
Distributed Online Visual Sensor Network
Reconfiguration for Resource-aware Coverage and

Task Assignment

Bernhard Dieber, Bernhard Rinner
Institute of Networked and Embedded Systems

Alpen-Adria Universität Klagenfurt and Lakeside Labs, Austria
Email: {firstname.lastname}@aau.at

Abstract—A visual sensor network (VSN) consists of resource-
limited camera nodes which process the captured image data
locally and collaborate with other cameras over a wireless
network. The configuration of the network is a very important
task in VSNs in order to adapt the available resources to the
current requirements of the application. We focus on coverage
and task assignment as a key configuration problem for VSNs.
Due to rapid changes in the VSN’s environment, a dynamic
and online reconfiguration is highly needed. In this paper we
introduce and evaluate a fast and distributed resource-aware
reconfiguration algorithm. Our approach is based on simple
optimization primitives to find good approximations and to keep
the required data transfer in the VSN small. We analyze the
communication complexity and compare our algorithm with a
centralized configuration approach based on several scenarios
with different complexity. Our experiments show that we can
achieve the same configuration quality as with the centralized
approach in almost all cases.

I. INTRODUCTION
In a Visual Sensor Network (VSN) a large number of

camera nodes form a distributed system. They process image
data locally to extract relevant information, collaborate with
other cameras on the application-specific task and provide the
system’s user with information-rich descriptions of captured
events [1]. These networks can be found in various applications
including assisted living, surveillance and entertainment [2].
VSNs represent networks of embedded sensors and processors
with tight resource limitations. Still, VSNs have to process
large amounts of visual data in real-time and perform rather
complex algorithms to fulfill the application requirements.
These requirements are significantly different to typical wire-
less sensor network applications and pose novel challenges
for deployment and operation of VSNs. We focus on one such
challenge, i.e., resource-aware coverage and task assignment
with the objective to find an optimal configuration of the
VSN. A configuration is basically given by (i) the selection
of cameras to sufficiently monitor the area of interest, (ii) the
setting of the cameras’ frame rate and resolution to fulfill the
quality of service (QoS) requirements, and (iii) the assignment
of processing tasks to camera nodes to achieve all required
monitoring activities.
In [3], we formally introduced this configuration problem and
presented a centralized approximation method for it. This
evolutionary algorithm is used to approximate an optimal
tradeoff between surveillance quality and resource consump-
tion. This method is well suited for a-priori configuration
since all information on observation points and node resources

need to be in a central place to run this algorithm. In a dy-
namic environment, where frequent changes occur, this would
lead to high communication effort and significant latency
in reconfiguration. To dynamically change the coverage and
task assignment in VSN, we introduce and evaluate in this
paper a fast, distributed algorithm capable of finding good
approximations of the configuration problem. It exchanges so
called descriptors to inform other nodes of possible solutions
and is able to improve a solution over time. Our approach is
based on simple optimization primitives and keeps the required
messages in the VSN small. Such a resource-aware algorithm
is very important for a deployment on the resource-limited
camera nodes.
The remainder of this paper is organized as follows: Section
II describes relevant related work. In Section III we present
a concise problem formulation. Section IV introduces our
approach to distributed sensor selection and task assignment.
We evaluate our approach in Section V and conclude and point
out future work in Section VI.

II. RELATED WORK
Resource limitation is a typical problem many multi-

camera networks have to face [4], [5]. In recent years many
approaches to improve energy efficiency in visual sensor
networks [6], [1] and smart camera networks [2] have been
proposed.
Casares et al. [7] try to maximize processor idle time on smart
cameras in order to prolong the node lifetime. In [8] additional
sensors are used to selectively turn on and off cameras to save
energy.
Selecting the best camera for a particular task is crucial in
a VSN. Strategies for task assignment and object handoff
influence the overall resource consumption [9], [10], [11]. Yu
et al. [12] propose a camera selection and energy allocation
strategy to deliver a user-requested view in a VSN using a
stochastic model of the network lifetime. Cenedese et al. [13]
formalize the problem of task assginment of multiagent-driven
camera networks and present a decentralized algorithm to solve
it. Tessens et al. [14] propose a method to select the camera
which currently provides the best view of a certain scene. Shen
et al. [15] employ mechanisms of selforganization to select
cameras in a distributed smart camera network.
Although the related work discussed above addresses various
aspects of resource constrained visual sensor networks, there
are significant differences to the approach presented in this
paper. We propose a highly-flexible, dynamic and completely

