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An Introduction to Distributed
Smart Cameras
Smart camera systems are designed to produce data, and to recognize and

report on objects and activities of interest, rather than to capture images.

By Bernhard Rinner, Senior Member IEEE, and Wayne Wolf, Fellow IEEE

ABSTRACT | Distributed smart cameras (DSCs) are real-time

distributed embedded systems that perform computer vision

using multiple cameras. This new approach has emerged

thanks to a confluence of simultaneous advances in four key

disciplines: computer vision, image sensors, embedded com-

puting, and sensor networks. Processing images in a network of

distributed smart cameras introduces several complications.

However, we believe that the problems DSCs solve are much

more important than the challenges of designing and building a

distributed video system. We argue that distributed smart

cameras represent key components for future embedded

computer vision systems and that smart cameras will become

an enabling technology for many new applications. We

summarize smart camera technology and applications, discuss

current trends, and identify important research challenges.
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I . INTRODUCTION

Distributed smart cameras (DSCs) [1], [2] are the result of a

convergence of advances in computer vision, very large-
scale integration (VLSI) technology, and embedded com-

puting. DSC systems use distributed algorithms to perform

complex vision tasks across multiple cameras in real time.

Computer vision requires huge amounts of computing

performance and large, high-performance memory. Most

computer vision systems have, therefore, been implemented

on workstations. But as the capabilities of VLSI systems have

advanced, much effort has been put into the development of

advanced computer vision applications on embedded plat-

forms. Migrating computer vision on embedded platforms

provides several advantages over traditional implementa-

tions such as reduced size and power consumption as well as

increased reliability. Embedded computer vision will enable

a vast number of novel applications.
Smart cameras combine video sensing, processing, and

communication on a single embedded platform. They

represent a prominent example for embedded computer

vision. Their onboard computation and communication

infrastructure advances a shift in the processing paradigm

of novel computer vision systems. The close colocation of

sensing and processing in a smart camera transforms the

traditional camera into a smart sensor. For multicamera
applications, image processing migrates from central

workstations to the distributed embedded sensors. This

distributed computing approach helps to reduce the

communication load within the network of cameras and

to increase the reliability and scalability of the multicamera

application.

Distributed smart cameras also embody the trend in

sensor networks to increased in-network processing [3].
A smart camera that is part of a network performs huge

amounts of computation in order to abstract the raw image

data and reduce the bandwidth required to transmit the

data. Such networks can take advantage of the basic tech-

niques of ad hoc networking developed for sensor net-

works, but they also need additional layers to manage the

local and nonlocal processing.

Embedded computer vision will penetrate everyday life
in the very near future. The deployment of ubiquitous

embedded computer vision systems is already happening

in several areas. Deployments range from tiny camera

systems in biomedical applications over midsize multi-

camera systems in entertainment and ambient intelligence

to large-scale systems extending over hundreds of miles in

security and surveillance applications.
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Modern camera installations are large enough that

the underlying computing architecture becomes an im-

portant factor. Consider, for example, Atlanta Hartsfield-

Jackson International Airport (ATL). The airport has

179 gates spread over 52.6 hectares.1 Even with only one
camera per gate, the system for this one facility would

have a large number of cameras. If we want to know what

is happening at a gate, we need at least several cameras,

and possibly dozens. We also have to cover many other

areas in the airport: the tarmac; interior workspaces such

as baggage-handling areas, security inspection areas,

check-in, parking lots, and roadways. These cameras

will be distributed over a wide area, and it makes much
more sense to perform at least some of the processing

locally. Given that ATL handled 84 million passengers in

2006, hundreds or thousands of cameras required for

adequate spatial coverage can be put to good use, even if

they are only used to monitor congestion and space

utilization.

Research on distributed smart cameras has gained a lot

of attention over the last few years from a large and growing
community of researchers from academia as well as indus-

try, as demonstrated by successful events and an increasing

number of dedicated publications (e.g., [4]–[6]).

We argue that distributed smart cameras represent key

components for future embedded computer vision systems

and that smart cameras will become an enabling technol-

ogy for many new applications. The next section intro-

duces smart cameras, which are the building blocks of
distributed smart camera systems. We next describe the

importance of multiple, physically distributed cameras in

computer vision. We follow by showing how we can

accomplish real-time processing on a distributed comput-

ing platform made of smart cameras. We then discuss over

several sections the distributed computing platform that

allows us to design such vision systems and the inter-

actions between algorithms and the hardware/software
platform. We close with discussions of trends and research

challenges.

