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Video Analysis in 
Pan-Tilt-Zoom Camera 
Networks
[From master-slave to 
cooperative smart cameras]

[ Christian Micheloni, Bernhard Rinner, and Gian Luca Foresti] 

P
an-tilt-zoom (PTZ) cameras are able to 
dynamically modify their field of view 
(FOV). This functionality introduces new 
capabilities to camera networks such as 
increasing the resolution of moving tar-

gets and adapting the sensor coverage. On the other 
hand, PTZ functionality requires solutions to new chal-
lenges such as controlling the PTZ parameters, estimat-
ing the ego motion of the cameras, and calibrating the 
moving cameras. 

This tutorial provides an overview of the main video pro-
cessing techniques and the currents trends in this active 
field of research. Autonomous PTZ cameras mainly aim to 
detect and track targets with the largest possible resolution. 
Autonomous PTZ operation is activated once the network 
detects and identifies an object as sensible target and 
requires accurate control of the PTZ parameters and coordi-
nation among the cameras in the network. Therefore, we 
present cooperative localization and tracking methods, i.e., 
multiagent- and consensus-based approaches to jointly com-
pute the target’s properties such as ground-plane position 
and velocity. Stereo vision exploiting wide baselines can be 
used to derive three-dimensional (3-D) target localization. 
This tutorial further presents different techniques for con-
trolling PTZ camera handoff, configuring the network to 
dynamically track targets, and optimizing the network con-
figuration to increase coverage probability. It also discusses 
implementation aspects for these video processing tech-
niques on embedded smart cameras, with a special focus on 
data access properties.

INTRODUCTION
The progress in sensors and computing leveraged the develop-
ment of novel camera networks and processing frameworks. In 
particular, small- to medium-video surveillance networks have 
been deployed in different environments such as airports, train 
stations, public parks, and office buildings [17]. 

The availability of new information guided researchers in 
developing new intelligent surveillance systems [38], in which 
dozens of cameras cooperate to solve complex tasks such as the 
tracking of moving objects. Originally, such a task had been 
tackled by single cameras. The goal was to achieve a consistent 
detection of the track and preservation of correct labeling in 
single and multiple object scenarios, respectively. 

In modern surveillance systems, one of the major chal-
lenges in multicamera tracking is the consistency of the 
objects’ labeling through different FOVs. Multisensor calibra-
tion techniques for the transition between the cameras’ views 
or the development of multitarget-multisensor tracking 
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 mechanisms have been the research core for such kind of 
networks [10], [5], [23]. 

Static camera networks, even though they allow to cover a 
wide area for monitoring activities, have different limitations. 
Normally, camera deployment has to consider over  lapping the 
individual FOVs. Image resolutions are usually low due to the 
wide angle view adopted to increase the monitored area. When 
no overlapping FOVs are present, signal processing has still to 
be performed on a single data source. As a consequence, occlu-
sions cannot be solved using multisensor-based techniques. 
Localization in the real world is limited by ground-plane con-
straints affecting the performance when lower sections of 
objects are occluded. All these problems can be reduced if any 
point in the environment belongs to two or more FOVs of the 
cameras. Naturally, such a constraint poses severe limitations 
for networks covering large areas due to the huge amount of 
video sensors needed. 

The introduction of PTZ cameras brought new capabilities 
to surveillance networks as well as new problems to be solved. 
In particular, PTZ cameras can adapt their FOVs that can be 

exploited to focus the video-network attention on areas of inter-
est. Hence, some problems related to nonoverlapping FOVs can 
be overcome (e.g., occlusions, localization and low target reso-
lution). On the other hand, the PTZ movement has introduced 
the nontrivial ego-motion estimation problem. Thus, well 
known low-level techniques such as motion detection and cali-
bration needed further development to be feasible for these new 
moving sensors. 

This tutorial provides a comprehensive introduction of 
PTZ camera networks for active surveillance. We focus on the 
different signal processing methods to achieve robust object 
tracking and localization by means of PTZ cameras’ coopera-
tion and reconfiguration. The tutorial is organized to show 
the evolution of the signal processing techniques from single 
autonomous PTZ cameras to more complex cooperative 
smart networks (see Figure S1 in “The Evolution of PTZ 
Camera Cooperation”). It covers low-level techniques for 
autonomous object detection as well as more high-level 
methods for the cooperation of different moving cameras. In 
particular, the analysis of the localization performance of 

The simplest usage of PTZ cameras is the master-slave inter-
action. The network composed by static cameras performs 
all the processing for the event analysis and computes the 
camera motion parameters to direct the PTZ gaze onto the 
object of interest. To introduce autonomous PTZ cameras 
different active vision techniques can be applied to make 
the moving camera more intelligent. It is then possible to 
locally process the video stream to extract useful informa-
tion about the activities occurring within the monitored 
scene. By exploiting active vision techniques together with 
common static camera networks it is possible to realize 

cooperative frameworks in which the analysis is performed 
by processing both streams coming from PTZ and static cam-
eras. More, the ability of PTZ cameras to modify their FOV on 
the basis of the system needs (e.g., higher resolution and 
more FOV overlap) allows to define ad hoc stereo vision sys-
tems, dynamic hand-over areas and so on. The development 
of such techniques on-board of modern smart cameras 
enables to consider different parameters (e.g., area coverage, 
power consumption, and bandwidth usage) to compute the 
optimal configuration of the network in terms of number of 
sensors switched on and their configuration (PTZ values).

