which is the time from the trig-
ger signal t0i of the camera to the first data received from the
camera at the imaging unit. The scenario origin O is equal to
the origin x′

0 mapped to GPS coordinates OGPS . The current
position of the UAV is determined from the GPS data XGPS

in relation to OGPS . The projected principle point c′
0 in Eq. 11

on the plane Π0 is defined as intersection of the principle axis
rI through the camera origin o and the transformed image
center c′

I in Eq. 10. During the sampling period τ the cam-
era origin o = f (tc) and orientation Rc varies. This variation
causes projections to the ground plane different from the true
projection.

c′
I = Pc cI (9)

rI = o − c′
I

norm(o − c′
I )

(10)

c′
0 = o − n · (o − x′

0)

n · rI
rI

∣∣∣n · rI �= 0 (11)

The individual projected image centers during the period τ

are denoted as c0(t) for each individual sample. The deviation
from the true projection is presented in Fig. 7 as circle k
around all points c0(t). Given a set of all points c0(t) we find
the smallest bounding circle by the smallest enclosing circle
method [26], defined by the center m′ and the radius r . The

radius r of the smallest circle k around all points during τi is
an estimate of the projective quality qproj for this image in
Eq. 12.

k = {c0(t), t ∈ {t0, t0 + τ } ∣∣ norm(m′ − c0(t))) ≤ r}
m′ = (x ′

m, y′
m, z′

m)T (12)

The number of discrete samples wi captured from the
UAVs sensors during τ depend on the update capabilities
of UAV flight controller, the GPS update rate and IMU sam-
pling rate.

c′
0 = 1

w

τ∑
t=t0

c0(t) (13)

Hence, the rough image transformation Tcam is estimated
from the average camera projection for c′

0. The quality func-
tion in Eq. 15 for each initial image projection is defined by
the average angle deviation αp from the nadir view n during
the period τ . It is represented by the deviation boundaries
around the projected centers. The radius is normalized to the
maximum allowed deviation from the physical properties of
pitch and roll angles of up to 15◦ restricted by the vendor of
the used UAVs for controlled waypoint flights.

cos(αp) = (o − c′
0) · n

norm(o − c′
0) norm(n)

(14)

qproj = 1 − cos(αp) norm(r, r15◦) (15)

Finally, the transformation is simply computed between
the projection on the ground plane (Eq. 11) and the native
nadir projection of the image. We compute the resulting
homography transformation Tcam in Eq. 16 from the cam-
era projection Pc and projected points x′ as proposed in [18].

Algorithm 2 Meta-data based transformation
Input: intrinsic camera matrix Kc

camera position tc(t)
camera orientation Rc(t)

Output: transformation Tcam
quality estimation qproj

1: for t = t0 to t0 + τ do
2: compute camera matrix Pc(t)
3: compute ground projection c0(t)
4: end for
5: estimate mean projection c′

0
6: estimate projection quality qproj
7: compute Tcam directly from projection c′

0
8: return Tcam, qproj

x̃ = Tcam · x ⇒ x̃ × Tcam · x = 0 (16)

This major pre-estimation step is executed on the limited
resources on the UAV according to Algorithm 2. The result-
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ing homography transformation is included in the meta-data
to the image and transmitted to the ground station.

4.2.2 Feature based mosaic

Panorama mosaics in typical image registration applications
are generated from a single view point only by rotating a
camera around its axis. In Eq. 17 this homography trans-
formation is only related to the rotation R and the intrinsic
camera parameters K.