distributed approach not only aiming on assigning tasks to
camera nodes in a resource aware manner but also manipulat-
ing camera settings, namely frame rate and resolution in order
to further reduce the resources needed to perform the network
task. It is able to adapt to changes in the environment and
can also deal with heterogeneous activity requirements in the
network.
The approach presented in this paper builds upon our previous
work as presented in [3]. It uses the same models for coverage
and resources and thus produces comparable results. It is how-
ever, a different approach from an algorithmic point of view.
While our previous work presents a centralized evolutionary
algorithm, we show in this paper a completely distributed
algorithm which is nevertheless able to achieve the same result
quality in most cases.

III. PROBLEM FORMULATION
This section presents a concise definition of our coverage

and task assignment problem and briefly sketches a centralized
approximation algorithm.
Figure 1 shows our configuration problem. n camera sensors
are placed on a 2D space; the coverage area of each camera
is represented by a segment. Observation points represent the
tasks to be performed by the network. Each has to be covered
by at least one camera at a given QoS (determined by the
frame rate fps and the pixels on target pot) performing a
certain monitoring activity for the observation point while not
exceeding the available resources (processing, memory and
energy).

Fig. 1. A simple scenario

For modeling the network configuration problem we make
the following assumptions: i) The camera network consists
of directional sensors with a fixed position and fixed field
of view (FOV). The frame rate and the resolution of the
image sensor can be changed within an a-priori known set of
sensor configurations. ii) Each camera captures images (at the
defined resolution and frame rate) and executes a sequence of
image processing procedures and transfers data/results to other
camera nodes in the network. This data transfer is realized
in a simple peer-to-peer manner. Complete communication
coverage among the nodes and a potential base station is
assumed. iii) The observation points are static locations and
must be covered by at least one camera’s FOV at sufficient
pot and fps. pot is determined by the sensor resolution and
the distance between camera and observation point. Note, that
observation points themselves are not moving but they rather
indicate spots of high activity of a certain kind. However, they
may be added or removed at runtime if activity hotspots change
or an external operator redefines them. iv) We currently only

consider a convex 2D space without obstacles restricting the
camera’s FOV.

A. Problem Definition
We define S = {s1, . . . , sn} as the set of all sensors and

their associated properties such as position or field of view
and T = {t1, . . . , tm} as the set of all all observation points
and their surveillance QoS requirements ”pixels on target”
(pot), ”framerate” (fps) and ”surveillance activity” (a).
An activity represents a high-level monitoring task such as
image compression and streaming, change detection, object
detection, person counting and object tracking. We define the
set of all activities that can be performed as A = {a1, . . . , al}.
The function r̃(asi , ressi , fpssi) → (c̃si , m̃si , ẽsi) is used to
calculate the required processing c̃si , memory m̃si and energy
resources ẽsi to perform a certain activity asi on a node si
with a specified data input configuration (resolution ressi and
framerate fpssi). The required resources are specified for
processing a single frame.
We search for feasible configurations of the complete network
where all requirements regarding resources, QoS and activity
are satisfied. No sensor may exceed its memory and processing
capabilities. The required resources for the given input data
configuration can be computed r̃.

1) Optimization Criteria: In general, there are multiple
feasible configurations possible for a given network configura-
tion problem. Thus, we are interested in configurations which
optimize some criteria. In this paper, we are focusing on (i)
quality (pot, fps, a) and (ii) energy usage. Naturally, different
criteria can be defined as well.

2) Requirements for a Distributed Algorithm: Runtime
reconfiguring is key for reacting to occurring events and task
changes. Monitoring tasks (i.e., the observation points and their
requirements) may change frequently depending e.g. on the
activity in the area. A centralized algorithm needs to collect
information about all nodes in a single node which requires
expensive communication.
In general, observation points can be in the FOV of multi-
ple cameras. This coverage can be easily represented as a
bipartite graph. Strongly connected coverage graphs pose a
challenge for distributed algorithms, since an update of the task
assignment on a single camera may introduce updates on all
connected (via shared observation points) cameras. Such chain
of updates may then also trigger an update on the originating
camera which may result in update loops.

