
Dynamic Power Management for Portable, Multi-Camera Traffic Monitoring

Umair Khan, Bernhard Rinner
Institute of Networked and Embedded Systems
Alpen-Adria Universität, Klagenfurt, Austria
umair.khan@aau.at, bernhard.rinner@aau.at

Abstract

A mobile, compact and battery operated system requires
rigorous power management with an effective Dynamic
Power Management (DPM) policy. Since the power man-
agement comes at the cost of delayed operations and re-
duces system response, a DPM policy should strictly fo-
cus on finding a suitable trade-off between the power man-
agement and several QoS parameters. In this paper, we
present a Reinforcement Learning (RL) based power man-
agement approach for our heterogeneous, multi-camera
sensing platform for traffic monitoring. We compare two
models: (i) a deterministic model with known workload, (ii)
a stochastic model with workload prediction. Our RL based
power management strategy results in a significant power
saving while maintaining an acceptable level of system re-
sponse.

1. Introduction

MobiTrick is a compact, autonomous and energy-
efficient mobile traffic checking system utilizing image pro-
cessing capabilities. Unlike the existing traffic monitoring
systems which are based on stationary installations and are
exposed to various challenges [11], MobiTrick is designed
as a portable system and can therefore be deployed more
flexibly for various monitoring tasks, e.g, law enforcement
and construction site monitoring. The system is intended for
temporary installations (hours or days) and does not rely on
fixed infrastructure. It is designed as an embedded system
running from batteries. In addition, there is not much space
to include intricate cooling systems. Consequently, it has a
strict limitation on power consumption. Hence, apart from
it low-power design, an online power reduction strategy is
required that can optimize the overall power consumption
during the system’s operation.
The DPM approaches proposed in the literature can be
broadly classified into greedy, time-out, predictive, stochas-
tic and machine learning based policies. A greedy policy

[5] shuts down the device as soon as it is idle. This pol-
icy performs only well when the system worload has long
inter-arrival periods. A simple time-out policy [3] assumes
that if a device is idle for a certain threshold (time-out) pe-
riod, it will remain idle for at least the break-even-time of
the device. This policy is widely adopted in commercial
projects, but an obvious drawback of this policy is the power
waste during the time-out period. A variant of the time-out
policy, the adaptive time-out policy [7], adjusts its time-
out period at runtime by the ratio of the time-out period
and the previous idle period. In contrast, predictive poli-
cies [9][1] analyze the past history of the system workload
and predict the next-request arrival time. The device is shut
down if the next-request arrival time is predicted to be long.
These policies do increase the system’s response, but per-
form well only when the requests are correlated. Stochastic
approaches [6][4][8] make probabilistic assumptions about
usage patterns and exploit the nature of the probability dis-
tribution to formulate an optimization problem, the solution
of which derives the DPM strategy. Stochastic policies of-
fer optimality for the power/performance tradeoff, but they
do not keep their optimality properties as workloads be-
come non-stationary, thus they have limited adaptability [2].
Morever, stochastic techniques also require a priori Markov
model of the system components that includes an exact esti-
mation of the transition probabilities for each system com-
ponent.
The model-free, learning based DPM approaches have re-
ceived increasing attentions recently. Among these, RL
based approach is intuitively the simplest, efficient, and
easy-to-implement technique that does not require any a pri-
ori model of the system. Although, the existing research
exploited on RL based DPM approach is focused only on
small devices (e.g., hard drive, network interface), however,
its application to more complex and power-hungry devices
is also appealing. In [10], a Q-learning based algorithm for
the DPM of a hard drive is proposed. It is a model-free
RL approach that does not require prior knowledge of the
state transition probabilities. A more recent work [12], fol-
lowing the merits of [10], proposes an RL based DPM al-



gorithm with workload prediction. However, this workload
prediction using Bayes classifier is based on the data from
a network card where some protocols may generate regular
network traffic. The same approach for workload predic-
tion can not be used for the vehicle traffic data where the
vehicle arrival rates follow a non-stationary service pattern.
Another approach presented in [2] uses an online learning
algorithm that dynamically selects the best DPM policies
from a set of candidate policies (referred to as experts). This
algorithm is able to find an optimal DPM policy. However,
it relies heavily on and is limited to the pre-selected experts.
In this paper, we present a model-free RL based DPM ap-
proach for our MobiTrick sensing platform. We compare
two different workload models; (i) the model with known
workload, (ii) the stochastic model with workload estima-
tion using multi-layer Artificial Neural Network (ANN).
The partial information about the workload delivers much
better performance and energy saving.
The rest of the paper is organized as follows: Section 2 pro-
vides a brief overview of the MobiTrick sensing platform.
Section 3 presents the RL based DPM for MobiTrick and
its implementation on the two models with different work-
loads. In Section 4, we present the conclusion and future
work.

