==l

INVITED
PAPER

An Introduction to Distributed

Smart Cameras

Smart camera systems are designed to produce data, and to recognize and

report on objects and activities of interest, rather than to capture images.

By BERNHARD RINNER, Senior Member IEEE, AND WAYNE WOLF, Fellow IEEE

ABSTRACT | Distributed smart cameras (DSCs) are real-time
distributed embedded systems that perform computer vision
using multiple cameras. This new approach has emerged
thanks to a confluence of simultaneous advances in four key
disciplines: computer vision, image sensors, embedded com-
puting, and sensor networks. Processing images in a network of
distributed smart cameras introduces several complications.
However, we believe that the problems DSCs solve are much
more important than the challenges of designing and building a
distributed video system. We argue that distributed smart
cameras represent key components for future embedded
computer vision systems and that smart cameras will become
an enabling technology for many new applications. We
summarize smart camera technology and applications, discuss
current trends, and identify important research challenges.

KEYWORDS | Computer vision; distributed embedded system;
multicamera systems; pervasive computing; sensor networks;
smart cameras

I. INTRODUCTION

Distributed smart cameras (DSCs) [1], [2] are the result of a
convergence of advances in computer vision, very large-
scale integration (VLSI) technology, and embedded com-
puting. DSC systems use distributed algorithms to perform
complex vision tasks across multiple cameras in real time.

Computer vision requires huge amounts of computing
performance and large, high-performance memory. Most
computer vision systems have, therefore, been implemented

Manuscript received January 2, 2008; revised April 29, 2008. First published October 17,
2008; current version published October 31, 2008. The work of W. Wolf was supported
in part by the Army Research Office and the National Science Foundation under

Grant 0325119. The work of B. Rinner was supported in part by the Austrian Research
Promotion Agency under Grants 810072, 812204, and 812033.

B. Rinner is with the Institute of Networked and Embedded Systems, Klagenfurt
University, 9020 Klagenfurt, Austria (e-mail: bernhard.rinner@uni-klu.ac.at).

W. Wolf is with the School of Electrical and Computer Engineering, Georgia Institute of
Technology, GA 30332 USA (e-mail: wolf@ece.gatech.edu).

——
Digital Object Identifier: 10.1109/JPROC.2008.928742

0018-9219/$25.00 ©2008 IEEE

on workstations. But as the capabilities of VLSI systems have
advanced, much effort has been put into the development of
advanced computer vision applications on embedded plat-
forms. Migrating computer vision on embedded platforms
provides several advantages over traditional implementa-
tions such as reduced size and power consumption as well as
increased reliability. Embedded computer vision will enable
a vast number of novel applications.

Smart cameras combine video sensing, processing, and
communication on a single embedded platform. They
represent a prominent example for embedded computer
vision. Their onboard computation and communication
infrastructure advances a shift in the processing paradigm
of novel computer vision systems. The close colocation of
sensing and processing in a smart camera transforms the
traditional camera into a smart sensor. For multicamera
applications, image processing migrates from central
workstations to the distributed embedded sensors. This
distributed computing approach helps to reduce the
communication load within the network of cameras and
to increase the reliability and scalability of the multicamera
application.

Distributed smart cameras also embody the trend in
sensor networks to increased in-network processing [3].
A smart camera that is part of a network performs huge
amounts of computation in order to abstract the raw image
data and reduce the bandwidth required to transmit the
data. Such networks can take advantage of the basic tech-
niques of ad hoc networking developed for sensor net-
works, but they also need additional layers to manage the
local and nonlocal processing.

Embedded computer vision will penetrate everyday life
in the very near future. The deployment of ubiquitous
embedded computer vision systems is already happening
in several areas. Deployments range from tiny camera
systems in biomedical applications over midsize multi-
camera systems in entertainment and ambient intelligence
to large-scale systems extending over hundreds of miles in
security and surveillance applications.

Vol. 96, No. 10, October 2008 | PROCEEDINGS OF THE IEEE 1565

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT GRAZ. Downloaded on November 3, 2008 at 03:23 from IEEE Xplore. Restrictions apply.

Rinner and Wolf: An Introduction to Distributed Smart Cameras

Sensing Unit Processing Unit

Communication Unit Abstracted data

sensor control,
preprocessing

image analysis
video compression

Sensor
CMOS, CCD

external interfaces:
USB, Ethernet, Firewire

Fig. 1. A generic architecture of a smart camera.

Architecture: System-on-Chip (SoC), single- or multiprocessor

Modern camera installations are large enough that
the underlying computing architecture becomes an im-
portant factor. Consider, for example, Atlanta Hartsfield-
Jackson International Airport (ATL). The airport has
179 gates spread over 52.6 hectares." Even with only one
camera per gate, the system for this one facility would
have a large number of cameras. If we want to know what
is happening at a gate, we need at least several cameras,
and possibly dozens. We also have to cover many other
areas in the airport: the tarmac; interior workspaces such
as baggage-handling areas, security inspection areas,
check-in, parking lots, and roadways. These cameras
will be distributed over a wide area, and it makes much
more sense to perform at least some of the processing
locally. Given that ATL handled 84 million passengers in
2006, hundreds or thousands of cameras required for
adequate spatial coverage can be put to good use, even if
they are only used to monitor congestion and space
utilization.

Research on distributed smart cameras has gained a lot
of attention over the last few years from a large and growing
community of researchers from academia as well as indus-
try, as demonstrated by successful events and an increasing
number of dedicated publications (e.g., [4]-[6]).

We argue that distributed smart cameras represent key
components for future embedded computer vision systems
and that smart cameras will become an enabling technol-
ogy for many new applications. The next section intro-
duces smart cameras, which are the building blocks of
distributed smart camera systems. We next describe the
importance of multiple, physically distributed cameras in
computer vision. We follow by showing how we can
accomplish real-time processing on a distributed comput-
ing platform made of smart cameras. We then discuss over
several sections the distributed computing platform that
allows us to design such vision systems and the inter-
actions between algorithms and the hardware/software
platform. We close with discussions of trends and research
challenges.

'http://www.atlanta-airport.com/applications/trakaflight/flightinfo_
frames.htm.

IT. SMART CAMERAS AND EMBEDDED
COMPUTER VISION

Fig. 1 depicts a generic architecture of a smart camera
comprised of a sensing, processing, and communication
unit. The image sensor, which is implemented either in
complementary metal-oxide-semiconductor (CMOS) or
charge-coupled device (CCD) technology, represents the
data source of the processing pipeline in a smart camera.
The sensing unit reads the raw data from the image sensor
and often performs some preprocessing such as white
balance and color transformations. This unit also controls
important parameters of the sensor, e.g., capture rate, gain,
or exposure, via a dedicated interface. The main image-
processing tasks take place at the processing unit, which
receives the captured images from the sensing unit, per-
forms real-time image analysis, and transfers the abstracted
data to the communication unit. This unit provides various
external interfaces such as USB, Ethernet, or Firewire.