IV. DISTRIBUTED ALGORITHM

Step
Node 0 1 2 3 4
A dA dB
B dB
C dC dB

Fig. 2. A sample communication pattern of the algorithm in a slotted
representation. Node A defines the observation point, Node B has the
best solution for it. dX denotes a message which carries the solution
found by node X .

The basic idea of the algorithm presented here is that
autonomous camera nodes act greedily to cover observation

points (also called targets) in their FOV. They exchange
descriptors describing the required resources to cover an
observation point. Improved solutions are found by comparing
descriptors. Periodic re-evaluation of the assignments (the tar-
gets covered by that camera) improves the solution iteratively.
We assume that the information on a new observation point is
disseminated by a single node. The node might for example
use activity maps [16] to determine where a new observation
point must be placed. In this case, this node will be the first
to transmit information about the new observation point. If
an external operator defines new targets, this information will
enter the network at a single sensor node, thus this node will
further disseminate this information. We do not assume any
information on camera neighborhood, the cameras exchange
descriptors with broadcast messages1. Each camera stores the
best descriptor for a certain target, be it a local solution
or the solution of a remote node. This stored descriptor is
broadcast whenever the camera receives a worse descriptor.
We support multi-hop dissemination (for networks which span
farther than the broadcast range of a node) of descriptors using
this mechanism. This mechanism also improves the robustness
against message loss.

Algorithm distributed coverage and assignment()

On define new observation point t:
if t can be covered:

Calculate required settings and resources
Broadcast descriptor

fi

On receive descriptor d for target t:
if t is not in FOV or d is stored as best solution

end
fi
if no queue for t exists:

create queue qt for t and set timer
else

add d to qt
restart timer

fi

On timer for qt elapsed:
take best descriptor d from qt
if better descriptor ds available (local / stored solution)

Broadcast ds
else

Store d as remote best descriptor for t
Broadcast d

fi
Delete qt

Do periodically:
Select target t from targets covered by this node
Send out descriptor for t

Fig. 3. Event-based pseudo code of the distributed algorithm. ”On
x” indicates the occurrence of event x on the node. Events for new
observation points or new descriptors are shown along with optional
periodic activities for optimization.

1Neighboring cameras are connected via two edges in the coverage graph.
If we know the neighbors, we can multicast the descriptors to these nodes and
reduce the communication in the network

A. Events in the algorithm
Figure 3 shows a pseudocode description of the distributed

algorithm. Nodes react to events such as the occurrence new
targets or the reception of new descriptors.
Figure 2 shows a sample execution with three nodes. After
node A broadcasts an initial descriptor for the new observation
point, node C is the first to answer but the best solution is
found by node B. In steps 3 and 4, the nodes A and C confirm
the best solution of B by broadcasting the corresponding
descriptor once again. This is also done to enable multi-hop
communication and to compensate for message loss.

1) Processing of New Targets: Nodes detect hotspots which
need additional surveillance activity and define new observa-
tion points with the respective surveillance requirements. New
observation points may also be defined by external operators.
For a new observation point, a node calculates the necessary
resolution, framerate and activity needed to cover this points
and the additional resource usage for those settings. A target
may be covered ”for free” if a node already covers another
target that requires the same (or higher) settings. Else, the
additional resource demand is used as basis for a descriptor
(the difference between the current resource usage and the pre-
dicted total usage if the target is covered). The corresponding
descriptor is sent to the other nodes.