[FIGS1] Different architectures for networks exploiting PTZ cameras: master-slave, autonomous PTZ, and cooperative 
smart cameras.
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static and PTZ cameras networks is discussed. The dynamic 
configuration of the PTZ cameras is further described to pro-
pose a novel research stream focusing on the computation of 
the optimal configuration of the PTZs network to improve 
coverage, hand-off and tracking. We then present techniques 
for embedding such algorithms into smart cameras to realize 
new autonomous and distributed video networks that finally 
results in a discussion on the future of smart reconfigurable 
sensor networks. 

AUTONOMOUS PTZ CAMERAS
Aloimonos was the first to propose the active vision paradigm to 
describe the dynamic interaction between the observer and the 
object observed to actively decide what to see [2]. In this way, 
the video sensor can be controlled to keep the gaze on a selected 
target. Such a simple idea brought a new set of problems that in 
context of static cameras were inexistent. A first problem is rep-
resented by the fact, that in context of moving cameras, even 
pixels belonging to static objects appear to move in the camera 
frame. Such an effect is called ego motion and its estimation 
and compensation represented the first objective of the active 
vision research area. 

EGO-MOTION ESTIMATION
Following the active vision paradigm, Murray and Basu [34] 
investigated the problem of tracking moving objects by 
means of a pan-tilt camera. A first solution to the estimation 
of the ego motion had been given. An analytic determination 
of the image transformation for the registration of the imag-
es was proposed. Such a transformation allows to compen-
sate the ego motion when a camera is rotating along the 
optical center. In other words, the registration problem con-
sists in determining a transformation T such that for two-
time related frames I 1x, t 2  and I 1x1dx, t1t 2  the following 
equation holds: 

 I 1x, t 2 5 T # I 1x1dx, t1t 2 .
When different camera motions are considered, different 

registration techniques, thus different transformations T, 
have to be taken into account to model the ego-motion 
effects. A survey on image registration techniques [50] 
explains how particular transforms (translational, affine, and 
perspective) have to be computed for registering images. 
Irani and Anandan [19] addressed the problem of detecting 
moving objects by using a direct method that estimates a 
“dominant” eight-parameters of an affine transformation. 
Araki et al. [3] proposed to estimate the background motion 
by using a set of features and an iterative process (least 
median of squares) to solve the overdetermined linear sys-
tem. All these systems, feature based or linear, have to cope 
with the outliers detection to filter out bad tracked features 
or mismatched points [16]. Micheloni and Foresti [32] devel-
oped a new feature rejection rule for deleting outliers, based 
on a feature-clustering technique [15]. Once the images are 

registered and ego motion compensated (i.e., static pixels 
overlap), the moving objects can be extracted with frame-by-
frame differencing techniques. Though, when zoom opera-
tions are needed to focus on an object of interest, such 
techniques do not guarantee robust results. 

FIXATION
Rather than computing and compensating the ego motion dur-
ing zoom operations, a better solution is to directly track the 
target by adopting a fixation point to be kept during zoom. 
Tordoff and Murray [46] solve the problem of tracking a fixation 
point, mainly the center of mass of an object, by adopting an 
affine projection. In particular, when the distance between the 
object and the camera is much greater than the depth of the 
object (as it often happen in video surveillance applications) it 
is possible to consider the following affine projection: 

 x5MX1 t, (1)

where x is the fixation point, M is the affine transform, X is the 
real position of the point, and t is a translation vector. 

COMPUTING THE FIXATION POINT
Considering four coplanar points A, B, C, O belonging to the 
same object and defining a vector space B5 5A2O, 
B2O, C2O6, we can determine all other points belonging to 
the object or to the space. Moreover, a generic point X can be 
defined by means of the three affine coordinates a, b, g as follows: 

 X5a 1A2O 2 1 b 1B2O 2 1g 1C2O 2 1O. (2) 

Given two different views (e.g., two consecutive frames of a 
moving camera) for the four points 1a, b, c, o and a r, b r, c r, o r 2  
it is possible to compute the affine coordinates of a fifth point X 
by solving the overdetermined linear system 

 c x2 o
x r2 o r

d 5 c a2 o b2 o c r2 o r
a r2 o r b r2 o r c r2 o r

d £ ab
g

§ . (3) 

It is worth noticing that after having computed the coordi-
nates of the point X we do not need to compute it again in a new 
view since it is given by 

 xs5a 1as2 os 2 1 b 1bs2 os 2 1g 1cs2 os 2 1 os. (4) 

Therefore, during the tracking phase, supposing that the 
fixation point has a linear transformation from position g on 
time instant t to the position g r on time instant t1 1, we can 
compute its affine coordinates 3ag, bg, gg 4T by adopting (3). On 
a further frame t1 2, the four points are projected in new 
positions respectively as, bs, cs, os and (4) will give the new 
position of the fixation point gs. The main issue in adopting 
this technique concerns the determination of the points to use 
during the computation of the affine transform. 
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CLUSTERING FEATURE POINTS 
To solve this problem, it is possible to 
adopt a feature clustering technique able 
to classify a tracked feature as belonging 
to different moving objects or to the 
background. The objective is first to iden-
tify and compensate the motion induced 
by the zoom, if present, then to apply a 
clustering technique to identify the fea-
tures belonging to objects with different 
velocities. In this way, all the features 
belonging to static objects after zoom 
compensation have a null displacement. 
The resulting algorithm is shown in 
Algorithm 1. 