These generic units are implemented on various
architectures ranging from system-on-chip (SoC) platforms
over single processor platforms to heterogeneous multipro-
cessor systems. Field-programmable gate arrays (FPGAs),
digital signal processors (DSPs), and/or microprocessors are
popular computing platforms for smart camera implementa-
tions. A variety of smart cameras have been developed over
the years ranging from matchbox-sized modules with a total
power consumption of a few hundred milliwatts (e.g., [7]
and [8]) to commercial off-the-shelf based prototypes
requiring some tens of watts (e.g., [1] and [9]).

Smart cameras deliver some abstracted data of the
observed scene. It is natural that the delivered abstraction
depends on the camera’s architecture and application, and
almost every smart camera currently delivers a different
output. Smart cameras perform a variety of image-processing
algorithms such as motion detection, segmentation, tracking,
object recognition, and so on. They typically deliver color and
geometric features, segmented objects, or rather high-level
decisions such as wrong-way drivers or suspect objects. The
abstracted results may be transferred either within the video
stream, e.g., by color coding, or as a separate data stream.
Note that the onboard computing infrastructure of smart
cameras is often exploited to perform high-level video
compression and only transfer the compressed video stream.

1566 PROCEEDINGS OF THE IEEE | Vol 96, No. 10, October 2008

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT GRAZ. Downloaded on November 3, 2008 at 03:23 from IEEE Xplore. Restrictions apply.

Rinner and Wolf: An Introduction to Distributed Smart Cameras

A. Architectural Issues

Smart cameras are enabled by advances in VLSI tech-
nology and embedded system architecture. Modern
embedded processors provide huge amounts of perfor-
mance; one recent example of an embedded processor
tailored to image computation is DaVinci from Texas
Instruments [10].

However, smart cameras are not simply cost-reduced
versions of arbitrarily selected computer vision systems.
Embedded computer vision requires distinct techniques
from non-real-time computer vision because of the
particular stresses that vision algorithms put on computer
systems. Unfortunately, CPU clock speed does not equate
to performance because some units in the processor may be
underutilized—data may not always be available to keep
the units busy. Memory is a principal bottleneck of com-
puter system performance because memory speed does not
increase with Moore’s law [11]. As a result, memory con-
tinually gets slower relative to the processor. In general-
purpose computer systems, caches are used to store
frequently used values and increase the average perfor-
mance of the memory system. However, computer vision
algorithms, much like video compression algorithms, use
huge amounts of data, and often with less frequent reuse.
As a result, caches may be less effective. At a minimum,
software must be carefully optimized to make best use of
the cache; at worst, the memory system must be completely
redesigned to provide adequate memory bandwidth [12].

Beside memory capacity and memory bandwidth,
computing power is a crucial resource for embedded com-
puter vision. The individual stages of the typical image-
processing pipeline raise different requirements on the
processing elements. Low-level image processing such as
color transformations and filtering operates on individual
pixels in regular patterns. These low-level operations pro-
cess the complete image data at the sensor’s frame rate but
typically offer a high data parallelism. Thus, low-level image
processing is often realized on dedicated hardware such as
application-specific integrated circuits, FPGAs, or special-
ized processors [13]. High-level image processing, on the
other hand, operates on (few) features or objects, which
reduces the required data bandwidth but increases the
complexity of the operations significantly. These complex
processing tasks exhibit typically a data-dependent and
irregular control flow. Thus, programmable processors are
the prime choice for these tasks. Depending on the com-
plexity of the image-processing algorithms, even multicore
or multiprocessor platforms may be deployed [1], [7].

The native datapath is a related issue of the processing
elements. Low-level image processing is often implemen-
ted on fixed-point architectures since they are faster and
more power-efficient than floating-point architectures.
High-level processing tasks often require higher dynamic
range and precision. When such algorithms are imple-
mented on fixed-point architectures, floating-point arith-
metic must be emulated in software [14].

Standardized communication interfaces are used to
transfer the processed image data. The main distinction
here is whether the communication interface is able to
transfer the captured image data in real-time. Cameras
with wired interfaces such as Ethernet, gigabit Ethernet, or
Firewire provide sufficient bandwidth for real-time
transfer of raw image data. Smart cameras with wireless
interfaces have been developed more recently, especially
using communication protocols for sensor networks such
as ZigBee. These low-bandwidth protocols basically inhibit
real-time streaming of raw image data but keep the power
consumption low [3].

B. Smart Camera Evolution

Smart cameras have been the subject of study at both
research labs and companies for quite some time. While in
the 1980s some camera prototypes that integrate sensing
with some low-level processing were developed, commer-
cial “intelligent” cameras appeared in the 1990s. However,
the onboard processing capabilities were very limited: the
intelligent camera provided just an SVGA output.

Research on single smart cameras intensified in the late
1990s. Moorhead and Binnie [15] presented one of the first
fabricated CMOS implementations. Their system on a chip
(SoC) smart camera integrated edge detection into the
image sensor. VISoc [16] represents another smart camera-
on-a-chip implementation featuring a 320 X 256 pixel
CMOS sensor, a 32-bit reduced instruction set computer
processor, and a vision/neural coprocessor. Heyrman et al.
[17] have proposed an SoC smart camera with on-chip
motion detection. Programmable hardware such as FPGAs
has been frequently used as processing platform for smart
cameras. The applications of smart-camera FPGA imple-
mentations range from ID recognition [18] over fast range-
finding [19], [20] to high-speed tracking [21]. Another
application of smart cameras on programmable hardware
is active vision, which aims at integrating the control of the
image sensor in the perception loop, especially in the early
vision processes. Chalimbaud et al. [22], [23] have imple-
mented an active vision system composed of a CMOS
sensor and a single FPGA.

Boult et al. [24], Rinner et al. [1], and Ozer et al. [25]
have developed real-time embedded computer vision sys-
tems. In the meantime, many companies have come up
with smart cameras as well. Heterogeneous multiprocessor
architectures, including application-specific accelerators,
are often used to improve the performance of embedded
systems [26]. An example of an accelerator designed for
embedded computer vision is the optical flow unit designed
by Schlessman et al. [27]. This unit implements the
Kanade-Lucas—Tomaso (KLT) algorithm [28] using float-
ing-point arithmetic. Because IEEE floating point is too
expensive, it uses a custom-designed limited-precision
floating-point format. The dynamic range and precision of
the floating-point format was determined by numerical
analysis of the KLT algorithm.

Vol. 96, No. 10, October 2008 | PROCEEDINGS OF THE IEEE 1567

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT GRAZ. Downloaded on November 3, 2008 at 03:23 from IEEE Xplore. Restrictions apply.

