
Energy-aware Task Scheduling in Wireless Sensor

Networks based on Cooperative Reinforcement

Learning

Muhidul Islam Khan, Bernhard Rinner

Institute of Networked and Embedded Systems

Alpen-Adria Universität Klagenfurt, Austria

Email: muhidulislam.khan@aau.at, bernhard.rinner@aau.at

Abstract—Wireless sensor networks (WSN) are an attractive
platform for cyber physical systems. A typical WSN application
is composed of different tasks which need to be scheduled on
each sensor node. However, the severe energy limitations pose
a particular challenge for developing WSN applications, and
the scheduling of tasks has typically a strong influence on the
achievable performance and energy consumption. In this paper
we propose a method for scheduling the tasks using cooperative
reinforcement learning (RL) where each node determines the
next task based on the observed application behavior. In this
RL framework we can trade the application performance and
the required energy consumption by a weighted reward function
and can therefore achieve different energy/performance results of
the overall application. By exchanging data among neighboring
nodes we can further improve this energy/performance trade-
off. We evaluate our approach in an target tracking application.
Our simulations show that cooperative approaches are superior
to non-cooperative approaches for this kind of applications.

Index Terms—Reinforcement learning, tasks scheduling, en-
ergy efficiency, wireless sensor networks, target tracking.

I. INTRODUCTION

Wireless sensor networks (WSN) have become an attractive

platform for various applications including target tracking,

area monitoring or smart environments. Battery operated sen-

sor nodes pose strong energy limitations where each sensor

node has limited power supply, computation capacity and

communication capability [1]. A typical WSN application is

composed of different tasks which need to be scheduled on

each sensor node. However, the scheduling of the individual

tasks has typically a strong influence on the achievable per-

formance and energy consumption.

The energy constrained sensor nodes operate in highly

dynamic environments. Hence, the need for adaptive and au-

tonomous task scheduling in wireless sensor networks is well

recognized [2]. Since it is not possible to schedule the tasks

a priori, online and energy-aware task scheduling is required.

For determining the next task to execute, the scheduler needs

to consider the available energy of the sensor node as well

as the energy requirements and the effect on the application’s

performance of each available task. The ultimate goal is to

achieve a high application performance while keeping the

energy consumption low.

In this paper we propose a cooperative reinforcement learn-

ing (RL) method for task scheduling. The proposed algorithm

helps to learn the best task scheduling strategy based on the

previously observed behavior and is further able to adapt to

changes in the environment. A key step here is to exploit

cooperation among neighboring nodes, i.e., the exchange of

information about the current local view on the application’s

state. Such cooperation helps to improve the trade-off between

energy consumption and performance. In our simulation we

compare our cooperative with non-cooperative methods in

terms of energy efficiency and application quality. We observe

the energy/performance trade-off considering different balanc-

ing factors of the reward function, different network sizes

and different target mobilities. The simulation results show

that cooperative approaches are superior to non-cooperative

or independent learning approaches.

The rest of this paper is organized as follows. Section II

discusses related work, and Section III describes the problem

formulation. Section IV explains our system model and the

cooperative RL approach used. In Section V we present our RL

based online task scheduling. Section VI discusses simulation

results for an target tracking application. Section VII concludes

this paper with a brief summary.

II. RELATED WORKS

In an energy constrained WSN, effective task scheduling is

very important for facilitating the effective usage of energy [3].

The cooperative behavior among sensor nodes by exchanging

data among neighboring nodes can be very helpful to schedule

the tasks in a way that the energy usage is optimized and also

a considerable performance is maintained. Most of the existing

methods of tasks scheduling do not provide online scheduling

of tasks. They rather consider static task allocation instead of

focusing on distributed task scheduling.

Guo et al. [4] proposed a self-adaptive task alloca-

tion/scheduling strategy in WSN. They assume that the WSN

is composed of a number of sensor nodes and a set of

independent tasks which compete for the sensors. They neither

consider distributed tasks scheduling nor the trade-off among

energy consumption and performance. Giannecchini et al. [5]

proposed an online task scheduling mechanism called collab-

orative resource allocation (CoRAl) to allocate the network

resources between the tasks of periodic applications in WSNs.