[ALGORITHM 1] CLUSTERING.

repeat 
  Feature extraction and tracking
  Clusters computation
  Background cluster deletion
  Computation of the center of mass for each cluster 
until zooming 

CLUSTER COMPUTATION 
To detect the clusters, we first need to compute the affine trans-
form for each tracked object. Such a computation is performed 
over all the features belonging to an object. In particular, let Â be 
the computed affine transform, f i 

t21 and f  i
t the position of a gener-

ic feature respectively at time instant t2 1 and t. At this point, the 
effective displacement of the feature i is di5 f  i

t2 f i
t21, while the 

estimated one for the effects of the affine transform is as follows: 

 d|i5 f  i
t2 f|i

t215 f  i
t2 Âf  i

t21, (5)

where f|i
t21 represents the position of the feature i after the 

compensation of the camera motion by means of the affine 
transform Â. A graphical representation of the differences 
among the two displacements, effective and estimated, can be 
seen in Figure 1(a). Let TFSobj be the set of features extracted 
from a window (i.e., fovea) centered on the object of interest. 
Then, the cluster computation is performed respecting the fol-
lowing rule: 

 Cobj 1 d| 2 5 5fi [ TFSobj 0 idi
|
2 d
|
i2 # rtol6, (6)

where Cobj 1 d| 2  is the cluster having all the features i whose dis-
placement di

|
 is such that the norm between it, and the vector d

|
 

is lower than a predefined threshold rtol. In Figure 1(b) an exam-
ple of feature clustering is shown. 

BACKGROUND CLUSTER DELETION 
Once the computation of all the clusters is done, the back-
ground cluster can be easily found as well as all the features 
that have been erroneously extracted from the background 
in the previous feature extraction step. In particular, after 
applying the affine transform to the features, if these belong 

to the background then they should have a null or a small 
displacement. Hence, to determine the background clusters 
the rule 

 Cobj 1dk
| 2 [ e background if 7 |dk 7 2 # rtol

object otherwise
 (7) 

is adopted. 

CENTER OF MASS COMPUTATION 
After deleting all the features either belonging to the back-
ground or to a cluster with cardinality lower than three [the 
minimum number of needed features to solve (4)], the tech-
nique proposed by Tordoff-Murray [46] can be applied. Thus the 
fixation point of each cluster is computed. Let gi be the fixation 
point we need to compute for each object i, then we need to 
solve the following equation: 

 g r
d
|

k
5Ng i1 r, (8)

where g r
dk
|  is the new position of the fixation point for the 

set of features belonging to the cluster Cobj 1 d|k 2  and g is the 
previous fixation point of the same object. The matrices 
N5 Q n1 n2

n3 n4
R and r5 1r1 r2 2T are computed using the singular 

value decomposition (SVD) on the following linear systems: 

 ± f1r
f2r

(
fnr

≤ 1n1 n2 r1 2 5 ± f1 1x 2
f2 1x 2
(

fn 1x 2 ≤  (9)

 ± f1r
f 2r

(
f nr

≤ 1n3 n4 r2 2 5 ± f1 1y 2
f2 1y 2
(

fn 1y 2 ≤ , (10)

where 1 f1r , c, f nr 2T is the vector containing all the features 
fir 5 1x, y, 1 2  that are considered well tracked, while fi 1 # 2  is 
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[FIG1] (a) Visualization of the components of the displacement vector di. d
|

i represents 
the component related to the real motion of the feature fi. (b) Clustering on the 
displacement vector d

|
i. Each cluster has a tolerance radius rtol.
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either the x or y coordinate of the feature i at time instant 
t2 1. Following this heuristic, a fixation point is computed for 
each detected cluster that allows to estimate the center of 
mass of each moving object, thus avoiding the selection of fea-
tures in the background or belonging to objects that are not of 
interest. In Figure 2(a) a representation of the computation of 
the fixation point is shown. Figure 2(b) shows a real example 
of such a computation. Results for the fixation of rigid and 
nonrigid objects are presented in Figure 3. 

Since the fixation accuracy is important for the 3-D 
localization of the objects inside the environment, it is 
interesting to notice how the fixation error is dependent on 
the rotation speed of the camera. As matter of fact, in 
Figure 4, it can be noticed that the proposed fixation tech-
nique works better when the rotation speed increases. This 
phenomenon can be explained by considering that the 
method is based on a motion classification technique. In 
particular, it is based on the capability of segmenting the 
background from the foreground motion (i.e., background 
versus foreground features). 

When the camera rotation speed is low, it means that the 
object is also moving slow and therefore some of the features 
are misclassified and considered outliers. On the other hand, 
when the camera rotates faster, the object is also moving fast-
er. Thus the differences of the velocities of the features belong-
ing to the object and to the background increase. This allows 
to determine more accurate clusters yielding to a better esti-
mation of the fixation points. This aspect is really important 
when command and control has to be considered for moving 
the PTZ cameras. 
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[FIG2] (a) Graphical representation of the computation within 
the area of interest (e.g., fovea) of the fixation point for each 
identified cluster. In this way, different objects with different 
velocities can be tracked even when they cross their trajectories. 
(b) Computation of two different clusters and of the new 
fixation point.