H = K R K−1 (17)

An image created by this method is an extension of the
FOV but in our case images are taken from multiple UAVs
from different view points. To improve image transforma-
tions when the extrinsics are insufficient the exploration
of the image data in Eq. 1 is required. This process is
computationally expensive because keypoint extraction and
matching has to be executed on the image data. After evalu-
ating speeded up robust features (SURF) and scale invariant
feature transform (SIFT) we decided to employ SIFT for
feature extraction teamed with k-d-tree keypoint matching
[16]. The outputs of the feature extraction and matching are
immediately used for the estimation of image-data based
transformation. According to our studies [30] we apply a
pair-wise matching function for finding the similarity trans-
formation among selected images to minimize the distortion
error propagation during the mosaicking. Initially, an image
with a minimum perspective distortion from the available
images at the ground station is selected, i.e, min(qproj ). For
the pair-wise estimation we build and maintain an ordered set
P of image pairs p(a, b) from the total number of N images
(Eq. 18).

P := {p(a, b) | a ≤ N , b ≤ N } (18)

order(P)by(|AO(Ia, Ib)|, |Km(a, b)|, qproj (a)+qproj (b))

(19)

To avoid global optimizations at this point, the ordering
within this set of image pairs is based on the parameters of
the ordering function in Eq. 19. First, the size of the overlap-
ping area AO(Ia, Ib) is investigated as the primary ordering
criteria, followed by the number of matched features |Km |
between two images a and b denoted with function (≡) in
Eq. 21. At this stage we assume that sufficient features are
matched and equally distributed over the overlapping area
AO .

xi = (x, y) ∈ Ia x j = (x, y) ∈ Ib (20)

Km = {(xi , x j ) | xi ≡ x j , xi ∈ AO(Ii ), x j ∈ AO(I j )} (21)

Distortions in the mosaic are reduced if the quality esti-
mation qproj in Eq. 15 indicates a minimum deviation from
the nadir view for both images qproj (a) and qproj (b). Even
when employing the similarity transformation the quality of
the initial image is important. The smaller the approximated
angle deviation αp, the less distortion errors are propagated
to the following images. A good estimation is found by ran-
dom sample consensus [14] from the highest ranked pair in
the set P where both images Ia and Ib. In Eq. 22 this transfor-
mation is defined by a scaled 2D rotation and translation for
all two-dimensional pixels of both images where x denotes
the original pixel and x̃ the transformed one.

x̃ = Timagea,b
x =

[
s R t
0T 1

]
x (22)

Images in the set P with a very low rank are kept
back. Reasons for poor ranks are small overlapping areas
AO(Ia, Ib) ≤ δ or large projection angles αp. The overlap-
ping constraint δ is defined by the application requirements
and later defined in Eq. 23. These images keep their meta-data
based placement unless additional images arrive that could
improve their rank in the set, e.g, by increased overlap.

Algorithm 3 Image-data based transformations
Input: transformation Tcam and quality qproj

image data I
Output: transformation Timage

1: extract features from I
2: compute overlapping area to all other received images
3: match features with overlapping images
4: rank image I into previous set (P )
5: compute similarity transformation Timage
6: return image transformation Timage

The method elaborated in Algorithm 3 is executed on the
ground station. Intermediate steps of the processing are pre-
sented in Fig. 8a, b where individual images are stitched
based on image data. In contrast to traditional image reg-
istration we can significantly speed up the feature matching
process by pre-selection of possible image pairs and reducing
the number of features to match. This optimization utilizes
the meta-data and is presented in the next section.

4.2.3 Efficient keypoint extraction and matching

Adding new images to large image sets results in a high com-
putational effort when employing standard methods (global
optimizations) for image registration. Without knowledge of
possible overlapping images every new image forms N − 1
possible pairs where N is the total number of images. In sim-
ilar images, e.g, grassland, water surfaces, forests, among
others, standard methods will result in various false positive
keypoint matches. To find relations between images prior
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Fig. 8 Image registration steps
presenting extracted and
matched keypoints
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Fig. 9 The intersection of two images is defined as overlapping area

we consider the local neighborhood property, if two images
share an area overlap of a certain amount.