CoRAl neither addresses mapping of tasks to sensor nodes



nor discusses explicitly energy consumption. Shah et al. [6]

introduced a task scheduling approach for WSN based on

an independent reinforcement learning algorithm for online

tasks scheduling. Their approach relies on a simple and

fixed network topology consisting of three nodes and a static

value for the reward function. They further consider neither

any cooperation among neighbors nor the energy/performance

trade-off. Our approach has some similarity with [6], but is

much more general and flexible since we support general WSN

topologies, a more complex reward function for expressing the

trade-off between energy consumption and performance, and

cooperation among neighbors.

III. DESCRIPTION OF THE PROBLEM

In our approach the WSN is composed by N nodes repre-

sented by the set N̂ = {n1, . . . , nN}. Each node has a known

position (ui, vi) and a given sensing coverage range which is

simply modeled by circle with radius ri. All nodes within the

communication range Ri can directly communicate with ni

and are referred to as neighbors. The number of neighbors of

ni is given as ngh(ni). The available energy of node ni is

modeled by a scalar Ei.

The WSN application is composed by A tasks (or actions)

represented by the set Â = {a1, . . . , aA}. Once a task is

started at a specific node, it executes for a specific (short)

period of time and terminates afterwards. Each task execution

on a specific node ni requires some energy Ẽj and contributes

to the overall application performance P . Thus, the execution

of task aj on node ni is only feasible if Ei ≥ Ẽj . The overall

performance P is represented by an application specific metric

(cp. Section V for more details). On each node, an online task

scheduling takes place which selects the next task to execute

among the A independent tasks. The task execution time is

abstracted as fixed period. Thus, scheduling is required at the

end of each period which is represented as time instant ti. We

only consider non-preemptive scheduling.

The ultimate objective for our problem is to determine the

order of tasks on each node such that the overall performance

is maximized while the energy consumption is minimized.

IV. SYSTEM MODEL

The task scheduler operates in a highly dynamic envi-

ronment, and the effect of the task ordering on the overall

application performance is difficult to model. We therefore

apply reinforcement learning (RL) to determine the “best” task

order given the experiences made so far. Figure 1 depicts our

scheduling approach in terms of a RL framework where its

key components can be described as follows.

Each sensor node represents an agent in our proposed

multi-agent learning framework. The application represents

the environment in our approach. An agent’s action is the

currently executed application task on the sensor node. At the

end of each time period ti each node schedules the next task

to execute. A state describes an internal representation of the

application. State transitions depend on the previous state and

action. The policy determines which task to execute at the

Fig. 1. Proposed system model.

present state. The policy can focus more on exploration or

exploitation. It is built upon reward function values over time

and hence it’s quality totally depends on the reward function

[6]. We apply a weighted reward function which is capable

to show a trade-off between energy consumption and tracking

performance. We consider the information exchange among

neighbors which influences also the state of the application.

Reinforcement learning is a branch of machine learning and

is concerned with determining an optimal policy. It maps the

states of the environment to the actions that an agent should

take in those states so as to maximize a numerical reward over

time [7].

Q learning [8] is a technique which is often used to select

these actions, even when the agent has no full knowledge about

the reward and state transition functions. In each state the agent

basically can choose from two kinds of behavior: either it can

explore the state space or it can exploit the information already

present in the Q values.

SARSA(λ) [7], also referred to as State-Action-Reward-

State-Action, is an iterative algorithm that approximates the

optimal solution without knowledge of the transition proba-

bilities which is very important for a dynamic system such

as a WSN. At each state st+1 of iteration t + 1, it updates

Qt+1(s, a), which is an estimate of the Q function by com-

puting the estimation error δt after receiving the reward in the

previous iteration. The SARSA(λ) algorithm has the following

updating rule for the Q values:

Qt+1(s, a)← Qt(s, a) + αδtet(s, a). (1)

for all s,a.

In Equation 1, α ∈ [0, 1] is the learning rate which

decreases with time. δt is the temporal difference error which

is calculated by following rule:

δt = rt+1 + γf iQt(st+1, at+1)−Qt(st, at). (2)

In Equation 2, γ is a discount factor which varies from 0

to 1. The higher the value, the more the agent relies on future



rewards than on the immediate reward. rt+1 represents the

reward received for performing action. f i is the weight factor

for the neighbors of agent i and can be defined as follows:

f i =
1

ngh(ni)
if ngh(ni) 6= 0 (3)

f i = 1 otherwise. (4)

An important aspect of an RL framework is the trade-off

between exploration and exploitation [9]. Exploration deals

with randomly selecting actions which may not have a higher

utility in search of better rewarding actions, while exploitation

aims at the learned utility to maximize the agent’s reward.