[FIG3] Sample frames of two test sequences used for evaluating the active tracking of nonrigid and rigid objects. The small boxes 
represent the tracked feature points organized in clusters depending on their color. The red dot represents the computed fixation point 
on the selected cluster (white for nonrigid object and yellow for rigid object).
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COOPERATIVE CAMERA NETWORKS
Within a visual-surveillance system’s architecture, the cooper-
ation of different cameras can occur at different levels. One of 
these is the tracking level. Recent techniques propose the use 
of different sensors with overlapping FOVs to achieve a coop-
erative object tracking and localization. In [14], Fleuret et al. 
proposed a mathematical framework that allows to combine a 
robust approach to estimate the probabilities of occupancy of 
the ground plane at individual time steps with dynamic pro-
gramming to track people over time. Such a scheme requires 
that cameras share the majority of their FOVs. While this is 
affordable for small areas (indoor rooms, alleys, and halls), it 
becomes infeasible when large environments are considered. 
In these cases, PTZ cameras can be exploited to generate two 
or more overlapping FOVs on areas of interests to solve differ-
ent problems (e.g., occlusions, tracking, and localization). 

COOPERATIVE CAMERA TRACKING
When multiple PTZ cameras with different resolution are 
exploited for tracking, new questions arise [17]. How can stan-
dard projective models be extended to the case of heterogeneous 
and moving cameras? How can the different object resolutions 
be handled to solve the tracking problems? 

In [11], Chen et al. derived two different calibration tech-
niques to determine the spatial mapping between a couple of 
heterogeneous sensors. Such relations can be exploited to 
improve tracking in a centralized way. Coefficients are 
assigned—on the basis of the spatial mapping—to the tracking 
decisions given by different cameras and the final output fol-
lows the highest score to solve ambiguity and occlusions [43]. 

More recently, the distributed approach to the tracking prob-
lem has been investigated by exploiting consensus and coopera-
tion in networks [35]. Such a framework requires a consensus 
(i.e., an agreement regarding a quantity of interest that depends 
on the state of allagents) achieved with an algorithm that speci-
fies the information exchange among the neighboring agents. 
In the context of cooperative camera tracking, the agents are 
represented by cameras’ processes, while the neighboring rela-
tion usually represents the capability of sharing the FOV [45]. 
Thus, as the target moves through the monitored area, the 
neighboring relation defines a dynamic network. 

In particular, let a dynamic graph G5 1V, E 2  be the struc-
ture adopted to represent the neighboring nodes/cameras 
involved in tracking a target. G is modified anytime a camera 
starts/stops to acquire information on the target or a camera 
changes PTZ parameters. How to modify G in a proper way is a 
high-level task. Optimization strategies have to be considered to 
define the best graph for the required task. Instead, when a 
graph G is defined, consensus algorithms can be applied to 
agree on the positions and labels of the targets. 

In [45], a Kalman-consensus tracking is applied. Each camera 
in the graph determines the ground plane position of each target 
and computes the information vector and matrix. These are 
shared together with the target status with the neighbors. A 
Kalman-consensus state is computed by each camera for each tar-

get by fusing the information received from the neighbors. These 
distributed approaches allow to reach a distributed estimation of 
the positions of the targets. Hence, a centralized solution that 
requires a considerable bandwidth usage from each node to the 
central unit can be avoided. In any case, the localization accuracy 
and the tracking performance still depend on the ground-plane 
position estimation performed independently by each camera. 
Such an estimation is subject to occlusions related errors. 

A solution of such a problem can be given by the 3-D local-
ization of moving objects by exploiting the cooperativeness 
between PTZ and static cameras to improve its estimation. In 
particular, a stereo system of heterogeneous cooperative camer-
as can be defined to localize moving objects in outdoor areas. 
Once a target is selected by the surveillance system, a static 
camera and a PTZ camera can be selected to provide stereo 
localization of such a target (see Figure S2 in “Cooperation 
Among Cameras”). 

Calibrated and uncalibrated cameras’ approaches can be 
chosen to solve the matching and disparity computation prob-
lems. The former are able to analytically determine the cali-
bration matrices using a spherical rectification technique [49] 
or defining the epipolar geometry of dual heads [18]. The lat-
ter [26], even though they require a more complex offline ini-
tialization, do not require the camera calibration and are more 
robust when heterogeneous sensors with different resolutions 
are adopted. In the case of uncalibrated approaches, a partial 
calibration is achieved offline through a look-up-table (LUT) 
that is interpolated online to determine the unknown parame-
ters. The LUT contains different pairs of rectification transfor-
mations 1Hr

i, Hl
i 2 i51, 2c n for n different pairs of stereo images 

captured at arbitrary pan and tilt settings. 

CONSTRUCTION OF THE LUT 
The main steps to construct the LUT are as follows: 

Select the different pan angles 1) pi|i51, 2cm by sampling the 
whole pan range of the PTZ camera into m equal intervals. 
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computed on the sequences classified with respect to the pan 
and tilt rotation speeds.
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The selection of the tilt angular values tj|j51, 2cn is deter-
mined in a similar way. 