To reduce the number of possible matches within the total
set P of all possible image pairs we discard images with
no or just little overlap in border regions. By reducing out-
liers and false positives we gain more robust spatial image
transformations. The set of pairs P̃ is reduced only to pairs
of images p(a, b) with significant overlap AO(Ia, Ib) in the
overlapping region between image Ia and image Ib in Fig. 9.

P̃ := {p(a, b) ∈ P
∣∣ |AO(Ia, Ib)|

≥ δ · max (|A(Ia)|, |A(Ib)|), a < b} (23)

In Eq. 23 the overlapping area is defined to be larger than
a fraction δ of the area of the larger image. This is com-
puted efficiently by intersecting convex four-point-polygons
of image areas. An image area A(Ii ) on the projection plane
is defined in Eq. 24 after applying the initial transformation
Tcami to each pixel. Each pixel x ∈ Ii is transformed into
the image polygon to a pixel x̃. This transformed pixel is
specified by the two-dimensional coordinates (x̃, ỹ)T . The
overlapping area of a pair of images is defined by their area
set intersection (Eq. 25).

A(Ii ) = {x̃|x̃ = (x̃, ỹ)T , x ∈ Ii , x̃ = Tcami x} (24)

AO(Ia, Ib) = A(Ia) ∩ A(Ib)

= {x = (x, y)T | (x, y) ∈ Ia, Ib} (25)

The keypoint matching is now efficiently executed on
selected pairs of images p(a, b) ∈ P̃ where the overlapping
area is sufficient. This number of selected pairs |P̃| is signifi-
cantly reduced in comparison with considering all keypoints
in image pairs (k = 2) in the set of all possible matches P
for an incrementally growing set of N images in Eq. 26.

|P| = 1

2
· (N − 1) · N = N !

k! · (N − k)!
∣∣∣∣
k=2

(26)

Experiments have shown that the generic overlapping con-
straint δ is not sufficient in dynamic situations. To achieve
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mosaics of a comparable quality to full 3D reconstruc-
tions, the influences of harsh environments and different
scene structures have to be considered into the overlap-
ping constraint. State-of-the-art mosaicking methods, even
of planar scenes, require an overlap of δ > 0.9 as pre-
sented in Caballero et al. [8]. In dense structured scenarios
a higher overlap is often required, to compensate environ-
mental influences such as wind gusts and irregular UAV
movement we introduce an additional overlapping margin
η. It expands the overlapping area to A′

O (Eq. 29) to search
for correspondences. While δ is constrained by the appli-
cation requirements and considered during the planning, η

is adapted for each vehicle and during flight separately as
function of qproj of the last five images (Eq. 27).

η = 1

N − m

N∑
i=m

1 − qproj (i) | m = max(0, N − 5) (27)

In our approach we extract SIFT keypoint features in one
image Ii . A subset X̃i of all available keypoints X̂i for this
image is exploit for matching in the overlapping area. The
subset for two overlapping images {X̃a, X̃b} is defined in
Eq. 28 for those points x that reside inside this expanded
overlapping area polygon are considered for matching.

X̃a,b := {X̃a, X̃b}
⊂ {xa, xb | xa ∈ X̂a, xb ∈ X̂b : xi ∈ A′

O(Ia, Ib)} (28)

A′
O(Ia, Ib) = expand (AO(Ia, Ib), η) (29)

In Fig. 10 the left image Ia is marked with a blue bor-
der and has an overlapping polygon A′

O (cyan) with the
right image Ib surrounded by a red border. All keypoints
X̂a and X̂b are shown in gray in the background while the
selected keypoints for matching are colored. The sets Xa

and Xb are the extended sets of the overlapping area X̃a

and X̃b including the margin η and considered for the fea-
ture matching between image Ia and image Ib. Thereafter,
RANSAC is applied on this set to determine the similar-
ity image transformation Timagei

. All points from Xa,b that
are located with in the approximation threshold ε are called
inliers to the estimated similarity transformation target func-
tion. The estimated transformation Timagei

replaces the initial
transformation Tcami of each image.