SARSA(λ) improves learning through eligibility traces.

et(s, a) is the eligibility traces in Equation 1. Here λ is another

learning parameter similar to α for guaranteed convergence.

The eligibility trace is updated by the following rule:

et(s, a) = γλet−1(s, a) + 1 if s = st and a = at (5)

et(s, a) = γλet−1(s, a) otherwise. (6)

V. RL BASED TASK SCHEDULING FOR TARGET TRACKING

Tracking mobile targets is a typical and generic application

for WSNs. We therefore demonstrate our task scheduling

approach using such target tracking application. We consider

a sensor network which may consists of a variable number of

nodes. The sensing region of each node is called the field of

view (FOV). Every node aims to detect and track all targets in

the FOV. If the sensor nodes would perform tracking all the

time then this would result in the best tracking performance.

But executing target tracking all time is energy demanding.

Thus, task should only be executed when necessary and suf-

ficient for tracking performance. Sensor nodes can cooperate

with each other by informing neighboring nodes about “ap-

proaching” targets. Neighboring nodes can therefore become

aware of approaching targets. We propose a cooperative RL

method for scheduling the tasks.

A. Set of Actions

We consider the following actions in our system:

a) Detect Targets: This function scans the FOV and

returns the number of detected targets in the FOV.

b) Track Targets: This function keeps track of the targets

inside the FOV and returns the current 2D positions of all

targets. Every target FOV is assigned with a unique ID number.

c) Send Message: This function sends information about

the target’s trajectory to neighboring nodes. The trajectory

information includes (i) the origin and time (i.e., the current

target position) and (ii) the estimated speed and direction. This

function is executed when the target is about to leave the FOV.

d) Predict Trajectory: This function predicts the veloc-

ity of the trajectory. A simple approach is to use the two most

recent target positions, i.e., (xt, yt) at time tt and (xt−1, yt−1)
at tt−1. Then the constant target’s speed can be estimated as

v =
√

(xt − xt−1)2 + (yt − yt−1)2/(tt − tt−1) (7)

A slightly more advance estimation is based on the k least

detected target positions, e.g., by exploiting regression or line

fitting approaches.

e) Goto Sleep: This function shuts down the sensor node

for single time period. It consumes the least energy of all

available actions.

f) Intersect Trajectory: This function checks whether the

trajectory intersects with the FOV and predicts the expected

time of the intersection. This function is executed by all

nodes which receive the “target trajectory” information from

a neighboring node.

Trajectory intersection with the FOV of a sensor node is

computed by basic algebra. The expected time to intersect the

node is estimated by

t̃i = DPiPj
/v (8)

where DPiPj
is the distance between points, Pj and Pi

correspond to the trajectory’s intersection points with the FOV

of the two nodes (cp. in Figure 2). v is the estimated velocity

as calculated by Equation 7.

 

Tracked Positions Inside the 

FOV of Node j 

Node j 

Node i 

Node k 

 

Estimated Trajectory 
 

 

 

 

 

Estimated 

Fig. 2. Target prediction and intersection. Node j estimates the target
trajectory and sends the trajectory information to neighbors. Node i checks
whether the predicted trajectory intersects its FOV and computes the expected
arrival time.

B. Set of States

We abstract the application by three states at every node.

• Idle: This state indicates that there is currently no target

detected within the node’s FOV and the local clock is

too far from the expected arrival of any target already

detected by some neighbor. If the time gap between local

clock and the expected arrival time is greater than or



equal to five, the node remains in idle state. In this state,

the sensor node performs Detect Targets actions less

frequently to save energy.

• Awareness: There is currently also no detected target in

the node’s FOV in this state. However, the node has

received some relevant trajectory information and the

expected arrival time of at least one target is in less than

five clock ticks. The threshold for the time difference

between the expected arrival time and the local clock is

set to five based on our simulation studies. In this state,

sensor nodes perform Detect Targets more frequently,

since at least one target is expected to enter the FOV.

• Tracking: This state indicates that there is currently at

least one detected target within the node’s FOV. Thus,

the sensor node performs tracking frequently to achieve

high tracking performance.