Rinner and Wolf: An Introduction to Distributed Smart Cameras

C. Applications

Smart cameras have already been used in many appli-
cations. We briefly review representative examples in dif-
ferent application categories.

o Intelligent Video Surveillance Systems (IVSS). IVSS is
a very active research area. The fundamental goal
in IVSS is to detect “abnormal” behaviors in the
observed scene [29], [30]. This requires complex
image analysis starting from motion detection to
segmentation, feature extraction, and classifica-
tion. To extend the spatial sensor coverage IVSS
are typical examples for multicamera systems.
However, most traditional IVSS require no or only
little cooperation among individual cameras.

e Intelligent Transportation Systems (ITS). Vision
systems in ITS can be divided into infrastructure-
based systems and vehicle-based systems. The
infrastructure-based systems are closely related to
IVSS. Infrastructure-based systems are typically
large multicamera deployments with stationary
cameras. The image analysis tasks are focused on
traffic monitoring. Vehicle-based systems are typi-
cally built up of single but mobile cameras. Smart
cameras already play an important role in intelli-
gent automobiles. Embedded vision components are
used to monitor the vehicle’s environment as well as
the driver’s state and attention inside of the vehicle.
Example implementations include a smart-camera
based adaptive cruise control for intelligent vehicles
or forward collision-warning systems.

e Medicine. Smart cameras can be used in many
medical applications. The RVT system by Leeser [31]
is an FPGA-based smart camera that allows surgeons
to see live retinal images with vasculature highlight-
ed in real time during surgery. Smart cameras can
also be used to automate experiments; the Pheno-
Scan system from Clever Systems> analyzes mouse
behavior for drug experiments. Smart cameras can
also be used to monitor patients and medical per-
sonnel. For example, U.S. laws require that more
than one person be present when narcotics are
handled, a rule that can be checked by computer
vision.

e Entertainment and Smart Environments. There are
many important applications for smart cameras
including robotics, medical imaging, and enter-
tainment. Gesture recognition will play an impor-
tant role for multimodal user interfaces. Such a
gesture-recognition system using distributed smart
cameras has been developed at Princeton [32].
Aghajan et al. [33] have also developed a gesture—
recognition system using distributed cameras.
They focus on fusing gesture elements from
different cameras to reliably identify the human

thtp: | Iwww .cleversysinc.com.

gesture. In robotics, smart cameras are deployed as
a reliable smart sensor [34].

e Machine Vision. “Intelligent” cameras have been
extensively deployed in machine vision, which
deals with the application of computer vision
methods to manufacturing, inspection, and robot-
ics. These applications often pose strong require-
ments on the processing speed and robustness of
the vision methods, which are therefore embedded
in the overall application.

III. DISTRIBUTED CAMERAS

The term distributed camera refers in computer vision to a
system of physically distributed cameras that may or may
not have overlapping fields of view. The images from these
cameras are analyzed jointly. Distributed cameras allow us
to see a subject of interest from several different angles.
This, in turn, helps us solve some very hard problems that
arise in single-camera systems.

Occlusion is a major problem in single-camera systems.
A subject may be occluded by another object; if the subject is
nonconvex, part of the subject may be occluded by another
part. When we have multiple views of a subject, we are
much more likely to be able to see the parts of an object
occluded in one view by switching to another camera’s view.

Another way to think about distributed cameras is
pixels on target. Our ability to analyze a subject is limited by
the amount of information, measured in pixels, that we
have about that subject. Not only do distributed cameras
give us several views, but one camera is more likely to be
closer to the subject. A traditional camera setup would use
a single camera to cover a large area. Subjects at the
opposite end of the space would be covered by very few
pixels. Distributed camera systems help us cover the space
more evenly.

Occlusion may be static or dynamic. A fixed object, such
as a wall or a table, causes occlusion problems that are
easier to predict. When one moving object occludes
another, such as when two people pass each other,
occlusion events are harder to predict.

The number of cameras we need to cover a space
depends on both the field of view of the camera and the
required number of pixels on target. For a typical camera
with a rectangular image sensor, the field of view is a
pyramid extending from the lens, as shown in Fig. 2. The
angular field of view of the lens determines the size of this
pyramid. A normal lens provides the same angular field of
view as does the human eye, between 25° and 50°. A wider
lens covers more area in the scene, spreading a given
number of pixels over a larger area in the scene. A longer
lens covers less area in the scene, putting more pixels on
the target.

The pixels-on-target criterion and the size of the
smallest target of interest tell us how far this pyramid
extends from the camera. For example, a common

1568 PROCEEDINGS OF THE IEEE | Vol 96, No. 10, October 2008

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT GRAZ. Downloaded on November 3, 2008 at 03:23 from IEEE Xplore. Restrictions apply.

Rinner and Wolf: An Introduction to Distributed Smart Cameras

Fig. 2. Field of view and pixels-on-target of a camera.

intermediate format image is 362 X 240 pixels. When we
place this array of pixels across the field-of-view pyramid,
as shown in Fig. 2, we can easily calculate the number of
pixels that cover a target of a given size at various distances
from the camera.

Given the field-of-view volumes dictated by our cameras
and application requirements, and given the number of
different cameras that should cover any given point in a
space, we can determine the number of cameras required to
provide that coverage. A simple case is a rectangular room as
shown in Fig. 3. Once we add even a simple occluding object,
such as a box, covering the space becomes harder. If the
occluding object occupies less volume than the field-of-view
that it blocks, then we must add cameras to maintain the
same coverage. A thin occluding object, such as a wall or
table, is a worst case occlusion since it occupies little spatial
volume but can block a large field-of-view volume. An
occlusion may be static or dynamic. For example, person 1
walks behind the box, causing a temporary, dynamic
occlusion, while a static object behind the box is statically
and permanently occluded. Subjects can also occlude each
other, as when person 3 blocks person 2 in this illustration.

A. Tracking
Tracking is one of the major topics in computer vision.
A variety of algorithms have been developed to track mov-

Fig. 3. Occlusion and fields of view.

ing objects. In this section, we review traditional tracking
algorithms [35].

Several models have been developed for the appear-
ance of a target, most notably the mean shift [36].
Different algorithms can be used to generate and predict
the track, including Kalman filters [37] and the conden-
sation algorithm, also known as particle filtering [38].

Many groups have designed tracking algorithms using
various combinations of algorithms. Comaniciu et al. [39]
regularize target description histograms by spatial masking
with an isotropic kernel and use mean shift to determine
similarity. Ricquenbourg and Bouthemy [40] track moving
persons by tracking contours of the person without a three-
dimensional model. Zhao et al. [41] track a segmented
human shape using a Kalman filter with explicit occlusion
handling. Comaniciu et al. [42] use color cues and mean-
shift iterations to find the most probable target position.

Cai and Aggarwal [43] discuss tracking with a dis-
tributed camera system. Javed et al. [44] developed an
appearance model for tracking with multiple, nonoverlap-
ping cameras. Cevher et al. [45] used particle filters to
track using audio and video sensors.

An extension of the single-target tracking problem is
multitarget tracking, which tries to disambiguate multiple
targets in the face of mutual and nonmutual occlusion.
One multitarget tracking approach was developed by
Oh et al. [46], who proposed Markov chain Monte Carlo
algorithms. Liu et al. [47] separated position from target
modeling information in order to create a distributed
algorithm for multitarget tracking. Cevher et al. [45]
tracked multiple targets by fusing information from video
and audio sensors using particle filters.