Compute the pairs of rectification transformati -2) 
ons  1Hr

ij, Hl
ij 2 i51, 2c, m

j51, 2c, n  for each pair of pan and tilt 1pi, tj 2 i51, 2c, m
j51, 2c, n  values. A rectification algorithm [20] 

based on the pairs of matching pixels can be used. The 
pairs of matching pixels are obtained using SIFT match-
ing [29]. 

Store all these 3) r5m 3 n pairs of rectification transfor-
mations in an LUT.

INTERPOLATION OF THE LUT
To compute the transformation for every possible configuration 
of the pan and tilt angles, the LUT values have to be interpolat-
ed. The interpolation method receives the pan and tilt angles as 
input and returns the elements of the corresponding rectifica-
tion transformations 1Hr, Hl 2  as output. This requires to con-
sider a nonlinear input-output mapping defined by the function 
H5 f 1p, t 2 . For a known set of input-output values the problem 
is to find the function F 1 # 2  that approximates f 1 # 2  over all 
inputs. That is, 

Cooperation among cameras is very helpful for solving 
problems typically present in tracking based on single cam-
era analysis. Cooperation requires first to identify the col-
laborating cameras and then to decide on the collaboration 
methods. A centralized approach represents a naive solu-
tion in which all the video streams are processed in a dedi-
cated node that commands and controls the entire 
network. To reduce bandwidth usage of the entire net-
work, distributed approaches can be taken into account. 
Defining a neighboring property (e.g., cameras having a 
target in their FOV) allows to cluster cameras in subnet-
works. Within and only within each cluster the information 
(e.g., preprocessed data) is shared between cameras to 
achieve a common analysis about some target’s property 
(i.e., position and velocity). Concerning the cooperative 
tracking, consensus algorithms appear to be effective in 
computing the ground-plane position of a target in a dis-
tributed way. Anyway, being such distributed techniques 
dependent to the computations of each node, a real 3-D 
localization is still subject to occlusions problems. Thus, to 
have a reliable 3-D localization of a target, stereo vision 
techniques can be exploited. The system can select the best 

camera [36] and its closest PTZ camera inside the cluster. 
Between the two selected image streams, different techniques 
can be applied to solve the matching problem and the disparity 
estimation through rectification. For a pair of stereo images Il 
and Ir, the rectification can be expressed as Il

r5Hl*Il Ir
r5Hr*Ir 

where 1 Ilr, Irr 2 are the rectified images and 1Hl, Hr 2 are the rectifi-
cation matrices. These rectification transformations can be 
obtained by minimizing 

a
i

3 1ml
i 2THr

TF`Hlml
i 4,

where 1ml
i, mr

i 2  are pairs of matching points between images 
Il and Ir and F` is the fundamental matrix for rectified pair of 
images. To solve the point matching problem, direct meth-
ods can exploit scale invariant feature transform (SIFT) fea-
tures [29] or edges [31] to look for correspondences within 
the whole frames. Due to the computational effort of such 
matching tasks, stereo techniques can be adopted to restrict 
the search area. These techniques have to take into account 
the different orientation of the PTZ cameras with respect to 
the static ones, the different resolution and a possible wide-
base line between the two considered stereo sensors. 
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 y F 1  p, t 2 2 f 1  p, t 2 y , P  for all 1p, t 2 ,  (11)

where P is a small error value. Different nonlinear regression 
tools as neural networks or support vector machines can be 
adopted to solve such a problem. 

A further issue is given by image differences due to different 
view points. Many works on rectification assume that the base-
line (the distance between the two cameras) is small if compared 
to the distance of the object from the cameras, and thus the two 
images acquired by the cameras are similar. This allows the 
detection of the matching points using standard techniques 
such as SIFT matching [29]. However, in an large surveillance 
system this assumption is no longer valid. It is not rare to have 
cameras deployed at distances of 50 or more meters one from 
each other. In this situation, the cooperativeness of two PTZ 
cameras could give more robust results thank to higher magni-
fications and the capability of focusing on a specific target. In 
this context, instead of using wide baseline matching algorithms 
[31], it is more accurate to use a chain of homographies to 
extract pairs of matching points [27]. 

Let 1Il
1, Ir

1 2  be a pair of images of a 3-D scene that is far from 
the cameras along their optical axis. An initial homography H1 
is generated by using extracted pairs of matching points between 
Il

1 and Ir
1 using standard feature extractor for wide baseline cases 

[31]. Let Il
n and Ir

n be a pair of images from the left and the right 
cameras acquiring a scene/object near to the cameras along 
their optical axes. The problem is to autonomously extract the 
pairs of matching points between the images Il

n and Ir
n. To solve 

such a problem, a set of n images is captured from each camera 
by virtually moving the cameras from the initial position (the 
one at which 1Il

1, Ir
1 2  are acquired) to the current position. Let 

these two sets of images be 1Il
1, Il

2
cIl

n 2  and 1Ir
1, Ir

2
cIr

n 2 . The 
following steps can be adopted: 

Perform the SIFT matching between image pairs 1) 1Il
1, Il

2 2 , 1Il
2, Il

3 2 , . . ., 1Il
n21, Il

n 2  and use these sets of pairs of matching 
points for computing their respective homography matrices 
Hl

1,2, Hl
2,3, . . ., Hl

n21, n. 
Repeat the procedure given at the above step on the 2) 

sequence of images captured by the right camera and com-
pute Hr

1,2, Hr
2,3, . . ., Hr

n21, n. 
Compute the homography matrixes 3) Hl and Hr 

 Hl5q
n22

i50
Hl

n2 1i112, n2i   Hr5q
n22

i50
Hr

n2 1i112, n2i.