2) Processing a Descriptor: Received descriptors are com-
pared, the best of all for a certain observation point will be
stored at the node and broadcast. Descriptors are buffered for a
configurable period of time and the best of all received descrip-
tors is selected. Immediately replying to new descriptors results
in a higher amount of messages. A small random factor is
additionally added to this interval to desynchronize the nodes.
This is done to prevent nodes from processing their results
at the same time. Upon receiving a descriptor, the node first
checks if it covers the respective observation point. If so, it
either adds it to an existing queue or creates a new one for
this target.
After the buffering interval has elapsed, a local descriptor (the
costs for it to cover it locally) is compared to the best stored
and the best buffered one. The best descriptor is stored locally
and is broadcast to the other nodes as a confirmation. If the
node’s local descriptor it the best, it will cover the given target.
A node that has no observation points assigned can shut down
its sensory layer to save energy.

3) Periodic Activities: Each node periodically tries to hand
off one of the targets it covers to enable better solutions from
other nodes. This incrementally increases the quality of the
solution. We call this mechanism the runtime re-evaluation of
observation points.
This mechanism is also used as a keep-alive signal to detect
faulty nodes. This increases the robustness of the system and
reduces the number of messages exchanged at runtime.

V. EVALUATION AND RESULTS
In this section, we present a thorough evaluation of the

presented algorithm. We first show a theoretical evaluation on
the communication complexity which is then used to evaluate
practical simulation results.

A. Communication Complexity
In this section, we approximate the communication com-

plexity of the presented algorithm. To do this, we assume the
communication to be done in a slotted fashion. We assume that
only one node can transmit its message at a given time and

that all other nodes overhear this message and that the order
in which nodes send is random.
For this evaluation, we define node neighborhood as the joint
observation of a certain target by multiple cameras, i.e., it is
the set of all cameras which have this target in their FOV.
Using the function

c(s, t) =

{
1 if t is in the field of view of s.
0 otherwise

(1)

we define the neighborhood of cameras respective to an
observation point t as

Nt = {s ∈ S|c(s, t) = 1} (2)

Note, that we define best and worst cases for a single
observation point only. To calculate the respective numbers for
a scenario consisting of multiple observation points, the sum
of all observation points must be taken. The two messaging
patterns for the best and worst cases are shown in Figure 4.

1) Best Case: In the best case, the node which initially
defines a new target also has the best solution for it. In this
case, it broadcasts its descriptor and all neighboring nodes re-
ply to confirm. This corresponds to a best case communication
complexity of |Nt| messages for a single observation point t
where |Nt| is the number of cameras in the neighborhood wrt.
this target point.

Step
Node 0 1 2 3

A dA
B dA
C dA
D dA

Step
0 1 2 3 4 5 6 7 8 9

A dA dB dC dD
B dB dC dD
C dC dD
D dD

Fig. 4. The best case (left) and worst case (right) communication
complexity.

2) Worst Case: The worst case arises if the node which
initially defines a new target has the least optimal solution for
it and if the subsequent communication is performed in reverse
order of solution quality (i.e., nodes with worse solutions
communicate first). In this constellation we reach the worst
case communication complexity of

|Nt| · (|Nt|+ 1)

2

In Figure 4 we assume that the solution quality corresponds
to the alphabetical order of the node ID, i.e. that node D
has the best solution. However, node A transmits an initial
descriptor. Node B replies with the next best solution which
is then confirmed by A before C transmits its solution. It can
easily be seen that any other transmission order would result
in a lower number of required messages. If, for example, D
transmits its solution immediately after the initial descriptor of
A, the total number of messages required is 5.

B. Experimental Evaluation
In a real implementation and in simulations we evaluate

our presented algorithm. We use the central algorithm pre-
sented in [3] as a benchmark for the distributed approach and
evaluate the number of messages needed. Third, we show the

Fig. 5. The camera and observation node placement in the practical
scenario

algorithm’s behavior in scenarios with message loss.
In [3] the appropriateness of our resource models has been
demonstrated. We have shown that the predictions of our
energy and resource usage models closely match the values
measured on real hardware. To achieve results for large scenar-
ios, we rely on simulations. However, we first show the results
from a real deployment to show that results from simulation
and real deployments correspond.
Experimental setting: As a practical application, we have
defined a scenario with four Pandaboard-based2 embedded
cameras deployed to cover an area of approx. 50× 30 meters
with five, partially shared observation points (Figure 5). The
observation points require either simple background subtrac-
tion, object detection or tracking. We use OpenCV3 algorithm
implementations (BgStatModel, BlobDetector, TemplateTrack-
ing). We measure the time until a stable solution is reached
and compare the solution to the simulation results.
Simulation setting: We have defined six scenarios with typical
deployment scenarios for VSNs with i) separated clusters with
overlapping fields of view (e.g., surveillance of separate rooms
in buildings or intersections of streets), ii) connected fields of
view (e.g., continuous surveillance of pathways or large halls)
and iii) large-scale complex networks.
The first two scenarios—which have separated clusters—are