Xa,b ={(xa, xb)
∣∣xa ∈ Xa, xb ∈ Xb,

|desc(xa) − desc(xb)| < ε} (30)

4.2.4 Structure based keypoint selection

The next step in the incremental approach is the reduction
of inaccuracies and distortions caused by the scene struc-
ture. We profit from different view points of our UAVs flying
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Fig. 10 An image pair projected by the camera extrinsics with relevant
keypoints in the overlapping area of at least δ = 0.3 of each image size
expanded by η = 0.1

over the observation area to gain structure information of the
monitored scene. Hence, for the reconstruction of a scene
we require at least two different views to compute depth
information—which we gain due to our multi-view setup
where every image taken at a different pre-planned location.
For full feature-based 3D reconstructions our resources are
insufficient [17]. However, we are able to exploit sufficient
data for a rough 3D reconstruction. Results from previous
feature extraction and feature matching are reused in the com-
putation of a sparse 3D point cloud.

Since we are not interested in a nice 3D model, as
presented in Fig. 11, rather than a quick planar overview
mosaic. We introduce an initial projection plane Π0 paral-
lel to the camera plane supported by our knowledge about
the planned routes. We compute the epipolar geometry rela-
tion of matching keypoint pairs by initially employing the
structure-from-motion approach [24,25] that is defined by
the fundamental matrix F. One initial image pair p(a, b)

is selected from the pairs of images P̃ by its lowest per-
spective distortion error qproj and the smallest re-projection
error in the fundamental matrix estimation from the key-
point matches. Therefore, the first step is the estimation of
the epipolar geometry for each pair that results in the funda-
mental matrix [18] in Eq. 31.

F = K−T T R K−1 (31)

Thereafter, the bundle adjustment [27] is executed incre-
mentally by adding additional images. The 3D structure is
composed from the set of points X ′ and cameras C ′ that are
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Fig. 11 In this dense point cloud (enhanced by patch-based multi-view
stereo method (PMVS) [17]) the observed area is presented from nadir
view and the ground plane is manually annotated in green. This plane
is our request projection plane (color figure online)

also adjusted to minimize the re-projection error. In each
iteration a sparse point cloud is enlarged and increased in
accuracy by additionally matching keypoints. The majority
of matched keypoints remain on surfaces seen from above
because those are visible in multiple images due to the
nadir perspective. On homogeneous surfaces, we explored
at least feature keypoints along edges between objects and
the ground plane.

4.2.5 Common projection plane

Finding the optimum projection plane that keeps geospatial
relations [30] is now an incremental process, explained in
Algorithm 4, since the 3D structure model also incrementally
grows and improves. We define the optimum plane as the
ground plane that is most perpendicular to the principal axis
of the cameras admitting with the assumption that all camera
orientations are nadir. In non-horizontal scenes this target
function has to be reconfigured.

Algorithm 4 Plane fitting
Input: matched keypoints X and pairs P̃

Output: common projection plane Π0
sparse 3D structure X′
image transformations Timagei

1: find epipolar geometry for all pairs P̃ and keypoints X
2: add matches to bundle adjustment
3: (re)-adjust the bundle
4: update the common ground plane Π0
5: select keypoints within |d(x′, Π0)| ≤ ε

6: update image transformations on plane Π0
7: return common projection plane Π0 and structure X′

The estimation of the ground plane is executed on
the Euclidean coordinate output of the incremental bundle
adjustment and updated when incrementally adding more
images considering previous results as initialization. The
general plane function in Eq. 32 is used in its definition by the
non-zero normal vector n through the point on the plane x′

0
in Eq. 33 where a point is defined as x′ = (x ′, y′, z′)T . Each
keypoint x in the two-dimensional image space is related to
its three-dimensional point x′ by its projection.

d = −a x ′
0 − b y′

0 − c z′
0 (32)

Π := n (x′ − x′
0) = 0 (33)