II . SMART CAMERAS AND EMBEDDED
COMPUTER VISION

Fig. 1 depicts a generic architecture of a smart camera

comprised of a sensing, processing, and communication

unit. The image sensor, which is implemented either in

complementary metal–oxide–semiconductor (CMOS) or

charge-coupled device (CCD) technology, represents the

data source of the processing pipeline in a smart camera.
The sensing unit reads the raw data from the image sensor

and often performs some preprocessing such as white

balance and color transformations. This unit also controls

important parameters of the sensor, e.g., capture rate, gain,

or exposure, via a dedicated interface. The main image-

processing tasks take place at the processing unit, which

receives the captured images from the sensing unit, per-

forms real-time image analysis, and transfers the abstracted
data to the communication unit. This unit provides various

external interfaces such as USB, Ethernet, or Firewire.

These generic units are implemented on various

architectures ranging from system-on-chip (SoC) platforms

over single processor platforms to heterogeneous multipro-

cessor systems. Field-programmable gate arrays (FPGAs),

digital signal processors (DSPs), and/or microprocessors are

popular computing platforms for smart camera implementa-
tions. A variety of smart cameras have been developed over

the years ranging from matchbox-sized modules with a total

power consumption of a few hundred milliwatts (e.g., [7]

and [8]) to commercial off-the-shelf based prototypes

requiring some tens of watts (e.g., [1] and [9]).

Smart cameras deliver some abstracted data of the

observed scene. It is natural that the delivered abstraction

depends on the camera’s architecture and application, and
almost every smart camera currently delivers a different

output. Smart cameras perform a variety of image-processing

algorithms such as motion detection, segmentation, tracking,

object recognition, and so on. They typically deliver color and

geometric features, segmented objects, or rather high-level

decisions such as wrong-way drivers or suspect objects. The

abstracted results may be transferred either within the video

stream, e.g., by color coding, or as a separate data stream.
Note that the onboard computing infrastructure of smart

cameras is often exploited to perform high-level video

compression and only transfer the compressed video stream.

1http://www.atlanta-airport.com/applications/trakaflight/flightinfo_
frames.htm.

Fig. 1. A generic architecture of a smart camera.
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A. Architectural Issues
Smart cameras are enabled by advances in VLSI tech-

nology and embedded system architecture. Modern

embedded processors provide huge amounts of perfor-

mance; one recent example of an embedded processor

tailored to image computation is DaVinci from Texas

Instruments [10].

However, smart cameras are not simply cost-reduced

versions of arbitrarily selected computer vision systems.
Embedded computer vision requires distinct techniques

from non-real-time computer vision because of the

particular stresses that vision algorithms put on computer

systems. Unfortunately, CPU clock speed does not equate

to performance because some units in the processor may be

underutilizedVdata may not always be available to keep

the units busy. Memory is a principal bottleneck of com-

puter system performance because memory speed does not
increase with Moore’s law [11]. As a result, memory con-

tinually gets slower relative to the processor. In general-

purpose computer systems, caches are used to store

frequently used values and increase the average perfor-

mance of the memory system. However, computer vision

algorithms, much like video compression algorithms, use

huge amounts of data, and often with less frequent reuse.

As a result, caches may be less effective. At a minimum,
software must be carefully optimized to make best use of

the cache; at worst, the memory system must be completely

redesigned to provide adequate memory bandwidth [12].

Beside memory capacity and memory bandwidth,

computing power is a crucial resource for embedded com-

puter vision. The individual stages of the typical image-

processing pipeline raise different requirements on the

processing elements. Low-level image processing such as
color transformations and filtering operates on individual

pixels in regular patterns. These low-level operations pro-

cess the complete image data at the sensor’s frame rate but

typically offer a high data parallelism. Thus, low-level image

processing is often realized on dedicated hardware such as

application-specific integrated circuits, FPGAs, or special-

ized processors [13]. High-level image processing, on the

other hand, operates on (few) features or objects, which
reduces the required data bandwidth but increases the

complexity of the operations significantly. These complex

processing tasks exhibit typically a data-dependent and

irregular control flow. Thus, programmable processors are

the prime choice for these tasks. Depending on the com-

plexity of the image-processing algorithms, even multicore

or multiprocessor platforms may be deployed [1], [7].