IV. DISTRIBUTED COMPUTING AND
DISTRIBUTED SMART CAMERAS

The above algorithms, although they use distributed cam-
eras, do not operate on a distributed computing platform. A
distributed computer is a network of processors in which
the nodes (processors) do not have direct knowledge of the
state of other nodes. A node can retrieve the state of another
node only by receiving a message from that node. Messages
in distributed systems have nontrivial costs, so distributed
algorithms are designed to minimize the number of
messages required to complete the algorithm.

Distributed computers introduce several complica-
tions. However, we believe that the problems they solve
are much more important than the challenges of designing
and building a distributed video system. As in many other
applications, distributed systems scale much more effec-
tively than do centralized architectures. Many realistic
applications require enough cameras that server-based
architectures are not realistic.

Processing all the data centrally poses several pro-
blems. Video cameras generate large quantities of data. If
we transmit raw video to a server, the network must be

Vol. 96, No. 10, October 2008 | PROCEEDINGS OF THE IEEE 1569

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT GRAZ. Downloaded on November 3, 2008 at 03:23 from IEEE Xplore. Restrictions apply.

Rinner and Wolf: An Introduction to Distributed Smart Cameras

able to handle the required bandwidth in steady state.
Furthermore, the server itself must be able to handle such
large data quantities and move it from the network
interface through the memory, into the processor, and out
to mass storage.

Moving video over the network also consumes large
amounts of energy. In many systems, communication is
100 to 1000 times more expensive in energy than com-
putation. We can afford to perform a great deal of
computation in order to reduce bandwidth requirements.
We do not expect camera systems to be run from batteries
for long intervals, but power consumption is a prime
determinant of heat dissipation. A realistic camera system
should not heat up the surrounding environment too
much. Distributing larger amounts of power also requires
more substantial power distribution networks, which in-
creases the installation cost of the system.

Although data must be compared across several
cameras to analyze video, not all pairs of cameras must
communicate with each other. If we can manage the data
transfer between processing nodes, we can make sure that
data only go to the necessary nodes. A partitioned network
can protect physically distributed cameras so that the
available bandwidth is used efficiently.

Real-time considerations also argue in favor of dis-
tributed computing. The round-trip delay to a server and
back adds to the latency of making a decision, such as
whether a given activity is of interest. A distributed system
can make sure only relevant nodes are involved in a given
decision. To the extent that we avoid sharing common
resources, we also increase the predictability of process-

ing time.

A. Representative Distributed Smart Camera Systems

The VSAM project [48] was one of the first surveillance
systems using distributed sensor processing units (SPUs),
which can be seen as some form of embedded cameras.
These SPUs are capable of detecting and tracking objects,
classifying the moving objects into categories such as
“human” or “vehicle” and identifying simple human behav-
ior such as walking. The SPUs perform some cooperation
and sensor fusion.

Mallet and Bove [49] developed a set of cameras that
cooperated to perform vision tasks. Fleck et al. [50] present a
surveillance system consisting of a distributed network of
smart cameras that allows for tracking and handoff of multiple
persons in real time. Their multiobject tracker is based on
color-based particle filters. Tracking handoff is achieved by
cooperation among the smart cameras based on a centralized
3-D model of the observed scene. Bramberger et al. [51], [52]
introduce a different multicamera tracking approach on
distributed smart cameras. In this approach, tracking agents
“follow” the tracked object, i.e., when the object leaves the
field of view of a camera, the tracking task is migrated to the
camera(s) that should next observe the object. The handoft is

network. Velipasalar et al. [53] developed a peer-to-peer
architecture for tracking. This system performs multiple-
camera tracking without resorting to a central server.

B. Distributed Gesture Recognition

To help us understand the structure of a distributed
smart camera system and the choices we face in designing
one, we will use an example—the distributed gesture rec-
ognition system of Lin et al. [32]. This distributed system
was based on the single-node smart camera system of
Ozer et al. [2]. One useful way to design a distributed smart
camera system is to start with a single-camera algorithm
and decide how to partition it into a distributed system.

Fig. 4 shows a subject captured by a distributed smart
camera system. Neither camera has a full view of the sub-
ject. As a result, we must combine data from multiple
cameras to build a complete model of the subject.

We could send raw or compressed video frames between
nodes, but this would consume considerable bandwidth and
does not take advantage of our knowledge of the data. In
many vision algorithms, we perform several stages of
analysis, producing increasingly abstract representations of
the video signal at each stage. If a processing stage can be

1 | . | i
i\ L U | ¥
3 LI) i
L A A i
1 v i

i
!
]
!
I
I
3 i
i]
!]
i :
1 i
i i
! i
i I
i
D ——

Camera 2

Camera l

i

Fig. 4. A gesture-recognition subject moving along a wall of cameras.

autonomously handled among adjacent cameras in the

1570 PROCEEDINGS OF THE IEEE | Vol. 96, No. 10, October 2008

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT GRAZ. Downloaded on November 3, 2008 at 03:23 from IEEE Xplore. Restrictions apply.

Rinner and Wolf: An Introduction to Distributed Smart Cameras

camera 1
\ .

e

Y

camera 2

L} =

Fig. 5. Building a unified model of the target from multiple cameras.

performed without combining the results of multiple
cameras, we can then perform that stage locally and pass
the abstraction to the other camera for fusion. In the case of
our gesture-recognition system, a good intermediate stage is
the outline of the selected foreground region. As illustrated
in Fig. 5, one camera can extract its contour and send it to
the other camera, which then proceeds to complete the
construction of the model (the next step being, in this case,
generation of ellipses to model the contour).

However, the communication patterns between the
cameras should not remain fixed. As the subject moves, not
only do different cameras gain and lose view of the subject
but also the computational roles of the camera nodes
should change. If a camera loses view of a subject, we
generally want to remove that camera node from the sub-
ject’s computation (except, perhaps, for load-balancing or
fault-tolerance reasons). Furthermore, the choice of which
camera performs the final steps of recognition may change.
In the example of Fig. 5, the choice of lead camera is
somewhat arbitrary since each camera has an equal view of
the subject. We therefore should be willing to move the
locus of computation on the subject—represented by a
token—around the network as the subject moves. A
protocol moves the token around the network, based upon
the subject movement, load balancing considerations, etc.

V. DISTRIBUTED ALGORITHMS
AND MIDDLEWARE

The distribution of data is related to the movement of
the locus of processing in the network. Since individual
cameras collaborate in the processing of image data, the
cameras must share their (abstracted) data. This data
distribution is more complex in a network of collaborative
smart cameras than in a centralized multicamera network.
A protocol distributes the data around in the network,
considering spatial and temporal collaboration patterns,
synchronization, and so on.

Implementing such protocols without support from
system-level software might be tedious. So we would like
to take advantage of middleware services well known on
general-purpose computer networks [54] on networks of
smart cameras as well. A middleware abstracts the network
such as an operating system abstracts the hardware of a
single computer. It may provide some fairly generic ser-
vices for distributed computing such as networking, data

exchange, and distributed control, but also specific ser-
vices for DSC networks.