According the definition in Eq. 34 three points (x′
1, x′

2, x′
3)

are required to determine the normal vector of the plane. Any
of the three points can be chosen as x′

0 = (x ′
0, y′

0, z′
0)

T in the
plane definition.

n = (x′
2 − x′

1) × (x′
3 − x′

1) (34)

The approximation of a plane by RANSAC can end
up with any arbitrary plane. However, when defining the
plane constraints, i.e, the normal vector in vertical direction
nz = (0, 0, 1)T , the result is imprecise because our 3D model
and the initial camera extrinsic parameters are afflicted by
deviations. In Fig. 12 the incremental growing and improve-
ment is demonstrated.

Due to the constraint flight height to the same altitude
during the mission we achieve a well defined initialization for
the horizontal plane as the plane through the camera centers
in Eq. 35.

Πc := nc(oi − o) ∀oi ∈ C ′ (35)

If at least three camera positions o are available, a plane
can be fit through these camera origins with orthogonal
regression and RANSAC. The angle θ between the result-
ing camera plane normal vector nc and the projection plane
normal vector n in Eq. 36 has to be minimized.

cos(θ) = nc · n where |nc| = |n| = 1 (36)

With a small number of images n < 10 a very sparse
point cloud results, hence the camera plane normal vector
nc is necessary to achieve a plausible plane fitting results.
When adding more images, the bundle adjustment appends
additional keypoints x′ to the set of 3D points X ′ and also
increases the accuracy of existing points. Within this updated
point cloud the plane fitting is executed repeatedly with the
previously estimated ground plane serving as initialization.

A plane is the ground plane of a scene if it is the lowest
horizontal plane with the largest number of inliers defined
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Fig. 12 Incremental refinement of the 3D structure and the ground
plane. The diamond mark the approximated UAV positions. Points
marked in red lay on the ground plane, sketched as green grid (color
figure online)

in Eq. 37. During the RANSAC method all points are eval-
uated to be within or outside a certain distance |d| ≤ ε to
the selected sample set. These inliers on the ground plane
compose the image transformation later.

X ′
Π := {x′ ∈ X ′ | |d(x′,Π0)| ≤ ε} (37)

d(x′,Π0) = n · x′ + x′
0 (38)

Points from the current result set X ′ with a positive point-
to-plane distance d(x′,Π0) > 2 ε above the plane are marked
as outliers and discarded. This reduces the search space in
the set of points for further iterations.

Any update of the ground plane adds additional inliers
within the distance of ε. Other points are removed when drop-
ping out of the margin ε due to a slight tilt of the plane. The
final ground plane Π0 is defined in Eq. 39 and its inliers in
Eq. 37 that are considered for computing the image trans-
formation. After adding a number of images the mosaicking
process according to Fig. 4 is executed again and the resulting
plane Π0 converges to a stable solution.

Π0 := n0(x′ − x′
0) (39)

In the examples in Fig. 13 the inlying keypoints x′ ∈ X ′
Π

on the resulting ground plane Π0 are marked.
The image transformations computed from this ground

plane inliers x′ are denoted as the image transformation
Timage and employed for the final transformation T.

4.2.6 Mosaic generation: visualization

Figure 14a shows individual images Ii processed according
to their assigned image transformation Ti independent of
their currently received resolution. The same transformation
is also employed to generate a mask image which is required
for blending individual images to one mosaic, presented in
Fig. 14b. Each color value of pixel x = (x, y)T ∈ I is copied
to the destination image with the perspective transformation
which is derived from the homography definition in Eq. 40
and pixel mapping in Eq. 41.

x′ = T x T =
⎡
⎣ h00 h01 h02

h10 h11 h12

h20 h21 h22

⎤
⎦ (40)

x ′ = h00 x + h01 y + h02

h20 x + h21 y + h22
, y′ = h10 x + h11 y + h22

h20 x + h21 y + h22
(41)