The native datapath is a related issue of the processing
elements. Low-level image processing is often implemen-

ted on fixed-point architectures since they are faster and

more power-efficient than floating-point architectures.

High-level processing tasks often require higher dynamic

range and precision. When such algorithms are imple-

mented on fixed-point architectures, floating-point arith-

metic must be emulated in software [14].

Standardized communication interfaces are used to
transfer the processed image data. The main distinction

here is whether the communication interface is able to

transfer the captured image data in real-time. Cameras

with wired interfaces such as Ethernet, gigabit Ethernet, or

Firewire provide sufficient bandwidth for real-time

transfer of raw image data. Smart cameras with wireless

interfaces have been developed more recently, especially

using communication protocols for sensor networks such
as ZigBee. These low-bandwidth protocols basically inhibit

real-time streaming of raw image data but keep the power

consumption low [3].

B. Smart Camera Evolution
Smart cameras have been the subject of study at both

research labs and companies for quite some time. While in

the 1980s some camera prototypes that integrate sensing
with some low-level processing were developed, commer-

cial Bintelligent[ cameras appeared in the 1990s. However,

the onboard processing capabilities were very limited: the

intelligent camera provided just an SVGA output.

Research on single smart cameras intensified in the late

1990s. Moorhead and Binnie [15] presented one of the first

fabricated CMOS implementations. Their system on a chip

(SoC) smart camera integrated edge detection into the
image sensor. VISoc [16] represents another smart camera-

on-a-chip implementation featuring a 320 � 256 pixel

CMOS sensor, a 32-bit reduced instruction set computer

processor, and a vision/neural coprocessor. Heyrman et al.
[17] have proposed an SoC smart camera with on-chip

motion detection. Programmable hardware such as FPGAs

has been frequently used as processing platform for smart

cameras. The applications of smart-camera FPGA imple-
mentations range from ID recognition [18] over fast range-

finding [19], [20] to high-speed tracking [21]. Another

application of smart cameras on programmable hardware

is active vision, which aims at integrating the control of the

image sensor in the perception loop, especially in the early

vision processes. Chalimbaud et al. [22], [23] have imple-

mented an active vision system composed of a CMOS

sensor and a single FPGA.
Boult et al. [24], Rinner et al. [1], and Ozer et al. [25]

have developed real-time embedded computer vision sys-

tems. In the meantime, many companies have come up

with smart cameras as well. Heterogeneous multiprocessor

architectures, including application-specific accelerators,

are often used to improve the performance of embedded

systems [26]. An example of an accelerator designed for

embedded computer vision is the optical flow unit designed
by Schlessman et al. [27]. This unit implements the

Kanade–Lucas–Tomaso (KLT) algorithm [28] using float-

ing-point arithmetic. Because IEEE floating point is too

expensive, it uses a custom-designed limited-precision

floating-point format. The dynamic range and precision of

the floating-point format was determined by numerical

analysis of the KLT algorithm.
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C. Applications
Smart cameras have already been used in many appli-

cations. We briefly review representative examples in dif-

ferent application categories.

• Intelligent Video Surveillance Systems (IVSS). IVSS is

a very active research area. The fundamental goal

in IVSS is to detect Babnormal[ behaviors in the

observed scene [29], [30]. This requires complex

image analysis starting from motion detection to
segmentation, feature extraction, and classifica-

tion. To extend the spatial sensor coverage IVSS

are typical examples for multicamera systems.

However, most traditional IVSS require no or only

little cooperation among individual cameras.

• Intelligent Transportation Systems (ITS). Vision

systems in ITS can be divided into infrastructure-

based systems and vehicle-based systems. The
infrastructure-based systems are closely related to

IVSS. Infrastructure-based systems are typically

large multicamera deployments with stationary

cameras. The image analysis tasks are focused on

traffic monitoring. Vehicle-based systems are typi-

cally built up of single but mobile cameras. Smart

cameras already play an important role in intelli-

gent automobiles. Embedded vision components are
used to monitor the vehicle’s environment as well as

the driver’s state and attention inside of the vehicle.

Example implementations include a smart-camera

based adaptive cruise control for intelligent vehicles

or forward collision-warning systems.