However, the requirements of a middleware for distri-
buted image processing on embedded devices are signifi-
cantly different. Component-based middleware such as
DCOM or CORBA are targeted for general-purpose com-
puting and are not suitable for resource-limited devices.
Recent research in wireless sensor networks (WSNs) has come
up with some interesting middleware concepts as well [55].
Due to the nature of WSNs, these middleware systems
especially focus on reliable services for ad hoc networks and
energy awareness [56].

DSC networks are different from WSNs in various
aspects. First, the amount of data to be processed is much
higher in DSC networks than in WSNs. Secondly, indi-
vidual processing nodes in a DSC network provide more
computing resources than in WSNs. While resource con-
straints on the embedded smart cameras are important, the
resource limitations, especially energy, are of top priority
in WSN. Thirdly, due to ad hoc networking, communi-
cation in WSN has a very dynamic nature. DSCs, on the
other hand, are typically connected via wired networks
providing higher communication bandwidths.

We will use the software architecture of our smart
cameras [1] as an example for a middleware. Fig. 6 pre-
sents the architecture of this lightweight middleware. The
individual services are organized in a layered structure.
The operating system along with its device drivers and
communication channels builds the basic layer of a single
camera, which consists in our case of a network processor
and digital signal processors (DSPs). Host services provide
a flexible message-oriented communication between appli-
cations on the network processor and multimedia algo-
rithms on the DSPs. Dynamic loading enables the
exchange of multimedia algorithms on the DSPs at time
of deployment and during runtime. Monitoring services
help to supervise the current state of the camera.

[Application
Domain-specific . Reconfi—
Services [Allocation] [guration =00
Distribution o Data Services
Services Code Mobility ‘ Naming Services
Dynamic Publish/ -
Host [Loading] [Subscribe] Monitoring
Services
SmartCam Framework \
Operating ‘ .
Linux Kernel
Syst
ysiem {{_ osPoiver)
Hardware

‘Network Processor l Processing Unit ’

Fig. 6. The architecture of the SmartCam middleware.

Vol. 96, No. 10, October 2008 | PROCEEDINGS OF THE IEEE 1571

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT GRAZ. Downloaded on November 3, 2008 at 03:23 from IEEE Xplore. Restrictions apply.

Rinner and Wolf: An Introduction to Distributed Smart Cameras

While the lower layers provide services for applications
on a single camera, distribution services integrate multiple
smart cameras to a distributed image-processing system. In
our implementation, we use a mobile agent system as
foundation for distributed applications [57], [58].

An agent system usually supports communication
between agents independent of the current host an agent
resides on. The agent system further facilitates the abstrac-
tion of image-processing tasks by mobile agents. Low-level
image processing is implemented as DSP executable while
the agent contains the application logic and controls the
image-processing algorithm. Code mobility is also inherent
to a mobile agent system. Mobile agents can migrate
between the hosts as required. Exploiting dynamic loading
of DSP executables allows one to migrate the image-
processing algorithm as well.

We have demonstrated our middleware in a multicam-
era tracking application [52] with an autonomous handoff
process. The handoff is managed by the adjacent cameras
only achieving high scalability. This handoff of a tracker
from one camera to the next is realized by mobile agents,
i.e., the tracking agent “follows” the tracked object in the
camera network. This multicamera tracking has been com-
pletely implemented on the embedded smart cameras—
requiring no central coordination at all.

VI. MODELING

Modeling of the elements of an image—tracking targets,
for example—is an issue that cuts across computer vision
and distributed computing. On the one hand, we need
representations and models that allow us to perform hier-
archical image processing, in which we move from lower
level representations like pixels to higher level representa-
tions that can be manipulated without reference to their
source signals. On the other hand, we want to choose
compact representations that can be efficiently moved
around the network.

Early distributed systems that performed handoff dur-
ing tracking could rely on minimal models of the target—
position is sufficient to hand off targets in many situations.
The tracker of Velipasalar et al. [53] added bounding box
and appearance information. While this representation is
relatively compact, it also cannot be used for certain oper-
ations by other nodes. For example, if we wanted to com-
bine information from several nodes to split and merge
blobs into individual targets, we would need to include the
blobs in the model. The abstraction used by the gesture
recognition system of Lin et al. [32] is well suited to the
algorithms used by that system, since the pixel-level
boundaries can be easily combined and analyzed. If we
wanted to add new processing at remote nodes, we may
need to adapt its model.

Many questions remain in hierarchical image proces-
sing. Hierarchical algorithms are well known in video
Compression and in some aspects of feature extraction for

1572 PROCEEDINGS OF THE IEEE | Vol. 96, No. 10, October 2008

image search. However, these applications generally do
not require building high-level models of the image, as is
done in applications like tracking. A powerful set of fea-
tures that describe objects of interest in scenes would
allow us to build models without dipping back into the
pixels that underlie the features.

VII. TRENDS AND CHALLENGES

Considering the recent advances of smart cameras in
research and industrial practice, we can identify several
trends and research challenges.

A. From Static to Dynamic and Adaptive

Until recently, the camera’s functionality was deter-
mined at time of assembly; only some customization was
possible at best. Increased onboard processing power now
enables the realization of adaptive behavior. Adaptivity is
the key capability to tackle the ever increasing complex-
ity. Novel camera networks are expected 1) to execute
adaptive algorithms in order to better account for changes
in the observed scene, 2) to exploit static and mobile
cameras such as PTZ cameras, and 3) to change their func-
tionality to provide increased autonomy. Foresti et al. [59],
Pflugfelder et al. [60], and Chen et al. [61], among others,
have worked on some aspects for increasing the
autonomy.

B. From Small to Very Large Camera Sets

As the airport example showed, a very large number of
cameras may be required to analyze a single space. In many
cases, that space will be undersampled, with some parts of
the area not visible. Analysis algorithms must be able to
infer the activity that happens in hidden parts of the space
based upon the activity visible to them. Niu and Grimson
[62] and Song and Roy-Choudhury [63], among others,
have experimented with large camera sets.

Very large camera systems also lead us to consider new
types of information that we want to extract from the
cameras. For example, when we use many cameras to
analyze very large areas, we may be less interested in tracking
individuals and more interested in statistics on behavior.

C. From Vision-Only to Multisensor Systems

We expect to see researchers start to integrate different
sensors—audio, seismic, thermal, etc.—into distributed
smart sensor networks. By fusing data from multiple sen-
sors, the smart camera exploits the distinct characteristics
of the individual sensors resulting in an enhanced overall
output (e.g., [64] and [65]). Peer-to-peer algorithms are
useful in multimodal systems for many of the same reasons
they are used in camera networks.

D. Development Process of Distributed
Image-Processing Systems

Designing, deploying, and operating applications for
distributed smart cameras require novel approaches to

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT GRAZ. Downloaded on November 3, 2008 at 03:23 from IEEE Xplore. Restrictions apply.