In Fig. 14c, d the displacement vectors in the meta-data
based mosaic are sketched and Fig. 14e presents the images
registered according to these displacement vectors in the
image-data based approach. Depending on the available com-
puting power the visual optimization by seamless image
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Fig. 13 Green markers show the selected keypoints on the ground plane in these example images (color figure online)

Fig. 14 These figures sketch the final mosaicking steps. In a one image
is transformed and with its mask added to the previous mosaic in c.
Finally single images are merged with blending in f

blending can be executed and blends the transformed images
over each other. This step is important for adjusting expo-
sure, saturation and de-ghosting objects. The open source
software enblend4 implements the state-of-the-art algorithm
using multi-resolution splines [7] for combining images.

4 http://enblend.sourceforge.net/ last visited on November 11th 2013.

5 Case studies and evaluation

We successfully deployed our approach in two scenarios
where we evaluated our approach against quality criteria
defined in Eq. 42. This quality benchmark Ω is applied to
the final mosaic as well as any intermediate stages.

Ω(IO) = ν Ωcorr (SI , IO ,Π0) + λ Ωnet (SI ) + ρ ΩA(IO)

(42)

The individual quality components are evaluated through-
out the whole process to provide feedback to the incremental
processing. Depending on the mission preferences the com-
ponents weights are adjusted. The overall sum of weights ν,
λ, and ρ in Ω is 1.

The first quality component refers to the cross correlation
CC() Ωcorr of a set of currently mosaicked images SI =
{Ii : 1 < n ≤ N } only within the ground plane area. The
area on the ground plane is defined as intersection between
the image pixels and the plane Π0 including the variance ε

in Eq. 43.

A(Ii ∩ Π0) : = {x′
i ∈ Ii | |d(x′

i ,Π0)| ≤ ε} (43)

Ωcorr (SI , IO ,Π0)

= 1

n

n∑
i=1

1 + CC(A(IO ∩ Π0), A(Ii ∩ Π0))

2

(44)

The second component presents the transmitted data in
Eq. 45. With the weight ϕ = 0.5 the contribution to the
final mosaic is balanced between the number n of images
and resolution layers res(Ii ).

Ωnet (SI ) = ϕ
n

N
+ (1 − ϕ)

1

n

n∑
i=0

res(Ii ) | Ii ∈ SI (45)

The third component ΩA(IO) of Eq. 42 evaluates the covered
area in the scene according to the requirements. In some sce-
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Fig. 16 Recorded received signal strength (RSSI) during the mission

narios, such as rescue scenarios, the covered area over time is
of outermost importance. On the other hand for other appli-
cations, the same amount of data can be utilized with less
but higher resolution images. During planning the whole sce-

nario area is divided into a number u = |G| of sub areas G =
g2 of different required resolutions κG Each subset Gi ⊆
A(IO) has an individual requested resolution and the function
A() defines the area in world coordinates and |A()| is the size
of this covered area. The evaluation of the overview mosaic
IO is examined with these requirements against the planned
coverage area. The size of the covered area |A(Gi )| and the
resolution res(Gi ) are evaluated in Eq. 46 for each subset.

ΩA(IO) = 1

u

u∑
i=0

|A(Gi )| · res(Gi ) (46)

In both scenarios we evaluate the contribution of individ-
ual images to the whole mission. In the fire fighter practice
scenario the UAV routes concentrate around the center of the
observation area which is the center of action and we achieve
more overlap. Here the growth of the newly covered area is
smaller than in the wide area monitoring scenario where each
individual image covered a large new area. In Fig. 15 these
evaluations are presented over time. The graphs are normal-
ized to the planned area to cover. The finally covered area
was larger than the planned area in both scenarios because
of position inaccuracies.

Furthermore, we evaluated the duration for transmitting
individual resolutions from all UAVs in the wide area sce-
nario. For detailed analysis on the network we have been
recording the data from network and link layers as well
as from the application layer scheduling. The results are
presented in Fig. 16 for the wide area scenario along the geo-
referenced routes. Each data point in the graph represents
one measurement sample synchronized to the UAV position.