• Medicine. Smart cameras can be used in many

medical applications. The RVT system by Leeser [31]

is an FPGA-based smart camera that allows surgeons
to see live retinal images with vasculature highlight-

ed in real time during surgery. Smart cameras can

also be used to automate experiments; the Pheno-

Scan system from Clever Systems2 analyzes mouse

behavior for drug experiments. Smart cameras can

also be used to monitor patients and medical per-

sonnel. For example, U.S. laws require that more

than one person be present when narcotics are
handled, a rule that can be checked by computer

vision.

• Entertainment and Smart Environments. There are

many important applications for smart cameras

including robotics, medical imaging, and enter-

tainment. Gesture recognition will play an impor-

tant role for multimodal user interfaces. Such a

gesture-recognition system using distributed smart
cameras has been developed at Princeton [32].

Aghajan et al. [33] have also developed a gestureV
recognition system using distributed cameras.

They focus on fusing gesture elements from

different cameras to reliably identify the human

gesture. In robotics, smart cameras are deployed as
a reliable smart sensor [34].

• Machine Vision. BIntelligent[ cameras have been

extensively deployed in machine vision, which

deals with the application of computer vision

methods to manufacturing, inspection, and robot-

ics. These applications often pose strong require-

ments on the processing speed and robustness of

the vision methods, which are therefore embedded
in the overall application.

III . DISTRIBUTED CAMERAS

The term distributed camera refers in computer vision to a

system of physically distributed cameras that may or may

not have overlapping fields of view. The images from these

cameras are analyzed jointly. Distributed cameras allow us
to see a subject of interest from several different angles.

This, in turn, helps us solve some very hard problems that

arise in single-camera systems.

Occlusion is a major problem in single-camera systems.

A subject may be occluded by another object; if the subject is

nonconvex, part of the subject may be occluded by another

part. When we have multiple views of a subject, we are

much more likely to be able to see the parts of an object
occluded in one view by switching to another camera’s view.

Another way to think about distributed cameras is

pixels on target. Our ability to analyze a subject is limited by

the amount of information, measured in pixels, that we

have about that subject. Not only do distributed cameras

give us several views, but one camera is more likely to be

closer to the subject. A traditional camera setup would use

a single camera to cover a large area. Subjects at the
opposite end of the space would be covered by very few

pixels. Distributed camera systems help us cover the space

more evenly.

Occlusion may be static or dynamic. A fixed object, such

as a wall or a table, causes occlusion problems that are

easier to predict. When one moving object occludes

another, such as when two people pass each other,

occlusion events are harder to predict.
The number of cameras we need to cover a space

depends on both the field of view of the camera and the

required number of pixels on target. For a typical camera

with a rectangular image sensor, the field of view is a

pyramid extending from the lens, as shown in Fig. 2. The

angular field of view of the lens determines the size of this

pyramid. A normal lens provides the same angular field of

view as does the human eye, between 25� and 50�. A wider
lens covers more area in the scene, spreading a given

number of pixels over a larger area in the scene. A longer

lens covers less area in the scene, putting more pixels on

the target.

The pixels-on-target criterion and the size of the

smallest target of interest tell us how far this pyramid

extends from the camera. For example, a common2http://www.cleversysinc.com.
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intermediate format image is 362 � 240 pixels. When we

place this array of pixels across the field-of-view pyramid,

as shown in Fig. 2, we can easily calculate the number of
pixels that cover a target of a given size at various distances

from the camera.

Given the field-of-view volumes dictated by our cameras

and application requirements, and given the number of

different cameras that should cover any given point in a

space, we can determine the number of cameras required to

provide that coverage. A simple case is a rectangular room as

shown in Fig. 3. Once we add even a simple occluding object,
such as a box, covering the space becomes harder. If the

occluding object occupies less volume than the field-of-view

that it blocks, then we must add cameras to maintain the

same coverage. A thin occluding object, such as a wall or

table, is a worst case occlusion since it occupies little spatial

volume but can block a large field-of-view volume. An

occlusion may be static or dynamic. For example, person 1

walks behind the box, causing a temporary, dynamic
occlusion, while a static object behind the box is statically

and permanently occluded. Subjects can also occlude each

other, as when person 3 blocks person 2 in this illustration.