2. MobiTrick Sensing Platform

The MobiTrick sensing platform utilizes the image pro-
cessing capabilities to perform typical traffic monitoring
tasks, including vehicle detection and classification, over-
height estimation, incident detection, etc. The entire system
works in a heterogeneous setup, i.e., it has different types
of visual sensors (RGB, grayscale, infrared, D/N) and some
non-visual sensors like Inertial Measurment Units (IMUs)
and GPS receiver. The advantage of using heterogeneous
sensors is many-folds including (i) distributing tasks among
different sensors, (ii) performing low-level operations with
less capable (and more power efficient) sensors, (iii) per-
forming 3D measurments with heterogeneous sensors, (iv)
exploiting the redundancy to increase reliability and (v)
avoiding the use of additional sensors, such as laser or radar.
A low-power, Intel Atom based computing platform is used
to perform image processing operations. The low-power de-
sign of the sensor platform is briefly described in [11]. Fig-
ure 1 provides a high-level overview of MobiTrick sensing
platform. The sensing platform has a multi-tier architecture
where the sensors reside at different levels based on their
energy consumption and capabilities. A smart, low-power,
color camera that can run on-board algorithms operates at
the lowest level and triggers other cameras at the higher lev-
els at the detection of an event. When triggered, the higher-
level cameras send images to the smart camera where they
are queued and periodically sent to the computing board.

Figure 1. MobiTrick sensing Platform.

3 RL based DPM for MobiTrick

RL concerns with how an agent should take actions in an
environment so as to maximize/minimize some notion of
cumulative reward/cost. While dealing with the DPM prob-
lem, the agent is a Power Manager (PM) that interacts with
the environment and issues appropriate commands. Other
RL components include a finite state space S which repre-
sents the power modes, a set of available actions A that rep-
resents the transitions among the power states, a cost func-
tion R : S → A, and a policy, π = {(s, a)|s ∈ S, a ∈ A}
which performs a mapping among the actions and states.
A variant of RL, the Q-larning, is one of the most popular,
simple and easy to implement algorithm. At each learning
step, Q-learning just updates a Q-matrix whose rows and
columns represent the system states and the actions, respec-
tively. The update rule is given in Eq.1.

Q(s, a) = (1− ε)Q(s, a) + ε[c(s, a, s′) + γmin
a∈A

Q(s′, a′)]

(1)
where ε is the learning rate, γ is a discounted factor and
c is an immediate pay-off or cost due to an action. The
conventional environment for a RL algorithm comprises
a Service Requestor (SR), a Service Queue (SQ), and a
Service Provider (SP). In our experimental setup, SP is
the computing board which is the main source of power
consumption. On the other hand, PM and SQ reside in the
smart camera. In this way, the smart camera works as PM
and issues commands to other components of the system.
The power model of the computing board is as follows:
Psleep = 4W, Pidle = 25W, Pbusy = 32W, Ptrans = 15W,
Ttrans = 4 sec.
We consider three power modes of the computing board,
i.e., sleep, idle, busy. Therefore, the available actions
include A = {go active, go sleep, go busy}. At each
decision step, the PM receives an observation of the system



Figure 2. Depiction of the system under power
management.

that include the current state of SR, SQ and SP. Based on
this composite state S = {SR, SQ, SP}, the PM issues
a command to SP from the action set A. Figure 2 depicts
the system under power management. The optimization
problem aims to minimize a cost function considering the
QoS parameters of average latency per request, request-loss
ratio, and the maximum latency per request. Since we
consider a finite size of the service queue, request-loss
represents a scenario where the service queue is full and
there are some incoming requests. The optimization
problem is shown in Eq.2.

minπ
∑∞
t=1Eπ[C

t

π]

s.t.
∑∞
t=1Eπ[l

t

π] ≤ lmax,
∑∞
t=1Eπ[O

t

π] ≤ m (2)

where C
t

π , l
t

π , O
t

π represent expected cost, expected
latency per request and average request-loss ratio. We
define the cost function as the weighted sum of immediate
power consumption and a performance penality caused by
the selected action.

ct(s, a, λ) = λ(ti − ti−1)pt(s, a, s′) + (1− λ)dt(s, a, s′)
(3)

Where λ is a tradeoff parameter between power and latency.
We make the penality value d(s, a, s′) a function of the
number of requests in service queue and assign different
penality values for different actions, as given by Eq.4.

d(s, a, s′) =


(q + Ttrans)

2, if SP = 0 & a = 0 (4)√
qmax − q, if SP = 0 & a = 1

q, if SP = 1 & a = 1
qTtrans, if SP = 1 & a = 0

Figure 3. Minimization of the cost function
during the learning process.

Here a = {0, 1, 2} represents actions go sleep, go active
and go busy respectively. Whereas, q is the number of re-
quests in the queue and qmax is the maximum size of the
queue.

3.1 Model-1: Constant-Rate Workload

In Model-1, the images are captured at a constant rate
and buffered in the service queue on the smart camera.
Since the request rate is constant, the PM takes decision
only on the current state of the queue and the power mode
of SP. PM finds an optimal policy based on the power model
of SP and the selected power-latency tradeoff parameter λ.
Figure 3 shows the profile of average cost during the learn-
ing process. Varying λ from 0 to 1, we get a power-latency
tradeoff curve shown in Figure 4.