Obviously, the frequency of executing Detect Targets and

Track Targets depends on the overall objective, i.e., whether

to focus more on tracking performance or energy consumption.

This objective can be influenced by the balancing factor β
of our reward function. The states can be identified by two

application variables, i.e., the number of detected targets at the

current time Nt and the list of arrival times of targets expected

to intersect with node NET . Nt which is determined by the

task Detect Targets which is executed at time t. If the sensor

node executes the task Detect Targets at time t then Nt

returns the number of detected targets in the FOV. If the sensor

node fails to execute the detection task then Nt = 0, i.e.,

there is no current detected targets inside the FOV. Each node

maintains a list of appearing targets and the corresponding

arrival time. Targets are inserted in this list if the sensor node

receives a message and the estimated trajectory intersects with

the FOV. Targets are removed if a target is detected by the

node or the expected arrival time with an additional threshold

Th1 has expired. Figure 3 depicts the state transition diagram

where Lc is the local clock value of the sensor node and Th1

represents the time threshold between Lc and NET .

C. Reward Function

The reward function in our algorithm is defined as

r = β(Ei/Emax) + (1− β)(Pt/P ) (9)

where parameter β balances the conflicting goals between Ei

and Pt. Ei is the residual energy of the node. Pt is the number

of tracked positions of the target inside the FOV of the node.

Emax is the maximum energy level of sensor node and P is

the number of all possible detected target’s positions in the

FOV.

D. Exploration-Exploitation Policy

In our proposed algorithm, we use a simple heuristic where

the exploration probability is represented by,

ǫ = min(ǫmax, ǫmin + k ∗ (Smax − S)/Smax) (10)

where ǫmax and ǫmin define upper and lower boundaries for

the exploration factor, respectively. Smax represents maximum

 

Idle 
Tracking 

Awareness 

 

 

 

 

 

 

 

 

 

Fig. 3. State transition diagram. States change according the value of two
application variables Nt and NET . Lc represents the local clock value and
Th1 is a time threshold.

number of states which is three in our work and S represents

current number of states already known. At each time step,

the system calculates ǫ and generates a random number in

the interval of [0, 1]. If the selected random number is less

than or equal to ǫ, the system chooses a uniformly random

task (exploration) otherwise it chooses the best task using Q
values (exploitation).

Algorithm 1 SARSA(λ) learning algorithm for target tracking

application.

1: Initialize Q(s, a) = 0 and e(s, a) = 0
2: while Residual energy is not equal to zero do

3: Determine current state s by application variable

4: Select an action a, using policy

5: Execute the selected action a
6: Calculate reward for the executed action (Eq. 9)

7: Update the learning rate (Eq. 11)

8: Calculate the temporal difference error (Eq. 2)

9: Update the eligibility traces (Eq. 5 and 6)

10: Update the Q value (Eq. 1)

11: end while

Algorithm 1 shows the SARSA(λ) learning algorithm for

the target tracking application step by step.

E. Learning Rate Update

The learning rate α is decreased slowly in such a way that it

reflects the degree to which a state-action pair has been chosen



in the recent past. It is calculated as:

α =
ζ

visited(s, a)
(11)

where ζ is a positive constant. visited(s, a) represents the

visited state-action pairs so far [10].

VI. EXPERIMENTAL RESULTS AND EVALUATION

We evaluate our RL based task scheduling using a WSN

multi-target tracking scenario implemented in a C# simulation

environment. In our evaluation scenario the sensor nodes

are uniformly distributed in a 2D rectangular area. A given

number of sensor nodes are placed randomly on this area

which can result in partially overlapping FOVs of the nodes.

However, placement of nodes on the same position is avoided.

Targets move around in the area based on a Gauss-Markov

mobility model [11]. The Gauss-Markov mobility model was

designed to adapt to different levels of randomness via tuning

parameters. Initially, each mobile target is assigned with a

current speed and direction. At each time step t, the movement

parameters of each target are updated based on the following

rule:

St = ηSt−1 + (1− η)S +
√

1− η2SG
t−1 (12)

Dt = ηDt−1 + (1− η)D +
√

1− η2DG
t−1 (13)

where St and Dt are the current speed and direction of the

target at time t. S and D are constants representing the mean

value of speed and direction. SG
t−1 and DG

t−1 are random

variables from a Gaussian distribution. η is a parameter in

the range [0, 1] and is used to vary the randomness of the

motion. Random (Brownian) motion is obtained if η = 0, and

linear motion is obtained if η = 1. At each time t, the target’s

position is given by the following equations:

xt = xt−1 + St−1cos(Dt−1) (14)

yt = yt−1 + St−1sin(Dt−1) (15)