A. Tracking
Tracking is one of the major topics in computer vision.

A variety of algorithms have been developed to track mov-

ing objects. In this section, we review traditional tracking
algorithms [35].

Several models have been developed for the appear-

ance of a target, most notably the mean shift [36].

Different algorithms can be used to generate and predict

the track, including Kalman filters [37] and the conden-

sation algorithm, also known as particle filtering [38].

Many groups have designed tracking algorithms using

various combinations of algorithms. Comaniciu et al. [39]
regularize target description histograms by spatial masking

with an isotropic kernel and use mean shift to determine

similarity. Ricquenbourg and Bouthemy [40] track moving

persons by tracking contours of the person without a three-

dimensional model. Zhao et al. [41] track a segmented

human shape using a Kalman filter with explicit occlusion

handling. Comaniciu et al. [42] use color cues and mean-

shift iterations to find the most probable target position.
Cai and Aggarwal [43] discuss tracking with a dis-

tributed camera system. Javed et al. [44] developed an

appearance model for tracking with multiple, nonoverlap-

ping cameras. Cevher et al. [45] used particle filters to

track using audio and video sensors.

An extension of the single-target tracking problem is

multitarget tracking, which tries to disambiguate multiple

targets in the face of mutual and nonmutual occlusion.
One multitarget tracking approach was developed by

Oh et al. [46], who proposed Markov chain Monte Carlo

algorithms. Liu et al. [47] separated position from target

modeling information in order to create a distributed

algorithm for multitarget tracking. Cevher et al. [45]

tracked multiple targets by fusing information from video

and audio sensors using particle filters.

IV. DISTRIBUTED COMPUTING AND
DISTRIBUTED SMART CAMERAS

The above algorithms, although they use distributed cam-

eras, do not operate on a distributed computing platform. A

distributed computer is a network of processors in which

the nodes (processors) do not have direct knowledge of the

state of other nodes. A node can retrieve the state of another
node only by receiving a message from that node. Messages

in distributed systems have nontrivial costs, so distributed

algorithms are designed to minimize the number of

messages required to complete the algorithm.

Distributed computers introduce several complica-

tions. However, we believe that the problems they solve

are much more important than the challenges of designing

and building a distributed video system. As in many other
applications, distributed systems scale much more effec-

tively than do centralized architectures. Many realistic

applications require enough cameras that server-based

architectures are not realistic.

Processing all the data centrally poses several pro-

blems. Video cameras generate large quantities of data. If

we transmit raw video to a server, the network must beFig. 3. Occlusion and fields of view.

Fig. 2. Field of view and pixels-on-target of a camera.
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able to handle the required bandwidth in steady state.
Furthermore, the server itself must be able to handle such

large data quantities and move it from the network

interface through the memory, into the processor, and out

to mass storage.

Moving video over the network also consumes large

amounts of energy. In many systems, communication is

100 to 1000 times more expensive in energy than com-

putation. We can afford to perform a great deal of
computation in order to reduce bandwidth requirements.

We do not expect camera systems to be run from batteries

for long intervals, but power consumption is a prime

determinant of heat dissipation. A realistic camera system

should not heat up the surrounding environment too

much. Distributing larger amounts of power also requires

more substantial power distribution networks, which in-

creases the installation cost of the system.
Although data must be compared across several

cameras to analyze video, not all pairs of cameras must

communicate with each other. If we can manage the data

transfer between processing nodes, we can make sure that

data only go to the necessary nodes. A partitioned network

can protect physically distributed cameras so that the

available bandwidth is used efficiently.

Real-time considerations also argue in favor of dis-
tributed computing. The round-trip delay to a server and

back adds to the latency of making a decision, such as

whether a given activity is of interest. A distributed system

can make sure only relevant nodes are involved in a given

decision. To the extent that we avoid sharing common

resources, we also increase the predictability of process-

ing time.

A. Representative Distributed Smart Camera Systems
The VSAM project [48] was one of the first surveillance

systems using distributed sensor processing units (SPUs),

which can be seen as some form of embedded cameras.

These SPUs are capable of detecting and tracking objects,

classifying the moving objects into categories such as

Bhuman[ or Bvehicle[ and identifying simple human behav-

ior such as walking. The SPUs perform some cooperation
and sensor fusion.