3.2 Model-2: Non-Stationary Workload

In Model-2, the smart camera runs a vehicle detection
algorithm and the other cameras are triggered only at the
detection of a vehicle. In this model, we include partial
information about the system workload by incorporating
workload estimation using a multi-layer ANN with back-
propagation algorithm. We took a 24-hours recording of a
highway traffic and measured vehicles arrival times with a
vehicle detection algorithm. The recording shows that the
system workload follows a non-stationary pattern. There-
fore, a workload estimation is very useful in this case. We
use a fix-sized moving window on the history of previous
inter-arrival periods and input these inter-arrival periods to
the ANN. The ANN estimates the length of the next inter-
arrival period. If the length of the next inter-arrival period



Figure 4. A comparison of RL based Model-1,
Model-2 and other policies.

is estimated to be longer than a certain threshold, the work-
load is classified as low (or high otherwise).
The workload estimation helps in two ways: (i) With the
estimated state of SR and a specific value of λ, the PM can
decide after how many requests buffered in the queue, it
would be appropriate to wakeup the board. At higher work-
load, the PM can wakeup the board earlier so as to get the
same performance penalty. (ii) In the idle mode, the PM
can execute several time-out periods (as actions) based on
the estimated state of SR and evaluate their effect in terms
of the immediate power consumption. Figure 4 shows the
comparison of power-latency tradeoff curves of determin-
istic workload model and stochastic workload model. We
also compare the two learning algorithms with always-ON,
time-out and predictive policies. Always-ON policy gives
the maximum power consumption and the average latency
per request is just equal to the mean service execution time.
Predictive policy, with a slightly higher power consumption
than the time-out policy, achives better system response.
Whereas, RL-based models achieve higher power savings
with an acceptable level of system response. Model-2 gives
much better power savings as compared to Model-1 while
achieving the same level of system response.

4 Conclusion

In this paper, we presented a RL based DPM approach
for our stereo-vision based, multi-camera traffic monitor-
ing system. We compared two different models and showed
that our approach is applicable for both constant-rate ser-
vice requests (Model-1) and event-based service requests
(Model-2) which are both very relevant for various traffic
applications.

In future, we aim to introduce time-out values at the sleep
state in Model-2 for better performance. Since the work-
load estimation performs well in selecting optimal time-out
values in idle mode, the same may be incorporated at the
sleep state for improving the system response. Although,
the current computing hardware in our sensing platform has
limited number of power modes, we are aiming to extend
our algorithm to target an embedded computing platform
having higher number of sleep and idle states.

Acknowledgement

This work has been sponsored in part by the Austrian
Research Promotion Agency under grant 825840.

References

[1] C. H. Hwang, A. C. Wu. A Predictive System Shutdown
Method for Energy Saving of Event-Driven Computation. In
International Conference on Computer-Aided Design, 1997.

[2] G. Dhiman and T. Rosing. Dynamic power management
using machine learning. In IEEE/ACM International Con-
ference on Computer-Aided Design, 2006, nov. 2006.

[3] L. Benini, G. Paleologo, A. Bogliolo, G. Micheli. Policy Op-
timization for Dynamic Power Management. IEEE Transac-
tions on Computer Aided Design, 18:813–833, 1999.

[4] Y.-H. Lu and G. De Micheli. Comparing system level power
management policies. Design Test of Computers, IEEE,
18(2):10 –19, mar/apr 2001.

[5] J. M.Pedram. Power Aware Design Methodologies. Kluwer
Academic, Norwell, USA, 2002.

[6] Q. Qiu and M. Pedram. Dynamic power management based
on continuous-time markov decision processes. In Design
Automation Conference, 1999.

[7] R. Golding, P. Bosch, J. Wilkes. Idleness is not Sloth. In
USENIX Winter Conference, 1995.

[8] S. Shukla and R. Gupta. A model checking approach to eval-
uating system level dynamic power management policies for
embedded systems. In High-Level Design Validation and
Test Workshop, 2001, pages 53 –57, 2001.

[9] Srivasta et al. Predictive System Shutdown and Other Ar-
chitecture Techniques for Energy Efficient Programmable
Computation. IEEE Transactions on VLSI Systems, 4:42–
55, 1996.

[10] Y. Tan, W. Liu, and Q. Qiu. Adaptive power management
using reinforcement learning. In IEEE/ACM International
Conference on Computer-Aided Design, 2009.

[11] U.A.Khan, M.Quaritsch, B. Rinner. Design of a Hetero-
geneous, Energy-Aware, Stereo-Vision Based Sensing Plat-
form for Traffic Surveillance. In Proceedings of the ninth
workshop on intelligent solutions in embedded systems,
2011.

[12] Y. Wang, Q. Xie, A. Ammari, and M. Pedram. Deriving
a near-optimal power management policy using model-free
reinforcement learning and bayesian classification. In 48th
ACM/EDAC/IEEE Design Automation Conference, 2011.


