
Distributed Smart Cameras for
Hard Real-Time Control

Herwig Guggi
Institute of Networked and Embedded Systems

Pervasive Computing Group
Klagenfurt University

herwig.guggi@uni-klu.ac.at

Bernhard Rinner
Institute of Networked and Embedded Systems

Pervasive Computing Group
Klagenfurt University

bernhard.rinner@uni-klu.ac.at

ABSTRACT
This paper describes an approach for integrating cognition,
real-time communication and control. Our test setup is a
crane system whose area of operation is observed by dis-
tributed smart cameras analyzing the crane’s environment.
The position and motion information of all detected objects
are transferred to the crane controller via a real-time net-
work. With this information the controller can optimize the
trajectory of the load. We present preliminary results of
a single camera setting and give an outlook for the multi
camera data fusion process.

Keywords
smart camera, real-time control

1. INTRODUCTION AND MOTIVATION
Control systems can be found in many real world applica-

tions such as industrial automation, automotive and trans-
portation. The controller determines the behavior of the
controlled object based on the observed internal state cap-
tured by some sensors. In this work we use multiple cameras
to observe the environment of the controlled object and pro-
vide information of the environments’ current state to the
controller which is then able to optimize the behavior. In-
formation about the environment, such as position and ve-
locity of obstacles, may be very helpful for control optimiza-
tion, however to be useful this information has to be deliv-
ered within guaranteed time bounds, i.e., in hard real-time.
Thus, our ultimate objective is to integrate real-time image
analysis, adaptive motion control, and synchronous commu-
nication between the imaging and control subsystems.

In this work in progress, we deploy distributed smart cam-
eras [1] to monitor the environment of a model crane. The
smart cameras are connected over a time-triggered network
with the crane’s control system and deliver the position and
velocity of all obstacles within the predefined frame rate of
20 fps. By knowing the position of obstacles, the controller

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDSC 2010 August 31 – September 4, 2010, Atlanta, GA, USA
Copyright 20XX ACM 978-1-4503-0317-0/10/08 ...$10.00.

can adapt the trajectory of the payload appropriately and
increase the safety and efficiency of the crane system.

Our contribution comprises the vision system. This in-
cludes the image analysis, the scene reconstruction, the ob-
ject motion prediction and the communication with the con-
trol system.

This paper reports on the current state of this research.
The remainder is organized as follows. Section 2 sketches
related work. Section 3 briefly describes the system overview
and high-level data flow. In section 4 we present preliminary
results on a single camera setting and in section 5 we discuss
different methods for data fusion in the distributed smart
camera network. Section 6 concludes the paper.

2. RELATED WORK
Collision avoidance [2, 3] is a very active field in robotics.

Examples include work for ground based robots [4, 5] but re-
cently also for flying robots [6, 7]. However, we only describe
closely related work on using multiple, stationary cameras
for collision avoidance.

Henrich et al. [8] presented a closely related system where
multiple cameras are used to guide a robot in a region with
moving obstacles. Obstacle detection is performed with four
calibrated cameras connected to a single computer where the
position and structure of the obstacles are calculated. Af-
ter the planning, each configuration (movement step of the
robot) is tested for collision with obstacles. If a collision is
detected, the trajectory is re-planned. The paper provides
no information about the update rate of the scene or if im-
ages are captured while the robot is moving.

Work by Ladikos et al. [9] used a similar setup where
four cameras are connected to a PC. This PC calculates
the 3D model with the help of a GPU (graphics processing
unit). Potential collision are checked based on bounding
boxes around detected obstacles. To prevent collisions these
bounding boxes are extended by a security distance. The
cameras operate at a resolution of 1024x768 and at a frame
rate of 30 fps.

3. SYSTEM OVERVIEW
Figure 1 depicts the system overview as well as the high-

level data flow. The main components include the multi-
camera subsystem, the control subsystem (including the crane
with its sensors and actuators) and the real-time network for
connecting the components. The distributed smart cameras
analyse the crane environment. In especially, the cameras
perform some object detection individually and fuse this lo-
cal information within the camera network to determine the

Figure 1: System architecture and high-level data
flow

object’s position and velocity in the 3D space. This fused
information, i.e., object size, position and velocity, is trans-
ferred to the control subsystem.