Mallet and Bove [49] developed a set of cameras that

cooperated to perform vision tasks. Fleck et al. [50] present a

surveillance system consisting of a distributed network of

smart cameras that allows for tracking and handoff of multiple

persons in real time. Their multiobject tracker is based on

color-based particle filters. Tracking handoff is achieved by

cooperation among the smart cameras based on a centralized
3-D model of the observed scene. Bramberger et al. [51], [52]

introduce a different multicamera tracking approach on

distributed smart cameras. In this approach, tracking agents

Bfollow[ the tracked object, i.e., when the object leaves the

field of view of a camera, the tracking task is migrated to the

camera(s) that should next observe the object. The handoff is

autonomously handled among adjacent cameras in the

network. Velipasalar et al. [53] developed a peer-to-peer
architecture for tracking. This system performs multiple-

camera tracking without resorting to a central server.

B. Distributed Gesture Recognition
To help us understand the structure of a distributed

smart camera system and the choices we face in designing

one, we will use an exampleVthe distributed gesture rec-

ognition system of Lin et al. [32]. This distributed system
was based on the single-node smart camera system of

Ozer et al. [2]. One useful way to design a distributed smart

camera system is to start with a single-camera algorithm

and decide how to partition it into a distributed system.

Fig. 4 shows a subject captured by a distributed smart

camera system. Neither camera has a full view of the sub-

ject. As a result, we must combine data from multiple

cameras to build a complete model of the subject.
We could send raw or compressed video frames between

nodes, but this would consume considerable bandwidth and

does not take advantage of our knowledge of the data. In

many vision algorithms, we perform several stages of

analysis, producing increasingly abstract representations of

the video signal at each stage. If a processing stage can be

Fig. 4. A gesture-recognition subject moving along a wall of cameras.

Rinner and Wolf: An Introduction to Distributed Smart Cameras

1570 Proceedings of the IEEE | Vol. 96, No. 10, October 2008

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT GRAZ. Downloaded on November 3, 2008 at 03:23 from IEEE Xplore.  Restrictions apply.



performed without combining the results of multiple

cameras, we can then perform that stage locally and pass

the abstraction to the other camera for fusion. In the case of

our gesture-recognition system, a good intermediate stage is

the outline of the selected foreground region. As illustrated

in Fig. 5, one camera can extract its contour and send it to

the other camera, which then proceeds to complete the

construction of the model (the next step being, in this case,
generation of ellipses to model the contour).

However, the communication patterns between the

cameras should not remain fixed. As the subject moves, not

only do different cameras gain and lose view of the subject

but also the computational roles of the camera nodes

should change. If a camera loses view of a subject, we

generally want to remove that camera node from the sub-

ject’s computation (except, perhaps, for load-balancing or
fault-tolerance reasons). Furthermore, the choice of which

camera performs the final steps of recognition may change.

In the example of Fig. 5, the choice of lead camera is

somewhat arbitrary since each camera has an equal view of

the subject. We therefore should be willing to move the

locus of computation on the subjectVrepresented by a

tokenVaround the network as the subject moves. A

protocol moves the token around the network, based upon
the subject movement, load balancing considerations, etc.

V. DISTRIBUTED ALGORITHMS
AND MIDDLEWARE

The distribution of data is related to the movement of

the locus of processing in the network. Since individual

cameras collaborate in the processing of image data, the

cameras must share their (abstracted) data. This data

distribution is more complex in a network of collaborative

smart cameras than in a centralized multicamera network.
A protocol distributes the data around in the network,

considering spatial and temporal collaboration patterns,

synchronization, and so on.

Implementing such protocols without support from

system-level software might be tedious. So we would like

to take advantage of middleware services well known on

general-purpose computer networks [54] on networks of

smart cameras as well. A middleware abstracts the network
such as an operating system abstracts the hardware of a

single computer. It may provide some fairly generic ser-

vices for distributed computing such as networking, data

exchange, and distributed control, but also specific ser-
vices for DSC networks.

However, the requirements of a middleware for distri-

buted image processing on embedded devices are signifi-

cantly different. Component-based middleware such as

DCOM or CORBA are targeted for general-purpose com-

puting and are not suitable for resource-limited devices.

Recent research in wireless sensor networks (WSNs) has come

up with some interesting middleware concepts as well [55].
Due to the nature of WSNs, these middleware systems

especially focus on reliable services for ad hoc networks and

energy awareness [56].