In our simulation we limit the number of concurrently

available targets to seven. The total energy budget for each

sensor node is considered as 1000 units. Table I shows the

energy consumption for the execution of each action. For

each of our evaluations we run 10 simulations each lasting

100 time steps. We set the discounted factor γ = 0.5 for

reinforcement learning and vary the learning rate according

to Equation 11. We set ζ = 1 for calculating learning rate

in Equation 11. We set k = 0.25, ǫmin = 0.1, ǫmax = 0.3
and Smax = 3 in Equation 10. We set λ = 0.5 for the

eligibility trace calculation by Equation 5 and 6. We consider

the sensing radius, ri = 3 and communication radius, Ri = 8.

For each simulation run we aggregate the achieved tracking

quality and energy consumption and normalize the tracking

quality to [0, 1] and the energy consumption to [0, 10]. As

we get a value between 0 and 1 for calculating the tracking

quality at every time steps, we normalize the tracking quality

to [0, 1]. Our highest amount of energy consumption for the

Send Message (two hops)=10 and the lowest amount is for

Action Energy Consumption

Goto Sleep 1 unit

Detect Targets 2 units

Intersect Trajectory 3 units

Predict Trajectory 4 units

Send Message (one hop) 5 units

Send Message (two hops) 10 units

Track Targets 6 units
TABLE I

ENERGY CONSUMPTION OF THE INDIVIDUAL ACTIONS.

Fig. 4. Achieved trade-off between tracking quality and energy consumption
for β = 0.1.

Goto Sleep=1. The send message action requires the largest

amount of energy. Sending messages over two hops consumes

energy on both the sender and relay nodes. To simplify the

energy consumption at the network level, we aggregate the

energy consumption to 10 units on the sending node only. So,

we normalize the energy consumption to [0, 10].
For our evaluation we perform the three experiments with

the following assumptions of parameters.

1) To find out the trade-off between tracking quality and

energy consumption, we set the balancing factor β to one

of the following values {0.10, 0.30, 0.50, 0.70, 0.90},

Fig. 5. Achieved trade-off between tracking quality and energy consumption
for β = 0.3.



Fig. 6. Achieved trade-off between tracking quality and energy consumption
for β = 0.5.

Fig. 7. Achieved trade-off between tracking quality and energy consumption
for β = 0.7.

keep the randomness of moving target as η = 0.5 and

fix the topology to five nodes.

2) We vary the network size to check the trade-off between

tracking quality and energy consumption. We consider

three different topologies consisting of 5, 10 and 20

sensor nodes. We keep the balancing factor β = 0.5 and

the randomness of the mobility model η = 0.5 constant

for this experiment.

3) We set the randomness of moving tar-

gets η to one of the following values

{0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.7, 0.9} and set

the balancing factor β = 0.5 and fix the topology to

five nodes.

We compare our proposed cooperative approach (consid-

ering both one hop and two hop distance neighbors) with a

non-cooperative or independent RL based task scheduling as

reference for the above three experiments. Figures 4, 5, 6, 7

and 8 present the results of the first experiment. Each data

point in these figures represents the normalized tracking qual-

ity and energy consumption of one complete simulation run.

The square symbols represent the average values among the 10

Fig. 8. Achieved trade-off between tracking quality and energy consumption
for β = 0.9.

Fig. 9. Tracking quality versus energy consumption for various network sizes.

simulation runs for each method. For example with β = 0.1,

the achieved tracking results varies within (0.69, 0.77) and the

energy consumption varies within (4.7, 5.4) for our one-hop

cooperative approach. The average value for this setting is

0.73 and 5.3. It can be clearly seen from theses figures of the

Fig. 10. Randomness of target movement, η=0.1, 0.15 and 0.2



Fig. 11. Randomness of target movement, η=0.25, 0.3 and 0.4

Fig. 12. Randomness of target movement, η=0.5, 0.7 and 0.9

first experiment that our cooperative approaches outperforms

the non-cooperative approach with regard to the achieved

tracking performance. There is a slight increase in the energy

consumption especially for the two-hop cooperative approach.