The model crane has a height of approx. 1.3 m and its jib
has a length of approx. 1 m. This results in an operation
region of the crane in form of a cylinder with radius and
height of about 1 m. The ground plane of the observation
area is 2 m × 2.25 m which we consider as the environment
space. The crane is operated indoors with stable ambient
light. The processing time and the position accuracy are the
two major requirements for the image analysis on the smart
cameras. The control subsystem requires a frame rate of 20
fps which in turn limits the maximum time for processing
and network transfer to 50 ms. The objects’ positions should
be determined within an accuracy of 1 cm.

We use custom-built smart cameras from SLR Engineering
which are equipped with an Intel Atom processor running at
1.6 GHz and an 100 MBit Ethernet interface. The camera
has a CCD image sensor with a native resolution of 1360
× 1024 pixels. The control subsystem is based on a real-
time work station equipped with an Intel Core 2 Duo with
2.13 GHz CPU and 1024 MB RAM. The smart cameras
and the control subsystem are connected via TTEthernet
[10] which extends classical Ethernet with services based on
time-triggered protocols to meet time-critical, deterministic
or safety-critical requirements.

3.1 Image Analysis
The image analysis can be basically split into two pro-

cesses. Functions which have to be performed on the entire
image, e.g., image capturing, background subtraction and
thresholding are assigned to the first process. These func-
tions are also referred to as “object independent process-
ing”(cp. section 4).

The second part of the image analysis starts with the list
of segments that have been detected on the single image.
The following steps are dependent on the observed scene and
include functions such as transformation to the real-world
coordinate system, fusion with corresponding segments from
other cameras, object reconstruction, speed determination.
All these functions have to executed for each object individu-

Table 2: The standard deviation of time for different
resolutions

Resolution σ object independent σ object dependent
640x480 0.61 0.1
720x576 1.34 0.04
800x600 3.97 0.08
1024x768 3.35 0.06
1360x1020 8.51 0.09

ally and are also referred to as“object dependent processing”.

4. SINGLE CAMERA RESULTS
We conducted first experiments with a single camera set-

ting where the camera is mounted at a height of 1.5 meters
at a distance of 2 meters from the crane. In this setting we
assume that all objects are placed on the ground plane. All
processing is performed on the smart camera. For every de-
tected object, the position of the central point at the ground
plane and the size of the bounding box are transferred to the
control subsystem at every frame.

We evaluated the performance of the single camera setting
wrt. the achieved processing speed, position accuracy and
communication performance.

4.1 Processing speed
In our image processing pipeline the total processing speed

varies with the resolution and the number of detected objects
in the field of view. Some functions of the image pipeline are
independent of the number of objects while others are not.
Object independent execution includes background subtrac-
tion, thresholding and contour detection. The function for
transferring the scene description is also independent of the
number of objects because all position data can be packed
into a single Ethernet frame.

Object dependent execution time includes mapping to real-
world coordinates, position determination, motion detec-
tion, to mention only some. Table 1 lists the measurement
execution times for different resolution (first column) and
number of detected objects (second column). The following
two columns represent the accumulated execution times for
the object-independent and the object-dependent functions
(median of 120 measurements). The final column presents
the computed execution time for 50 objects at the corre-
spondent resolution. This time is calculated with the equa-
tion 1 where toi, tod represent the object-independent and
object-dependent time, σoi, σod are the object-independent
and object-dependent standard deviation values as listed in
table 2 and n is the number of objects (second row of table
1).

t = toi + 2 ∗ σoi +
tod + 2 ∗ σod

n
∗ 50 (1)

The implementation of the controller is currently able to
process the sensory data at a frame rate of 20 fps. Ta-
ble 1 shows that within 38.67 ms 97.7% (average + 2 ∗
standard deviation) of the scenes with a resolution of 1024
× 768 can be calculated. If equation 1 is modified to use
3 ∗ σ, 99.9% of the scenes at a resolution of 1024 × 768 can
be calculated at 42.2 ms. Thus it is very unlikely that the