used to show the behavior of the algorithm in low-complexity
settings. While scenario b defines the same observation points
(Figure 6(a)) as scenario a, it has more sensors covering those
points. In scenario a 10 sensors are deployed while 15 sensors
cover the observation points in scenario b.
The third scenario (Figure 6(b)) has connected clusters and
is thus more complex to solve. Every node in scenario c
transitively shares its field of view with every other sensor.
In total, scenario c has 15 sensors and observation points
respectively.
Additional to the three fixed test scenarios we evaluate the
behavior of the proposed approach in a very large network.
We have generated a random scenario of 100 sensors and 25
observation points. By adding more observation points we have
derived two further scenarios containing 33 and 50 observation
points respectively.

In all scenarios we use the resource usage prediction of
the central algorithm as a benchmark. We measure the per-

2http://www.pandaboard.org
3http://opencv.willowgarage.com

(a) The low complexity scenario b). Scenario a)
has the same observation points but one camera
less per cluster.

(b) High complex scenario with circular cluster
interdependencies.

Fig. 6. Scenarios b and c.

Scenario Best Case Worst Case Average Overlap
real 14 27 2.8

a 14 21 2
b 21 42 3
c 38 70 2.53

TABLE I. BEST AND WORST CASE COMMUNICATION
COMPLEXITY ALONG WITH THE AVERAGE NUMBER OF FOV

OVERLAP PER OBSERVATION POINT FOR SCENARIOS a - d.

formance of the algorithm in terms of deviation from the
benchmark (the higher the deviation, the more resources will
the solution demand during runtime). We also measure the
number of messages the algorithm needs. From 500 simulation
runs per scenario we show the deviation from the reference
result of the central algorithm and the number of messages
needed to initially cover all points. We also show, how often
the algorithm finds the optimal result initially and after a re-
evaluation phase of 100 message. Additionally we show the
deviation from the benchmark result after the re-evaluation.
The experiments are performed in two steps:

1) Disabled re-evaluation allows estimating the quality
of results achieved when the algorithm terminates
after all points have been covered.

2) Doing re-evaluation for 100 messages shows the
improvement made by this mechanism.

Additionally, we do the same evaluation again for scenario
c with message loss rates of 5% and 15%. In this experiment
we first took the initial result and also evaluated the result
after an extra 100 messages as well.

Targets Best Case Worst Case Average Overlap
25 48 77 1.92
33 68 116 2.06
50 102 169 2.04

TABLE II. BEST AND WORST CASE COMMUNICATION
COMPLEXITY ALONG WITH THE AVERAGE NUMBER OF FOV

OVERLAP PER OBSERVATION POINT FOR THE COMPLEX
SCENARIOS WITH 25, 33 AND 50 OBSERVATION POINTS.

C. Evaluation of the Distributed Algorithm

Deviation experiment vs. simulation 2.45%
Time to find solution 12s

Messages experimental 26
Messages sim 21.3

CPU node 1 (simulation - experimental) 90.6% - 95.3%
TABLE III. RESULTS OF THE REALWORLD DEPLOYMENT

COMPARED TO THE SIMULATED RESULTS

1) Experimental results: In Table III we show the results
from our practical test. It can be seen that the simulation
achieves results very similar to a real system both, in terms
of achieved results and required messages. We also show
how the actual processor load on node 1 corresponds to the
predicted load. The experimental system takes 12 seconds to
find the solutions for all observation points.