Compute the homography matrix 4) Hn for 
the pairs of matching points between cur-
rent images Il

n and Ir
n as 

 Hn5Hr*H1* 1Hl 221.  (12)

The cooperation of a PTZ camera with a 
static camera belonging to the network or 
among two PTZ cameras results in an improved 
localization of the objects in the scene without 

requiring fixed overlapping FOVs. Such an improvement can be 
qualitatively seen in Figure 5. For a quantitative analysis, Fig-
ure 6 represents a surface plot for the localization error com-
puted on a target with respect to ground truth data. It can be 
noticed how the stereo localization keeps the error low. Instead, 
using a single static or a PTZ calibrated camera, adopting the 
foot-on-the-ground assumption, the error increases with the 
distance of the object from the camera and the severity of the 
occlusion. It is also worth noticing how this problem can be 
mitigated with centralized or distributed cooperative tracking 
but not be completely eliminated. 

Table 1 presents a high-level comparison between the three 
main categorizations for cooperative tracking. The major 
advantage of centralized approaches are given by receiving all 
the footages from the cameras, thus allowing to exploit fusion 
techniques at pixel level without relying on preprocessing 
results carried out by single sensors. It is clear that such a 
solution demands a large bandwidth that causes problems for 
large networks. On the contrary, distributed approaches can 
reach a consensus by exchanging few data, mainly related to 
the states of the nodes, within the neighborhood in charge of 
tracking a target. In addition, the number of cooperating sen-
sors is limited. This allows the definition of ad hoc networks to 
reduce the overall bandwidth usage. However, both approaches 
suffer from the ground plane constraint in the computation of 
the target position from single footage. 

To overcome this problem, stereo approaches can be consid-
ered to reach a more precise 3-D localization. This is achieved 
by exploiting two sensors thus sidestepping some of the occlu-
sions problems. These sensors have to share a large portion of 
their points of view (i.e., have a limited base line) to realize 
robust matching techniques. This consideration suggests to 
activate such a technique only when a precise localization is 
highly required. 

PTZ NETWORK CONFIGURATION
Another important issue in cooperative camera networks is how 
the orientations of the cameras can influence the analysis capabil-
ity of the tracking algorithms. For such a reason, there is a novel 
research stream that focuses on PTZ network reconfiguration 
(see Figure S3 in “PTZ Network Configuration”). 

Karuppiah et al. [22] proposed two new metrics that based 
on the dynamics of the scene allow to decide the pair of cameras 
that maximize the detection probability of a moving object. In 

[TABLE 1] COMPARISON OF COOPERATIVE CAMERA TRACKING APPROACHES.

TECHNIQUE ADVANTAGE DISADVANTAGE 

CENTRALIZED COMPLETE NETWORK INFORMATION HIGH BANDWIDTH USAGE 
PIXEL LEVEL FUSION AFFECTED BY OCCLUSIONS 

DISTRIBUTED DYNAMIC NETWORK TOPOLOGY ACCURACY DEPENDING ON SINGLE 
CAMERA ESTIMATIONS AFFECTED BY 
OCCLUSIONS 

DISTRIBUTED CONSENSUS 

LOW BANDWIDTH USAGE 
AD HOC NETWORK COMMUNICATION 

STEREO PRECISE 3-D LOCALIZATION CONSTRAINED POINTS OF VIEW 
OCCLUSIONS FREE BASE LINE CONSTRAINED 
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[21], Kansal et al. proposed an optimization process for the 
determination of the network configuration that maximizes the 
metric. It is interesting to notice how the adopted metrics are 
concretely bounded to real sensors thus propose a feasible 
instrument for real applications. More recently, Mittal and Davis 
[33] introduced a method for determining good sensor configu-
rations that would maximize performance measures for a better 
system performance. In particular, the authors based the config-
uration on the presence of random occluding objects and pro-
posed two techniques to analyze the visibility of the objects. 
Qureshi and Terzopoulos [40] proposed a proactive control of 
multiple PTZ cameras through a solution that plans assignment 
and handoff. In particular, the authors cast the problem of 
 controlling multiple cameras as a multibody planning problem 
in which a central planner controls the actions of multiple 
physical agents. In the context of person tracking, the solution 
considers the formulation of the relevance r 1ci, O 2  of a PTZ 
camera ci to an observation task O. Five factors are taken into 
account: a) camera-pedestrian distance rd, b) frontal viewing 
direction rg, c) PTZ limits rabu, d) observational range ro and e) 
handoff success probability rh. The planner computes state 
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[FIG5] Example of cooperative PTZ localization using stereo vision paradigm. Frames from a static camera are shown in the first 
column, while left and right images of a cooperative PTZs camera are respectively shown in the second and third columns. Two 
different situations have been considered: 1) Occluded person (first and fourth rows) and 2) nonoccluded person (second and third 
rows). In such situations, the localization computed by the stereo cooperation between the PTZs (red cross) compared to the one 
computed by a monocular camera (blue X) is more robust with respect to a ground-truth position (black circle). In particular, such an 
effect is more evident when occlusions occur. 
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sequences with the highest probability of success on the basis of 
a probabilistic objective function. Such a function is given by 
the probability of success of a state sequence S over a neighbor-
hood of cameras Na and time t as 

 Q5 q
t[ 30,1, c4a q

i[ 31, Na4r 1ci, hj 2 b, (13) 

where 

 r 1ci, hj 2 5 e 1 if ci is idle
rd rg rabu ro rh otherwise.