Rinner and Wolf: An Introduction to Distributed Smart Cameras

support the development of distributed, reliable, and scal-
able applications. This development process must combine
the approaches from distributed computing, sensor net-
works, and computer vision but considering the specialties
of distributed image processing such as rather high data
transfers between the nodes, complex computations on the
nodes, and strong real-time constraints.

Until now, DSC applications have been developed
more or less from scratch without much tool support. We
expect to see progress in the development process, i.e.,
introducing new design methods, adapting tools as well as
unifying platforms and system-level software.

E. Network Services

Distributed smart camera systems can be seen as
some form of sensor network with different character-
istics: 1) fewer nodes; 2) higher computing, communica-
tion, and power resources per node; and 3) in most cases
stationary nodes with established networking.

The unique characteristics of distributed smart cam-
eras as sensor networks leads us to some important prob-
lems. Higher computing and communication rates lead us
to consider more sophisticated distributed computing ser-
vices, such as task migration and load balancing. These
distributed services are particularly important for net-
works that are used in safety-critical applications. Camera
networks must be accurately calibrated in both space and
time; when audio information is added to the system,
temporal calibration becomes even more important.

F. Privacy and Security

The paper by Widen in this Special Issue [69] describes
the law on privacy as it relates to cameras. Because camera
imagery can be used to identify individuals, new algo-
rithms and system architectures are needed to protect
privacy while allowing useful information to be gathered.
By being able to perform onboard image analysis and

REFERENCES

processing in vision networks,” IEEE J. Sel.

hence to avoid transferring raw data, smart camera
cameras have great potential for increasing privacy and
security. Boult et al. [66] and Fleck et al. [67], among
others, have explored smart cameras in privacy-sensitive
applications by omitting the transfer of images of some
parts of the observed scene. However, a more holistic
approach towards privacy and security is needed [68].

VIII. CONCLUSIONS

Distributed smart cameras have emerged thanks to the
simultaneous advances in four key disciplines: computer
vision, image sensors, embedded computing, and sensor
networks. Today’s abundance of CMOS image sensors has
allowed us to seriously consider building large systems of
multiple cameras; VLSI technology has provided the pro-
cessing power to handle the data generated by those image
sensors. Computer vision has developed many basic algo-
rithms for analyzing imagery. Embedded computing and
sensor network topology has provided the tools to perform
computer vision in real time and to organize large net-
works of cameras.

However, to make progress in this field, we cannot
consider these contributing technologies as separate.
Computer vision algorithms must be appropriately de-
signed to operate at low latencies. Ad hoc network
architectures must be extended to handle high data rates
and substantial distributed processing.

As the technology for distributed smart cameras ad-
vances, we expect to see many new applications open up.
Distributed smart cameras are one aspect of the revolution
in cameras that is taking place at the dawn of the twenty-
first century—lenses, image sensors, processors, and
networks. This revolution will change our conception of
cameras as boxes that capture images into a more general
notion of cameras as spatially distributed that generate
data and events. B

[11] D. A. Patterson and J. L. Hennessy,

[1] M. Bramberger, A. Doblander, A. Maier,
B. Rinner, and H. Schwabach, “Distributed
embedded smart cameras for surveillance

Topics Signal Process., vol. 2, no. 4, 2008.

R. Kleihorst, A. Abbo, B. Schueler, and
A. Danilin, “Camera mote with a

Computer Architecture: A Quantitative
Approach, 4th ed. San Francisco, CA:
Morgan Kaufman, 2006.

applications,” Computer, vol. 39, no. 2, high-performance parallel processor for [12] W. Wolf, High Performance Embedded
pp. 68-75, Feb. 2006. real-time frame-based video processing,” in Computing. San Francisco, CA: Morgan
[2] W. Wolf, B. Ozer, and T. Ly, “Smart cameras Proc. ACM/IEEE Int. Conf. Distrib. Smart Kaufmann, 2006.
as ‘embe(’ide.d syst:sms,” (L‘om;)uter, vol. 35, Cameras (ICDSC 2007), Vienna, Austria, [13] R. Kleihorst, B. Schueler, and A. Danilin,
no. 9, pp. 48-53, Sep. 2002. Sep. 2007, pp. 109-116. “Architecture and applications of wireless
(3] L F. Akyildiz, T. Melodia, and [8] A. Rowe, D. Goel, and R. Rajkumar, “Firefly smart cameras (networks),” in Proc. IEEE
K. R C}Zowd},m. “A sur;e on wireless mosaic: A vision-enabled wireless sensor Int. Conf. Acoust., Speech, Signal Process.
Ir;ult}media sen?(;’r networkz Comput networking system,” in Proc. 28th IEEE Int. (ICASSP 2007), Honolulu, HI, Apr. 2007.
Netw., vol. 51, Pp- 921—960,’2007. put Real-Time Syst. Symp. (RTSS 2007), D. Goel, [14] D. Menard, D. Chillet, F. Charot, and
[4] B. Rinner and W. Wolf, Eds., Proc. Int Ed., 2007, pp. 459-468. O. Sentieys, “Automatic floatingpoint
Workshu Distrib ‘Smart’ Carn?eras (I'DSC.06) [9] S. Hengstler, D. Prashanth, S. Fong, and to fixedpoint conversion for DSP code
Boulder pCO Oc.t 2006 © H. Aghajan, “Mesheye: A hybrid-resolution generation,” in Proc. IEEE Int. Conf.
> ’ . . smart camera mote for applications in Compilers, Architect. Syst. Embed. Syst.
[5] H. Aghajan and R. Kleihorst‘, Efi5~’ distributed intelligent surveillance,” in Proc. (CASES), 2002.
groc. ACMI/égii Ion6t C(\)/r.lf' DlStY[li). S’f“m 6th Int. Symp. Inf. Process. in Sensor Netw. [15] T. W.]J. Moorhead and T. D. Binnie, “Smart
ameras ()., Vienna, Austria, (IPSN 2007), Apr. 25-27, 2007, pp. 360-369. CMOS camera for machine vision
Sep. 2007. [10] D. Talla and J. Golston, “Using DaVinci applications,” in Proc. Inst. Elect. Eng. Conf.

[6] H. Aghajan, R. Kleihorst, B. Rinner, and
W. Wolf, “Special issue on distributed

technology for digital video devices,” IEEE
Computer, vol. 40, pp. 53-61, Oct. 2007.

Image Process. Applicat., Manchester, UK.,
Jul. 1999, pp. 865-869.

Vol. 96, No. 10, October 2008 | PROCEEDINGS OF THE IEEE 1573

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT GRAZ. Downloaded on November 3, 2008 at 03:23 from IEEE Xplore. Restrictions apply.

Rinner and Wolf: An Introduction to Distributed Smart Cameras

(16]

(17]

(18]

[19

[20]

(21]

(22]

[23

[24]

[25]

[26]

[27

(28]

[29]

(30]

(31]

L. Albani, P. Chiesa, D. Covi, G. Pedegani,
A. Sartori, and M. Vatteroni, “VISoc: A smart
camera SoC,” in Proc. 28th Eur. Solid-State
Circuits Conf., Florence, Italy, Sep. 2002,

pp. 367-370.