Table 1: The processing time compared for different resolutions, measured: median for 120 runs
Resolution number of objects object indepen-

dent processing
time

object dependent
processing time

time for 50 Ob-
jects (calculated)

640x480 12 7.86 ms 2.32 ms 19.59 ms
720x576 13 10.31 ms 2.67 ms 23.54 ms
800x600 15 11.97 ms 3.07 ms 30.67 ms

1024x768 17 19.77 ms 4.03 ms 38.67 ms
1360x1024 19 35.83 ms 4.55 ms 65.3 ms

Table 3: The accuracy listed for different resolu-
tions, accuracy is in [mm/pixel/axis]

Resolution minimum accuracy maximum accuracy
640x480 7.22 2.29
720x576 6.45 1.96
800x600 6.14 1.83
1024x768 4.72 1.43
1360x1020 3.59 1.00

processing cannot keep pace with the frame rate.1

4.2 Position Accuracy
The position accuracy depends on the geometric setting

as well as the resolution of the image. Table 3 lists the
minimum and maximum accuracy for each resolution. The
accuracy of any pixel is calculated in two steps. In the first
step, the real world coordinates of the selected pixel and
all of its neighbors is calculated. In the second step, the
absolute distance between the real-world-coordinates of each
neighboring pixel with the pixel in the center is calculated.
The average of these values is the final accuracy as it is listed
in table 3.

To decide on a specific setting, the combination of process-
ing speed and position accuracy has to be determined. For
example by considering our measurements, we can achieve a
total frame rate of 20 fps with a position accuracy of 5 mm
per pixel at each axis.

4.3 Protocol performance
The communication protocol is designed to provide the

abstracted object information to the control system. The
chosen structure consists of a small header (4 Bytes) and a
simple representation for the object. The objects are repre-
sented either as a cylinder or rectangular box. Each object
is defined by its form, its color, the position, speed and ori-
entation all in 3D space. All in all 28 Bytes are sufficient to
represent each object. Thus, descriptions of more than 50
objects can be packed into a single Ethernet frame of 1500
bytes.

5. DISTRIBUTED CAMERA PROCESSING
In the work in progress, we use multiple cameras object

detection and position determination. On the one hand,

1In the rare case the deadline is missed, the objects’ position
information at the previous sampling time is transferred to
the controller which can then decide whether to discard this
data.

multiple cameras with overlapping field of views help to omit
some of our initial system requirements, e.g., object place-
ment on the ground plane, dedicated objects’ shapes. On
the other hand, the complexity of the system increases. All
components, i.e., the smart cameras; have to be configured
to send the data in the correct format at the correct time to
the correct destination.

In a multi camera system, each camera captures the raw
frames and performs the preprocessing. This process will
include all “object independent” steps (cp. in section 4). A
major challenge is the fusion of the results from the indi-
vidual cameras. One option is to perform the fusion on an
additional hardware component. This approach is only nec-
essary if it turns out that the camera platforms do not have
enough computing resources to perform the fusion process.

For the current use case we use of 3 smart cameras. There
is a number of possible methods for fusing the individual re-
sults from each camera. The simplest one is that all cameras
perform the preprocessing. After this step, two cameras for-
ward their abstracted data to the third one. This camera
will then fuse all data and forward the result to the control
system. Currently no time measurement for the fusion pro-
cess is available, so the extra delay that would result from
this structure cannot be assumed yet.

Pipelining is another possible fusion approach. This method
starts with each camera capturing the current frame and
performing the object-independent processing. After that,
the first camera sends its results to the second one. This
camera fuses the information from the own frame with the
data from the first camera. The result is forwarded to the
last camera. This camera is then responsible for the final
fusion and to forward the information to the control sys-
tem. This fusion mechanism has the benefit that the delay
between frame capturing and information transmission to
the control system is relatively small. A drawback is that
the delay between two frame capturing increases with the
number of cameras that are included in the system.