The received signal strength measurements are discussed
in more detail in the work of Yanmaz et al. [31]. They exe-
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Fig. 17 Delay times between capturing images on the UAV and the reception of each specific image layer at the ground station

123



Resource aware and incremental mosaics of wide…

Table 1 Delay times of individual image layers from capturing to the
ground station

Queue Maximum delay [s]
UAV1 UAV2 UAV3

Q0 10.7974 8.0504 79.2130

Q1 12.5058 9.1944 157.7492

Q2 52.8634 20.9972 242.4114

Q3 115.6260 20.8368 335.7916

Q4 186.5008 54.2094 373.4210

Queue Mean delay [s]
UAV1 UAV2 UAV3 Total

Q0 1.6827 0.5942 16.3619 5.9200

Q1 2.9642 1.0695 53.5570 18.2296

Q2 10.4332 3.2804 111.1155 39.6074

Q3 27.2692 4.5191 167.8719 63.4659

Q4 76.0867 23.4496 214.1930 100.8522

cuted and verified different tests on orientation and power
levels by employing the free-space path loss model. We have
been evaluating the transmission of single image layers and
the prioritization of the data among all three UAVs. In Fig. 17
the individual delays of each resolution layer from each UAVs
is measured, from the transmission start to the complete trans-
fer of the respective layer. This evaluation shows that one
UAV went into an area of reduced signal strength and was
not able to transmit higher resolution data. Thereafter, only
the lowest resolution representations of succeeding images
could have been transmitted. Immediately when an UAVs
went back into an area of better signal quality the remaining
and stalled data could have been transmitted. More detailed,
Table 1 shows the maximum and average delays from cap-
turing one image until its layers are received at the ground
station.

The image quality analysis in our selected scenarios deliv-
ers promising results, although these images contain highly
structured scenes with an obvious but fractional ground
plane. In Fig. 11 this structure of the fire fighter practice
scenario is demonstrated where the ground plane is anno-
tated manually for evaluations. The incrementally generated
overview mosaic is analyzed according to the quality defini-
tion Ω(IO) defined in Eq. 42. The structure based mosaicking
covers the 3D structure estimation, plane fitting and estima-
tion of the image transformation of the ground plane that is
executed on incoming image data. We analyze re-projection
errors of the estimated 3D structure and the evolution of
the ground plane. Example results are already presented in
Figs. 12 and 13.

The first stage of the incremental mosaic is the meta-data
based mosaic. This obviously imposes high deviations from
the true scene. Environmental conditions and sensor uncer-

Fig. 18 Meta-data based intermediate mosaic including seven received
images

Fig. 19 Incremental mosaicking in detail. The ground plane is accu-
rately mosaicked, while objects, i.e, buildings, occlude regions of the
ground plane area

tainties directly influence the image transformation quality.
In Fig. 18 one intermediate result is presented of the meta-
data based mosaic where all images are directly placed
according to their annotated meta-data.

Any correlation evaluation executed on this meta-data
based mosaic would present very bad results. Nevertheless,
the immediate presentation of this mosaic to operators is
important and valuable for a quick manual inspection. In
the overall quality evaluation this poor visual quality is com-
pensated by a very quick response time.

After the structure analysis and plane fitting, the com-
mon plane regions are successfully determined and the
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Fig. 20 Quality improvement over mission time by our incremental approach

mosaic is build on these regions. In Fig. 19a a few images
are mosaicked by the image-data based approach. And in
Fig. 19b more regions are occluded by buildings around
the ground region because additional images from differ-
ent views are incorporated to the mosaic. Occlusions of the
ground plane and resulting multiple ghost objects are a chal-
lenge for the blending algorithm. The remaining images in
Fig. 19 demonstrate the magnified blending outputs from
both scenarios. In Fig. 19d we notice this effect at the silos
where the ground plane area is emphasized because it is seen
in more images from the same perspective.