  (14) 

The planing is therefore achieved by employing a greedy best 
first search to find the optimal sequence of states. 

A different approach to network reconfiguration for person 
tracking by means of PTZ camera can be developed by employ-
ing the game theory. Arslan et al. [4], demonstrate that the 
Nash equilibrium for the strategies lies in the probability dis-
tribution. From this formulation, different approaches [28], 
[44] propose a set of utility functions such as 

Target utility  ■ UTi
1a 2 : how well a target Ti is satisfied/

acquired while being tracked by some camera 

Camera utility  ■ UCi
1a 2 : how well a camera Ci is tracking a 

target assigned to it based on user-supplied criteria (e.g., size, 
position, and view) 

Global utility  ■ Ug 1a 2 : the overall degree of satisfaction for 
the tracking performance.

They solve the camera assignment by maximizing the global 
utility function. Different mechanisms to compute the utilities 
can be provided as in [28], [44], and [45], then a bargaining pro-
cess is executed on the predictions of person utilities at each 
step. Those cameras with the highest probabilities are used to 
track the target thus providing a solution to the handoff prob-
lem in a video network. 

On the other hand, when a PTZ camera is reconfigured to 
track an object or switched on/off to save power, the topology of 
the network is modified. As consequence, a new configuration is 
required to provide optimal coverage of the monitored environ-
ment. Song et al. [44] adopt a uniform distribution of the targets 
and the coverage resolution utility to negotiate the new network 
reconfiguration. Piciarelli et al. [37] propose a new strategy for 
the online reconfiguration of the  network based on the analysis 
of the activities occurring within the covered area. To achieve the 

The goal of the PTZ reconfiguration is to automatically 
reconfigure the PTZ cameras to improve the system perfor-
mance. Formally the problem can be seen as a maximization 
problem 1P, T, Z 2 5 argmaxP,T,Z F 1P, T, Z 2  to select the PTZs 
configuration parameters that maximise a performance 
function F of the system. Such a function can be related to a 
target’s property. In such a case, programming the hand-off 
of the cameras is of primary importance to keep the best 
acquisition quality. If the function is related to different 
aspects like targets, cameras and global utilities, a PTZ recon-
figuration can be applied to maximize the utility functions. 
A further interesting problem is to optimally cover the moni-
tored area on the basis of the activity probability. An activity 
density map can be defined following different strategies 

such as optimizing tracking  performance or detection per-
formance and reducing occlusions. The selected goal has 
many similarities with two-dimensional data fitting prob-
lems, in which the data distribution is approximated by a 
mixture of density functions (i.e., Gaussians). In our case, 
there is an activity density map that should be fit by the cov-
erage areas of the PTZ cameras (projection to the ground 
plane of the cones of view). One of the most popular mix-
ture-of-Gaussians data fitting algorithms is EM. In [37], a 
camera projection model is proposed to project all the activi-
ties into compatible camera spaces where the application of 
the EM algorithm requires less constraints than in the origi-
nal space. The resulting ellipses determine the PTZ parame-
ters of all the cameras involved in the optimization process. 

PTZ
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System
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[FIGS3] Scheme for PTZs reconfiguration.
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best coverage based on the density of the activities, a constrained 
expectation-maximization (EM) process is introduced to produce 
the optimal PTZ parameters for a optimal probabilistic coverage 
of the monitored area. The result is a PTZ network that dynami-
cally can modify its configuration to better acquire the data 
thus improving the video analysis performance of the network. 

EMBEDDED SMART CAMERAS
Smart cameras combine image sensing processing and commu-
nication on embedded devices [42] (see Figure S4 in “Embedded 
Smart Cameras”). Recently, they are deployed in active camera 
networks [1] where image processing as well as control of the 
cameras are executed on the embedded nodes. These embedded 
camera platforms can be classified into single smart cameras, 
distributed smart cameras, and smart camera nodes [41]. The 
third class of platforms is of special interest, since they combine 
embedded computation with wireless communication and 
power awareness (e.g.,  [12], [24], and [47]). 

Integration of image processing algorithms on embedded 
platforms imposes some challenges because one has to consider 
architectural issues more closely than on general-purpose com-
puters. Memory is a principle bottleneck for computer system 
performance. In  general-purpose computer systems, caches are 
used to increase the average performance of the memory sys-
tem. However, image processing algorithms use huge amounts 
of data, and often with less frequent reuse. As a result, caches 
may be less effective. At a minimum, software must be carefully 

optimized to make best use of the cache; at worst, the memory 
system must be completely redesigned to provide adequate 
memory bandwidth [48]. 

When we have a closer look at low-level signal processing 
algorithms, we can distinguish five different data access pat-
terns [25]. How data is accessed has a great influence on the 
achievable performance. Data access, and hence the underly-
ing data dependencies, are limiting the degree of paralleliza-
tion. But parallel execution is a major source of performance 
gain on dedicated hardware. 