2) Simulation results: We compare the distributed to the
central algorithm. The central algorithm has global information
as input while the distributed algorithm finds a solution only
using information available on the local node
The results of this test series are shown in Table IV. It shows
that the algorithm performs very well for simple and medium
complex scenarios finding the optimal result for scenario a
already in the initial assignment phase. The low number of
messages needed makes the algorithm suitable for resource-
limited networks (especially, considering that one message
only has a few bytes of size).
Note, that in scenarios b, c cases with more messages than in

the worst case occured. This is a consequence from the slotted
communication assumption in our theoretical evaluation. In the
real—unslotted—implementation with unsynchronized buffer-
ing, there are rare cases with suboptimal descriptor buffering
times resulting in slightly more messages than the worst case.
The algorithm found the optimal result for scenario c initially
in 4.5% of our test cases. This rate increased after the re-
evaluation to nearly 42%, i.e., the algorithm finds results fast
and the re-evaluation allows the improvement of the solution.

A distributed algorithm that may be used in networks
with non-reliable message transport must be able to deal with
message loss. We performed simulations with 5% and 15%
message loss to evaluate our approach.
The results for scenarios with 5% and 15% message loss

Scenario
a b c

Deviation initially [%]
Average 0 1.5 11.9

Min - Max 0 - 0 0 - 36.8 0 - 64.9

Number of messages
Average 17.5 31.2 54.1

Min - Max 14 - 21 22 - 43 44 - 78

Optimal results in initial run [%]
100 45.1 4.5

Opt results after +100 messages [%]
100 45.5 41.8

Deviation after +100 messages [%]
Average 0 1.3 6.7

Min - Max 0 - 0 0 - 12.2 0 - 55.5
TABLE IV. RESULTS OF THE DISTRIBUTED ALGORITHM
COMPARED TO THE BENCHMARK WITH NO MESSAGE LOSS.

(Table V) are still very close to the results with no loss. While
the average deviation from the optimal result increases and
reaches a rather high deviation in some rare cases, the added
value of performing a continuous improvement after the initial
assignments can be seen very clearly since the improvements
made after additional 100 messages is very large.

Loss Deviation [%] # Messages Opt. runs initial - re-eval. [%] Deviation re-eval. [%]
5% 25 - 0 - 218.3 51.2 - 38 - 64 2.2 - 45.2 7.1 - 0 - 55.5

15% 56.7 - 0 - 285.0 50.0 - 38 - 67 0.4 - 36 9.2 - 0 - 55.5
TABLE V. RESULTS OF THE DISTRIBUTED ALGORITHM FOR
SCENARIO c COMPARED TO THE CENTRAL EA WITH VARYING

MESSAGE LOSS.

3) Large-scale and Complex Networks: For very complex
scenarios, we show in Table VI that the algorithm yields results
very close to the optimum and that the average number of
messages needed per observation point remains stable.

OP Dev. [%] # Msgs. Msgs. / OP

25 0.36 - 0 - 1.5 63.5 - 57 - 70 2.54
33 0.3 - 0 - 1 93.5 - 81 - 110 2.83
50 0.73 - 0 - 2.6 138.9 - 117 - 152 2.73

TABLE VI. THE RESULTS FOR 25, 33 AND 50 OBSERVATION
POINTS (# OP).

VI. CONCLUSION AND FUTURE WORK
In this paper we have presented a purely distributed ap-

proach to resource-aware sensor selection and task assignment
in visual sensor networks. Our results show that the algorithm
is simple, fast, scalable and reliable even if messages lost. The
algorithm achieves results very close to the central evolutionary
algorithm presented in previous work, in most cases it is able
to find the optimal result. The algorithm scales linearly and is
thus applicable in small and large networks. We are exploring
VSN reconfiguration in even more dynamic environments. A
first approach to include object handover in the reconfiguration
has recently been published in [17].

ACKNOWLEDGMENTS
This work is supported by Lakeside Labs GmbH, Klagen-

furt, Austria and is funded in part by the European Union Sev-

enth Framework Programme under grant agreement no 257906,
the European Regional Development Fund (ERDF) and the
Carinthian Economic Promotion Fund (KWF) under grant
KWF 20214/18354/27107

REFERENCES

[1] S. Soro and W. Heinzelman, “A Survey of Visual Sensor Networks,”
Advances in Multimedia, pp. 1–21, 2009.