To determine the overall quality throughout the mosaick-
ing process, the correlation of single images stitched to the
overview mosaic and the covered area are computed accord-
ing to Eq. 42 and presented in Fig. 20 at different stages of
the mission when the evaluation measurement was executed.

Furthermore, we compare our incremental approach to
state-of-the-art mosaicking methods in terms of computa-
tional effort, presented in Table 2. The reference methods
are AutoPano5 which is the most prominent commercial
software for mosaicking images and Pix4D6 which does
excellent 3D reconstructions, where AutoPano fails in dense
structured scenes.

The most important evaluation is the measurement of dedi-
cated landmarks for determining the spatial relative accuracy.
The ratio of distances on the ground plane represents a
measurement for the overall distortion of the image. We
determined some landmarks and measured true distances and
compared them to our final overview mosaic and the mosaic
output of the reference methods.

5 http://www.kolor.com/ visited on December 5th 2013.
6 http://pix4d.com/ visited on December 5th 2013.

Table 2 The final offline computation results compared to state-of-the-
art mosaicking by time when all images are available

Test set Method Processing time (s)

Fire fighter practice AutoPano 103

Pix4D 1814

Our Method 423

Wide area monitoring AutoPano 217

Pix4D (only one UAV) 1378

Out Method 504

The test system employs an Intel Core Duo processor with 2.4 GHz and
4 GB memory

Table 3 Detailed distance measurements of all three methods in cm

Id True length AutoPano Pix4D Our method

a 4.03 4.23 4.02

b 4.00 3.75 4.04 3.95

c 4.00 3.20 3.87

d 4.02 3.94 4.02 4.03

e 4.03 4.11 4.01 4.06

f 4.00 4.75 4.04 3.96

g 6.06 5.93 6.15 6.12

h 6.06 5.94 6.19 6.15

i 72.08 68.02 72.11 72.57

j 72.12 65.32 72.14 73.11

k 20.03 14.63 20.34 20.97

The deviation from the ground truth of our approach is less
than 13 cm over the whole mosaic in north to south direction
(Table 3). The reference from Pix4D delivers slightly more
robust spatial relations of less than 5 cm while the 2D mosaic
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from AutoPano shows poor spatial relations with an average
deviation of 30 cm. In average our results can be compared
to the output of Pix4D by showing an equal deviation of 5 cm
which is satisfying since Pix4D was not able to mosaic the
whole area.

6 Conclusion

In this work we presented an incremental mosaicking
approach of aerial images from multiple small-scale UAVs
flying at low altitudes. Our approach was driven by dedicated
applications such as disaster response management over
wide areas where the mosaic should be generated as quick
as possible. We faced the challenges of mosaicking dense
structured scenes and managed limited communication capa-
bilities. Our achieved mosaics preserve spatial relations and
show reduced distortions compared to traditional mosaick-
ing methods. Due to the prioritized data transmission and the
incremental processing of data teamed with structure based
mosaicking we successfully generate a growing mosaic by
utilizing limited resources efficiently. In terms of the visual
quality of the mosaic we cannot compete with expensive and
optimized 3D reconstruction methods consuming unlimited
resources. But we deliver an overview mosaic in less than a
tenth of the processing time when we consider the whole set
of images. Moreover, we observed that our network schedul-
ing together with the progressive image encoding is crucial
for the incremental mosaicking. Preselecting important data
on the UAVs lead to the optimal utilization of available com-
munication channels.

Finally, operators, e.g, during the fire fighter practice sce-
nario, are satisfied with the intermediate semi-transparent
mosaicking results where they are able to manually and
quickly identify objects. Our mosaicking approach is robust
if a ground plane exists in the scenario and it is clearly visible
in many images but might will deliver a wrong projection
plane if no ground plane can be determined. These issues
are already considered in our future work of allowing more
degrees of freedom for the projection plane.
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