B. Heyrman, M. Paindavoine, R. Schmit,

L. Letellier, and T. Collette, “Smart camera
design for intensive embedded computing,”
Real-Time Imag., vol. 11, pp. 282-289,
2005.

N. Matsushita, D. Hihara, T. Ushiro,

S. Yoshimura, J. Rekimoto, and Y. Yamamoto,
“ID CAM: A smart camera for scene capturing
and ID recognition,” in Proc. 2nd IEEE/ACM
Int. Symp. Mixed Augmented Reality
(ISMAR’03), Tokyo, Japan, Oct. 2003,

pp. 227-236.

N. Lepisto, B. Thoérnberg, and M. O'Nils,
“High-performance FPGA based camera
architecture for range imaging,” in Proc. 23rd
NORCHIP Conf., Nov. 2003, pp. 165-168.

N. Blanc, T. Oggier, G. Gruener,

J. Weingarten, A. Codourey, and P. Seitz,
“Miniaturized smart cameras for 3D-imaging
in real-time,” in Proc. IEEE Sensors 2004,
Vienna, Austria, Oct. 2004, pp. 471-474.

U. Muehlmann, M. Ribo, P. Lang, and

A. Pinz, “A new high speed CMOS camera
for real-time tracking applications,” in
Proc. 2004 IEEE Int. Conf. Robot. Automat.,
New Orleans, LA, April 2004, pp. 48-53.

P. Chalimbaud and F. Berry, “Design of an
imaging system based on FPGA technology
and CMOS imager,” in Proc. 2004 IEEE Int.
Conf. Field-Programmable Technology
(ICFPT’04), Brisbane, Australia, Dec. 2006,
pp. 407-411.

F. Dias, P. Chalimbaud, F. Berry, J. Serot, and
F. Marmoiton, “Embedded early vision
systems: Implementation proposal and
hardware architecture,” in Proc. Conf. Cogn.
Sensors Interact. Sensros (COGIS 2006), Paris,
France, Mar. 2006.

T. E. Boult, R. C. Johnson, T. Pietre,

R. Woodworth, and T. Zhang, “A decade of
networked intelligent video surveillance,” in
Proc. ACM Workshop Distrib. Camera Syst.,
2006.

L. B. Ozer, T. Lu, and W. Wolf, “Design of a
real-time gesture recognition system,” IEEE
Signal Process. Mag., vol. 22, no. 3, pp. 57-64,
May 2005.

W. Wolf, Computers as Components:
Principles of Embedded Computing System
Design. San Francisco, CA:

Morgan Kaufmann, 2000.

J. Schlessman, B. Ozer, K. Fujino, K. Itoh, and
W. Wolf, “FPGA-based design of a
surveillance system employing optical flow,”
in Proc. Workshop Synthesis System Integr.
Mixed Inf. Technol., 2006.

B. D. Lucas and T. Kanade, “An iterative
image registration technique with an
application to stereo vision,” in Proc. IEEE
Imag. Understand. Workshop, 1981,

pp- 121-130.

C. Regazzoni, V. Ramesh, and G. L. Foresti,
“Scanning the issue/technology,” Proc. IEEE
(Special Issue on Video Communications,
Processing, and Understanding for Third
Generation Surveillance Systems), vol. 89,

pp. 1355-1367, Oct. 2001.

M. Valera and S. A. Velastin, “Intelligent
distributed surveillance systems: A review,”
Proc. Inst. Elect. Eng. Vision, Image Signal
Process., vol. 152, no. 2, pp. 192-204,

Apr. 2005.

M. Leeser, S. Miller, and H. Yu,

“Smart camera based on reconfigurable
hardware enables diverse real-time

(32]

(33]

(34]

(35]

(36]

(37]

(38

(39]

[40]

[41]

[42]

[43]

[44

(45]

[46]

applications,” in Proc. 12th Annu. IEEE

Symp. Field-Program. Custom Comput. Mach.
(FCCM’04), Napa, CA, Apr. 2004,

pp. 147-155.

C. H. Lin, T. Lv, W. Wolf, and I. B. Ozer,
“A peer-to-peer architecture for distributed
real-time gesture recognition,” in Proc. 2004
IEEE Int. Conf. Multimedia Expo (ICME 2004),
Taipei, Taiwan, R.O.C., Jun. 2004, pp. 57-60.

C. Wu and H. Aghajan, “Model-based human
posture estimation for gesture analysis in an
opportunistic fusion smart camera network,”
in Proc. IEEE Int. Conf. Adv. Video Signal-based
Surveil. (AVSS 2007), London, U.K.,

Sep. 2007.

A. Rowe, C. Rosenberg, and I. Nourbakhsh,
“A second low cost embedded color vision
system,” in Proc. IEEE Workshop Embed.
Comput. Vision (ECVW 2005), San Diego, CA,
Jun. 2005, pp. 136-136.

A. Yilmaz, O. Javed, and M. Shah, “Object
tracking: A survey,” ACM Comput. Surv.,
vol. 38, no. 4, p. 45, Dec. 2006.

D. Comaniciu and P. Meer, “Mean shift:
A robust approach toward feature space
analysis,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 24, pp. 603-619, May 2002.

V. Boykov and D. Huttenlocher,
“Adaptive Bayesian recognition in tracking
rigid objects,” in Proc. IEEE Conf. Comput.
Vision Pattern Recognit., 2000,

pp. 697-704. TEEE.

M. Isard and A. Blake, “Condensation-
conditional density propagation for visual
tracking,” Int. J. Comput. Vision,

vol. 29, no. 1, 1998.

D. Comaniciu, V. Ramesh, and P. Meer,
“Kernel-based object tracking,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 25,

pp. 564-577, May 2003.

Y. Ricquenbourg and P. Bouthemy,
“Real-time tracking of. moving persons

by exploiting spatiotemporal image slices,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 22,
no. 8, pp. 797-808.

T. Zhao, R. Nevatia, and F. Lv, “Segmentation
and tracking of multiple humans in complex
situations,” in Proc. IEEE Conf. Comput. Vision
Pattern Recognit., Dec. 2001, vol. 2, pp. 8-14.

D. Comaniciu, V. Ramesh, and P. Meer,
“Real-time tracking of non-rigid objects using
mean shift,” in Proc. IEEE Conf. Comput. Vision
Pattern Recognit., Jun. 2000, vol. 2,

pp. 142-149.

Q. Cai and J. K. Aggarwal, “Tracking human
motion in structured environments using a
distributed camera system,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 21,

pp- 1241-1247, Nov. 1999.

O. Javed, K. Shafique, and M. Shah,
“Appearance modeling for tracking in
multiple non-overlapping cameras,” in Proc.
IEEE Comput. Soc. Conf. Comput. Vision Pattern
Recognit., 2005, vol. 2, pp. 26-33.

V. Cevher, A. C. Sankaranarayanan,

J. H. McClellan, and R. Chellappa, “Target
tracking using a joint acoustic video system,”
IEEE Trans. Multimedia, vol. 9, pp. 715-727,
Jun. 2007.