Independent Pixel Processing:a)  In the simplest case, a sin-
gle pass over the image is sufficient where the output pixel’s 
value is only dependent on a single input pixel. The processing 
of each pixel is independent of each other, enabling a full pix-
el-level data parallel implementation in hardware, even direct-
ly on the image sensor. Examples for these full pixel-parallel 
algorithms include thresholding, color space transformations, 
or simple logic and algorithmic operations. 

Multipass Pixel Processing: b) In this class, we consider 
algorithms that require multiple passes, but the output 
pixel’s value is still only dependent on a single input pixel. 
Thus, a full pixel-parallel implementation is possible, how-
ever synchronization between the multiple passes is neces-
sary. Examples include computation of simple image 
statistics, histogram equalizations or Hough transforms. 

Fixed-Size Block Access: c) Algorithms of this class compute 
the output pixel’s value using multiple input pixels from a 

An embedded smart camera executes all stages of a typical 
image processing pipeline onboard. The image sensor con-
verts the incident light of the optics into electrical signals. 
The sensing unit captures the raw data from the image 
sensor and performs some preprocessing such as white bal-
ance, color transformations and image enhancements. This 
unit also controls important parameters of the sensor, e.g., 
frame rate, gain, or exposure, via a dedicated interface. 
The processing unit reads the preprocessed image data and 
performs the main image processing tasks and transfers 
the abstracted data to the communication unit that pro-
vides various wired or wireless interfaces such as USB, 
WLAN, or ZigBee. 

Low-level operations process the image data at the pixel 
level but typically offer a high data parallelism. Thus,  low-level 
processing at the sensor unit is often realized on dedicated 
hardware with fast on-chip memory (SRAM). Dedicated hard-
ware for the sensing unit include application-specific integrat-
ed circuits, FPGAs [13], or specialized processors [24]. High-level 
processing at the processing unit, on the other hand, operates 
on (few) features or objects, which reduces the required data 
bandwidth but increases the complexity of the operations sig-
nificantly. DSPs or microprocessors are the prime choice for 
these tasks. High-level image processing requires much more 
data storage, thus large off-chip memory (SDRAM) is often 
attached to the processing and communication units. 
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fixed block. The data of the input block can typically be 
accessed in parallel, however for computing the output pixel 
data dependencies within the block and within neighboring 
blocks must be considered. Prominent examples of algorithms 
with such data access pattern include convolution, wavelets, 
and morphological operations. 

Data-Independent Global Access:d)   Algorithms of this class 
access multiple source pixels from all over the image to 
compute the output. Although these algorithms require 
global access, the access pattern is regular and/or known in 
advance. Examples include warping or distortion correction. 

Data-Dependent Random Access: e) The most complex class 
of algorithms require access to multiple source pixels from 
all over the image to compute the output. However, the 
access pattern is data dependent and therefore not known a 
priori. Examples of these global image algorithms include 
flood filling and contour finding. 
At first glance, we would expect a linear speedup for the first 

four access patterns. However, there are several factors limiting 
the achievable speedup of real hardware implementations such 
as the memory access times, the available processing elements 
or some purely sequential control of the algorithms. As conse-
quence, the performance of low-level image processing algo-
rithms may be well below the theoretical speedup. Modern 
image sensors provide different scanning methods (e.g., win-
dowing, subsampling, random read, or binning) to reduce the 
number of pixel reads resulting in higher frame rates, reduced 
pixel noise, or reduced power consumption. 

In our previous work [8], [9], we developed several embed-
ded smart cameras executing various image processing tasks. 
Table 2 summarizes the performance of tracking, motion detec-
tion and adaptive background/foreground modeling imple-
mented on a TMS320C64x digital signal processor (DSP). The 
achieved performance of these low-level algorithms—with data 
access pattern of classes (c), (d), or (e)—on the embedded plat-
form was comparable with reference implementations on stan-
dard personal computer (PC) platforms. Baumgartner et al.  [6] 
conducted a detailed comparison of low-level image processing 
algorithms. In most cases, the implementation on PCs and 
DSPs achieved similar results; the field programmable gate 
array (FPGA) implementation outperformed the PC and DSP 
implementations for algorithms with high data parallelism. 

Naturally, the native data width and the data path architec-
ture (fixed point or floating point) influences the implementa-
tion on the embedded platform. There is also a tradeoff 
between the required precision and the power consumption. 
Fixed-point architectures are more power-efficient; an issue 
that is getting more and more  important. 

FUTURE SMART RECONFIGURABLE SENSOR NETWORKS
Future research in the field of smart PTZ camera networks will 
have to consider the available resources more intensively. 
Resource-awareness is not only required for economic reasons 
but also important for scalability, robustness and novel appli-
cations. One example for an innovative application is to deploy 

camera sensor networks in environments with little infra-
structure, i.e., the available power supply and communication 
network will be limited. To provide autonomous operation 
over some period of time (days or even weeks), the sensor net-
work must use its resources economically. Components and 
camera nodes will be switched off during idle times and 
switched on only when required. Thus, the camera network 
will be dynamically reconfigured to save resources and adapt 
to some changes in the environment (i.e., switch of cameras at 
night; wake up nodes when events have been detected in their 
neighborhood; avoid PTZ  functionality of cameras). Therefore, 
new  optimization algorithms as well as signal processing tech-
niques for fast and computationally efficient video analysis will 
be needed to support such networks capabilities. 
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