DSC networks are different from WSNs in various

aspects. First, the amount of data to be processed is much

higher in DSC networks than in WSNs. Secondly, indi-

vidual processing nodes in a DSC network provide more

computing resources than in WSNs. While resource con-
straints on the embedded smart cameras are important, the

resource limitations, especially energy, are of top priority

in WSN. Thirdly, due to ad hoc networking, communi-

cation in WSN has a very dynamic nature. DSCs, on the

other hand, are typically connected via wired networks

providing higher communication bandwidths.

We will use the software architecture of our smart

cameras [1] as an example for a middleware. Fig. 6 pre-
sents the architecture of this lightweight middleware. The

individual services are organized in a layered structure.

The operating system along with its device drivers and

communication channels builds the basic layer of a single

camera, which consists in our case of a network processor

and digital signal processors (DSPs). Host services provide

a flexible message-oriented communication between appli-

cations on the network processor and multimedia algo-
rithms on the DSPs. Dynamic loading enables the

exchange of multimedia algorithms on the DSPs at time

of deployment and during runtime. Monitoring services

help to supervise the current state of the camera.

Fig. 5. Building a unified model of the target from multiple cameras.

Fig. 6. The architecture of the SmartCam middleware.
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While the lower layers provide services for applications
on a single camera, distribution services integrate multiple

smart cameras to a distributed image-processing system. In

our implementation, we use a mobile agent system as

foundation for distributed applications [57], [58].

An agent system usually supports communication

between agents independent of the current host an agent

resides on. The agent system further facilitates the abstrac-

tion of image-processing tasks by mobile agents. Low-level
image processing is implemented as DSP executable while

the agent contains the application logic and controls the

image-processing algorithm. Code mobility is also inherent

to a mobile agent system. Mobile agents can migrate

between the hosts as required. Exploiting dynamic loading

of DSP executables allows one to migrate the image-

processing algorithm as well.

We have demonstrated our middleware in a multicam-
era tracking application [52] with an autonomous handoff

process. The handoff is managed by the adjacent cameras

only achieving high scalability. This handoff of a tracker

from one camera to the next is realized by mobile agents,

i.e., the tracking agent Bfollows[ the tracked object in the

camera network. This multicamera tracking has been com-

pletely implemented on the embedded smart camerasV
requiring no central coordination at all.

VI. MODELING

Modeling of the elements of an imageVtracking targets,

for exampleVis an issue that cuts across computer vision

and distributed computing. On the one hand, we need

representations and models that allow us to perform hier-

archical image processing, in which we move from lower
level representations like pixels to higher level representa-

tions that can be manipulated without reference to their

source signals. On the other hand, we want to choose

compact representations that can be efficiently moved

around the network.

Early distributed systems that performed handoff dur-

ing tracking could rely on minimal models of the targetV
position is sufficient to hand off targets in many situations.
The tracker of Velipasalar et al. [53] added bounding box

and appearance information. While this representation is

relatively compact, it also cannot be used for certain oper-

ations by other nodes. For example, if we wanted to com-

bine information from several nodes to split and merge

blobs into individual targets, we would need to include the

blobs in the model. The abstraction used by the gesture

recognition system of Lin et al. [32] is well suited to the
algorithms used by that system, since the pixel-level

boundaries can be easily combined and analyzed. If we

wanted to add new processing at remote nodes, we may

need to adapt its model.

Many questions remain in hierarchical image proces-

sing. Hierarchical algorithms are well known in video

compression and in some aspects of feature extraction for

image search. However, these applications generally do
not require building high-level models of the image, as is

done in applications like tracking. A powerful set of fea-

tures that describe objects of interest in scenes would

allow us to build models without dipping back into the

pixels that underlie the features.

VII. TRENDS AND CHALLENGES

Considering the recent advances of smart cameras in

research and industrial practice, we can identify several
trends and research challenges.

A. From Static to Dynamic and Adaptive
Until recently, the camera’s functionality was deter-

mined at time of assembly; only some customization was

possible at best. Increased onboard processing power now

enables the realization of adaptive behavior. Adaptivity is
the key capability to tackle the ever increasing complex-

ity. Novel camera networks are expected 1) to execute

adaptive algorithms in order to better account for changes

in the observed scene, 2) to exploit static and mobile

cameras such as PTZ cameras, and 3) to change their func-

tionality to provide increased autonomy. Foresti et al. [59],

Pflugfelder et al. [60], and Chen et al. [61], among others,

have worked on some aspects for increasing the
autonomy.