[2] B. Rinner and W. Wolf, “Introduction to distributed smart cameras,”
Proceedings of the IEEE, vol. 96, no. 10, pp. 1565–1575, October 2008.

[3] B. Dieber, C. Micheloni, and B. Rinner, “Resource-Aware Coverage and
Task Assignment in Visual Sensor Networks,” Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 21, no. 10, pp. 1424–
1437, Oct.

[4] Hamid Aghajan and Andrea Cavallaro, Ed., Multi-Camera Networks.
Elsevier, 2009.

[5] F. Al Machot, C. Tasso, B. Dieber, K. Kyamakya, C. Piciarelli,
C. Micheloni, S. Londero, M. Valotto, P. Omero, and B. Rinner,
“Smart Resource-Aware Multimedia Ssensor Network for Aautomatic
Ddetection of Complex Events,” in Advanced Video and Signal-Based
Surveillance (AVSS), 2011 8th IEEE International Conference on, 30
2011-Sept. 2, pp. 402–407.

[6] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “A survey on wireless
multimedia sensor networks,” Computer Networks, vol. 51, pp. 921–
960, 2007.

[7] M. Casares and S. Velipasalar, “Adaptive Methodologies for Energy-
Efficient Object Detection and Tracking With Battery-Powered Embed-
ded Smart Cameras,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 21, no. 10, pp. 1438–1452, oct. 2011.

[8] J. Nayak, L. Gonzalez-Argueta, B. Song, A. Roy-Chowdhury, and
E. Tuncel, “Multi-target tracking through opportunistic camera control
in a resource constrained multimodal sensor network,” in Distributed
Smart Cameras, 2008. ICDSC 2008. Second ACM/IEEE International
Conference on, sept. 2008, pp. 1 –10.

[9] L. Esterle, P. R. Lewis, X. Yao, and B. Rinner, “Socio-economic vision
graph generation and handover in distributed smart camera networks,”
ACM Transactions on Sensor Networks, 2013, to appear.

[10] C.-H. Chen, Y. Yao, D. Page, B. Abidi, A. Koschan, and M. Abidi,
“Camera Handoff with Adaptive Resource Management for Multi-
Camera Multi-Target Surveillance,” in IEEE Fifth International Con-
ference on Advanced Video and Signal Based Surveillance, 2008, pp.
79 – 86.

[11] Y. Li and B. Bhanu, “A comparison of techniques for camera selection
and handoff in a video network,” in Distributed Smart Cameras, 2009.
ICDSC 2009. Third ACM/IEEE International Conference on, 30 2009-
sept. 2 2009, pp. 1 –8.

[12] C. Yu and G. Sharma, “Camera Scheduling and Energy Allocation for
Lifetime Maximization in User-Centric Visual Sensor Networks,” IEEE
Transactions on Image Processing, vol. 19, no. 8, pp. 2042–2055, 2010.

[13] A. Cenedese, F. Cerruti, M. Fabbro, C. Masiero, and L. Schenato,
“Decentralized task assignment in camera networks,” in Decision and
Control (CDC), 2010 49th IEEE Conference on, dec. 2010, pp. 126
–131.

[14] L. Tessens, M. Morbee, H. Lee, W. Philips, and H. Aghajan, “Principal
view determination for camera selection in distributed smart camera
networks,” in Distributed Smart Cameras, 2008. ICDSC 2008. Second
ACM/IEEE International Conference on, sept. 2008, pp. 1 –10.

[15] E. Shen and R. Hornsey, “Camera selection using a local image quality
metric for a distributed smart camera network,” in Sensors, 2011 IEEE,
oct. 2011, pp. 1217 –1220.

[16] C. Piciarelli, C. Micheloni, and G. L. Foresti, “Occlusion-aware multiple
camera reconfiguration,” in Proceedings of the ACM/IEEE International
Conference on Distributed Smart Cameras, 2010, pp. 88–94.

[17] B. Dieber, L. Esterle, and B. Rinner, “Distributed resource-aware
task assignment for complex monitoring scenarios in visual sensor
networks,” in Distributed Smart Cameras (ICDSC), 2012 Sixth Inter-
national Conference on, 2012, pp. 1–6.