Figure 9 shows the results of our second experiment. Here the

same trend can be identified as in the first experiment, i.e.,

the cooperative approaches outperform the non-cooperative

approach with regard to the achieved tracking performance.

Figures 10, 11 and 12 show the results of our third experi-

ment. From these figures, it can be seen that our cooperative

approaches outperforms the non cooperative approach in terms

of achieved tracking performance. We can see that for lower

randomness, η=0.5, 0.7 and 0.9, independent learning and one-

hop cooperative learning show very close results for tracking

performance. But for higher randomness, η=0.1, 0.15 and 0.2,

independent learning gives poor performance with regard to

tracking quality.

All three experiments demonstrate that cooperative RL

based scheduling achieves better tracking performance than

non-cooperative scheduling. Naturally, the cooperative ap-

proaches require more energy due to the increase communi-

cation effort. However, by appropriately setting the balancing

factor β the desired performance or energy consumption can

be achieved.

VII. CONCLUSION

Energy-aware effective tasks scheduling is very important

for WSN to know the best task to execute on next time slots. In

this paper, we proposed a cooperative reinforcement learning

method for online scheduling of tasks in a way that the better

energy/performance trade-off is achieved. We compared our

proposed cooperative method (one hop and two hop distance

neighbors) with non-cooperative methods. Our experimental

results show that our cooperative RL based scheduling out-

performs the non-cooperative scheduling in terms of tracking

quality. Future works include the consideration of a real

world motion model for the targets, the consideration of data

association as a task and the comparison of our approach with

other variants of reinforcement learning methods.

ACKNOWLEDGMENT

This work was supported by the Erasmus Mundus Joint

Doctorate in Interactive and Cognitive Environments, which

is funded by the EACEA Agency of the European Commis-

sion under EMJD ICE FPA no. 2010-0012 and the EPiCS

project funded by the European Union Seventh Framework

Programme under grant agreement no 257906.

REFERENCES

[1] J. Ko, K. Klues, C. Richter, M. B. Wanja Hofer, Branislav Kusy,
T. Schmid, Q. Wang, P. Dutta, and A. Terzis, “Low Power or High
Performance? A Tradeoff Whose Time Has Come (and Nearly Gone),”
in Proceedings of European Conference on Wireless Sensor Networks,
2012, pp. 98–114.

[2] M. I. Khan and B. Rinner, “Resource Coordination in Wireless Sensor
Networks by Cooperative Reinforcement Learning,” in Proceedings

of the IEEE International Conference on Pervasive Computing and

Communications Workshops, 2012, pp. 895 – 900.
[3] C. Frank and K. Romer, “Algorithms for Generic Role Assignments in

Wireless Sensor Networks,” in Proceedings of the ACM Conference on

Embedded Networked Sensor Systems, 2005.
[4] W. Guo, N. Xiong, H.-C. Chao, S. Hussain, and G. Chen, “Design and

Analysis of Self Adapted Task Scheduling Strategies in WSN,” Sensors,
vol. 11, pp. 6533–6554, 2011.

[5] S. Giannecchini, M. Caccamo, and C. Shih, “Collaborative Resource Al-
location in Wireless Sensor Networks,” in Proceedings of the Euromicro

Conference on Real-Time Systems, 2004.
[6] K. Shah and M. Kumar, “Distributed Independent Reinforcement Learn-

ing (DIRL) Approach to Resource Management in Wireless Sensor
Networks,” in Proceedings of IEEE Mobile Adhoc and Sensor Systems,
2007.

[7] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

[8] U. A. Khan and B. Rinner, “Dynamic Power Management for Portable,
Multi-Camera Traffic Monitoring,” in Proceedings of the IEEE Real-

Time and Embedded Technology and Applications Symposium, 2012.
[9] J. Byers and G. Nasser, “Utility Based Decision making in Wireless

Sensor Networks,” in Proceedings of the Workshop on Mobile and Ad

Hoc Networking and Computing, 2000, pp. 143 – 144.
[10] U. A. Khan and B. Rinner, “Online Learning of Timeout Policies

for Dynamic Power Management,” ACM Transactions on Embedded

Computing Systems, p. 25, 2013.
[11] T. Abbes, S. Mohamed, and K. Bouabdellah, “Impact of Model Mobility

in Ad Hoc Routing Protocols,” Computer Network and Information

Security, vol. 10, pp. 47–54, 2012.