B. From Small to Very Large Camera Sets
As the airport example showed, a very large number of

cameras may be required to analyze a single space. In many

cases, that space will be undersampled, with some parts of
the area not visible. Analysis algorithms must be able to

infer the activity that happens in hidden parts of the space

based upon the activity visible to them. Niu and Grimson

[62] and Song and Roy-Choudhury [63], among others,

have experimented with large camera sets.

Very large camera systems also lead us to consider new

types of information that we want to extract from the

cameras. For example, when we use many cameras to
analyze very large areas, we may be less interested in tracking

individuals and more interested in statistics on behavior.

C. From Vision-Only to Multisensor Systems
We expect to see researchers start to integrate different

sensorsVaudio, seismic, thermal, etc.Vinto distributed

smart sensor networks. By fusing data from multiple sen-
sors, the smart camera exploits the distinct characteristics

of the individual sensors resulting in an enhanced overall

output (e.g., [64] and [65]). Peer-to-peer algorithms are

useful in multimodal systems for many of the same reasons

they are used in camera networks.

D. Development Process of Distributed
Image-Processing Systems

Designing, deploying, and operating applications for

distributed smart cameras require novel approaches to
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support the development of distributed, reliable, and scal-
able applications. This development process must combine

the approaches from distributed computing, sensor net-

works, and computer vision but considering the specialties

of distributed image processing such as rather high data

transfers between the nodes, complex computations on the

nodes, and strong real-time constraints.

Until now, DSC applications have been developed

more or less from scratch without much tool support. We
expect to see progress in the development process, i.e.,

introducing new design methods, adapting tools as well as

unifying platforms and system-level software.

E. Network Services
Distributed smart camera systems can be seen as

some form of sensor network with different character-

istics: 1) fewer nodes; 2) higher computing, communica-
tion, and power resources per node; and 3) in most cases

stationary nodes with established networking.

The unique characteristics of distributed smart cam-

eras as sensor networks leads us to some important prob-

lems. Higher computing and communication rates lead us

to consider more sophisticated distributed computing ser-

vices, such as task migration and load balancing. These

distributed services are particularly important for net-
works that are used in safety-critical applications. Camera

networks must be accurately calibrated in both space and

time; when audio information is added to the system,

temporal calibration becomes even more important.

F. Privacy and Security
The paper by Widen in this Special Issue [69] describes

the law on privacy as it relates to cameras. Because camera
imagery can be used to identify individuals, new algo-

rithms and system architectures are needed to protect

privacy while allowing useful information to be gathered.

By being able to perform onboard image analysis and

hence to avoid transferring raw data, smart camera
cameras have great potential for increasing privacy and

security. Boult et al. [66] and Fleck et al. [67], among

others, have explored smart cameras in privacy-sensitive

applications by omitting the transfer of images of some

parts of the observed scene. However, a more holistic

approach towards privacy and security is needed [68].

VIII . CONCLUSIONS

Distributed smart cameras have emerged thanks to the

simultaneous advances in four key disciplines: computer

vision, image sensors, embedded computing, and sensor

networks. Today’s abundance of CMOS image sensors has

allowed us to seriously consider building large systems of

multiple cameras; VLSI technology has provided the pro-

cessing power to handle the data generated by those image
sensors. Computer vision has developed many basic algo-

rithms for analyzing imagery. Embedded computing and

sensor network topology has provided the tools to perform

computer vision in real time and to organize large net-

works of cameras.

However, to make progress in this field, we cannot

consider these contributing technologies as separate.

Computer vision algorithms must be appropriately de-
signed to operate at low latencies. Ad hoc network

architectures must be extended to handle high data rates

and substantial distributed processing.

As the technology for distributed smart cameras ad-

vances, we expect to see many new applications open up.

Distributed smart cameras are one aspect of the revolution

in cameras that is taking place at the dawn of the twenty-

first centuryVlenses, image sensors, processors, and
networks. This revolution will change our conception of

cameras as boxes that capture images into a more general

notion of cameras as spatially distributed that generate

data and events. h
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