Figure 2 shows the idea of an alternative pipelined fu-
sion mechanism. Compared to the previous approach, this
method has an increased delay from image capturing to in-
formation transmission. The benefit of this system is that
the frame rate is increased.

During the project it might turn out that it makes sense
to keep the fusion process on a single device. In that case a
variation of a loop scheduling can be performed (see figure
3). The first scene is evaluated by the first camera, the
second scene by the second camera and the last scene by the
last camera. With that structure, each camera can focus the
fusion process on a single scene and all scene data can be
evaluated from the same device at the same time.

Figure 2: Pipeline fusion approach, increased frame
rate

Figure 3: Fusion in a loop

6. CONCLUSION
Smart cameras with integrated image analysis are fast

enough to detect objects and convert these information. The
information of the detected objects is transferred to the con-
trol unit. The control system uses these object information
which would otherwise not be available to plan the trajec-
tory of the crane. The detailed and real-time view of the
objects in the operating range allows the planning of the tra-
jectory with respect to collision avoidance and optimisation
criteria like maximum speed or minimum energy consump-
tion.

Acknowledgment
This work was supported by the Austrian Science Promotion
Fund (FFG) under grant 819482.

7. REFERENCES
[1] B. Rinner and W. Wolf, “A Bright Future for

Distributed Smart Cameras,” Proceedings of the IEEE,
vol. 96, no. 10, pp. 1562–1564, October 2008.

[2] S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. Lin,
D. Manocha, and P. Dubey, “ClearPath: highly
parallel collision avoidance for multi-agent simulation,”
in SCA ’09: Proceedings of the 2009 ACM
SIGGRAPH/Eurographics Symposium on Computer
Animation. New York, NY, USA: ACM, 2009, pp.
177–187.

[3] S.-E. Yoon, B. Salomon, M. Lin, and D. Manocha,
“Fast collision detection between massive models using
dynamic simplification,” in SGP ’04: Proceedings of
the 2004 Eurographics/ACM SIGGRAPH symposium

on Geometry processing. New York, NY, USA: ACM,
2004, pp. 136–146.

[4] S. Vacek, T. Schamm, J. Schröder, J. M. Zöllner, and
R. Dillmann, “Collision avoidance for cognitive
automobiles using a 3D PMD camera,” in Intelligent
Autonomous Vehicles 2007, Toulouse, France, 2007.

[5] K.-D. Kuhnert and M. Stommel, “Fusion of
Stereo-Camera and PMD-Camera Data for Real-Time
Suited Precise 3D Environment Reconstruction,” in
IROS, 2006, pp. 4780–4785. [Online]. Available:
http://ieeexplore.ieee.org/iel5/4058334/4058335/04059173.pdf

[6] J. Byrne and C. J. Taylor, “Expansion segmentation
for visual collision detection and estimation,” in
ICRA’09: Proceedings of the 2009 IEEE international
conference on Robotics and Automation. Piscataway,
NJ, USA: IEEE Press, 2009, pp. 1938–1945. [Online].
Available:
http://jeffreybyrne.com/docs/byrne-icra09.pdf

[7] J.-C. Zufferey, A. Beyeler, and D. Floreano,
“Autonomous flight at low altitude with vision-based
collision avoidance and GPS-based path following,” in
Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2010.
[Online]. Available: http://icra2010.grasp.upenn.edu/

[8] D. Henrich and T. Gecks, “Multi-camera collision
detection between known and unknown objects,” in
2nd ACM/IEEE International Conference on
Distributed Smart Cameras ? ICDSC 2008, vol. 2.
Stanford/USA: ACM/IEEE, Sept 7-11 2008, pp. 1–10.
[Online]. Available: http://www.ai3.uni-
bayreuth.de/resypub/files/ICDSC08.16.mitHeader.kompr.pdf

[9] A. Ladikos, S. Benhimane, and N. Navab, “Real-Time
3D Reconstruction for Collision Avoidance in
Interventional Environments,” in MICCAI ’08:
Proceedings of the 11th International Conference on
Medical Image Computing and Computer-Assisted
Intervention, Part II. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 526–534.

[10] www.tttech.com.