S. Oh, S. Russell, and S. Sastry, “Markov
chain Monte Carlo data association for
general multiple-target tracking problems,” in
Proc. 43rd IEEE Conf. Decision Contr., Paradise
Island, Bahamas, Dec. 2004.

J. Liu, M. Chu, J. Liu, J. Reich, and F. Zhao,
“Distributed state representation for tracking
problems in sensor networks,” in Proc.

IEEE 3rd Int. Symp. Inf. Process. Sensor Netw.
(IPSN 2004), 2004, pp. 234-242.

1574 PROCEEDINGS OF THE IEEE | Vol. 96, No. 10, October 2008

[48]

[49

[50

[52]

[53

[54]

[55]

[56]

[57]

[58

[59

[60]

(61]

[62]

(63

[64]

R. T. Collins, A. J. Lipton, H. Fujiyoshi, and
T. Kanade, “Algorithms for cooperative
multisensor surveillance,” Proc. IEEE, vol. 89,
pp. 1456-1477, Oct. 2001.

J. Mallett and V. M. Bove, Jr., “Eye society,”
in Proc. IEEE ICME 2003, 2003.

S. Fleck, F. Busch, P. Biber, and W. Strasser,
“3D surveillance—A distributed network of
smart cameras for real-time tracking and its
visualization in 3D,” in Proc. 2006 Conf.
Comput. Vision Pattern Recognit. Workshop
(CVPRW 2006), New York, Jun. 2006.

M. Bramberger, M. Quaritsch, T. Winkler,
B. Rinner, and H. Schwabach, “Integrating
multi-camera tracking into a dynamic task
allocation system for smart cameras,” in Proc.
IEEE Conf. Adv. Video Signal Based Surveil.
(AVSS 2005), Pisa, Italy, Sep. 2005,

pp. 474-479.

M. Quaritsch, M. Kreuzthaler, B. Rinner,
H. Bischof, and B. Strobl, “Autonomous

multicamera tracking on embedded smart
cameras,” EURASIP J. Embed. Syst., 2007.

S. Velipasalar, J. Schlessman, C.-Y. Chen,
W. Wolf, and J. P. Singh, “SCCS: A scalable
clustered camera system for multiple object
tracking communicating via message passing
interface,” in Proc. IEEE Int. Conf. Multimedia
Expo 2006, 2006.

D. C. Schmidt, “Middleware for real-time and
embedded systems,” Commun. ACM, vol. 45,
no. 6, pp. 43-48, Jun. 2002, ACM.

M. M. Molla and S. I. Ahamed, “A survey
of middleware for sensor networks and
challanges,” in Proc. IEEE 2006 Int. Conf.
Parallel Process. Workshops (ICPPW06),
Columbus, OH, Aug. 2006, pp. 223-228.

Y. Yu, B. Krishnamachari, and V. K. Prasanna,
“Issues in designing middleware for wireless
sensor networks,” IEEE Network, vol. 18,

pp- 15-21, Jan./Feb. 2004.

B. Rinner, M. Jovanovic, and M. Quaritsch,
“Embedded middleware on distributed smart
cameras,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process. (ICASSP 2007),
Honolulu, HI, Apr. 2007.

M. Quaritsch, B. Rinner, and B. Strobl,
“Improved agent-oriented middleware for
distributed smart cameras,” in Proc.
ACM/IEEE Int. Conf. Distrib. Smart Cameras
(ICDSC 2007), Vienna, Austria, Sep. 2007,
pp. 297-304.

C. Micheloni, G. L. Foresti, and L. Snidaro,
“A network of co-operative cameras for visual
surveillance,” Proc. Inst. Elect. Eng. Vision,
Image Signal Process., vol. 152, no. 2,

pp. 205-212, Apr. 8, 2005.

R. Pflugfelder and H. Bischof, “People
tracking across two distant self-calibrated
cameras,” in Proc. IEEE Int. Conf. Adv. Video
Signal-Based Surveil. (AVSS 2007), London,
U.K,, Sep. 2007, p. 6.

T. Chen, A. Del Bimbo, F. Pernici, and

G. Serra, “Accurate self-calibration of

two cameras by observations of a moving
person on a ground plane,” in Proc.

IEEE Int. Conf. Adv. Video Signal-Based
Surveillance (AVSS 2007), London, U.K.,

Sep. 2007, p. 6.

C. Niu and E. Grimson, “Recovering
non-overlapping network topology using
far-field vehicle tracking data,” in Proc. IEEE
18th Int. Conf. Pattern Recognit., 2006, vol. 4,
pp. 944-949.

B. Song and A. Roy-Chowdhury, “Stochastic
adaptive tracking in a camera network,” in
Proc. IEEE Int. Conf. Comput. Vision, 2007.
C.-Y. Chen, T.-M. Lin, and W. Wolf,

“A visible/infrared fusion algorithm for

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT GRAZ. Downloaded on November 3, 2008 at 03:23 from IEEE Xplore. Restrictions apply.

distributed smart cameras,” IEEE J. Sel. Topics
Signal Process., vol. 2, no. 4, 2008.

[65] A. Klausner, A. Tengg, and B. Rinner,
“Distributed multi-level data fusion for
networked embedded systems,” IEEE J. Sel.
Topics Signal Process., vol. 2, no. 4, 2008.

[66] A. Chattopadhyaya and T. Boult,
“PrivacyCam: A privacy preserving camera
using uCLinux on the BlackFin DSP,” in

(67

Rinner and Wolf: An Introduction to Distributed Smart Cameras

Proc. Workshop Embed. Comput. Vision
(ECVW 2007), Minneapolis, MP, Jun. 2007.

S. Fleck, R. Loy, C. Vollrath, F. Walter, and
W. Strasser, “Smartclassysurv—A smart
camera network for distributed tracking and
activity recognition and its application to
assisted living,” in Proc. ACM/IEEE Int. Conf.
Distrib. Smart Cameras (ICDSC 2007), Vienna,
Austria, Sep. 2007, pp. 109-116.

(68]

[69]

A. Senior, S. Pankanti, A. Hampapur,

L. Brown, Y.-L. Tian, A. Ekin, J. Connell,
C. F. Shu, and M. Lu, “Enabling video
privacy through computer vision,” IEEE
Security Privacy, vol. 3, no. 3, pp. 50-57,
2005.

W. H. Widen, “Smart cameras and the

right to privacy,” Proc. IEEE, vol. 96, no. 10,
pp. 1688-1697, Oct. 2008.

ABOUT THE AUTHORS

Bernhard Rinner (Senior Member, IEEE) received
the M.Sc. and Ph.D. degrees in telematics from
Graz University of Technology, Austria, in 1993
and 1996, respectively.

He is a Full Professor and Chair for Pervasive
Computing at Klagenfurt University, Austria,
where he is currently serving as Vice Dean of the "
Faculty of Technical Sciences. He held research
positions with Graz University of Technology from
1993 to 2007 and with the Department of Com-
puter Science, University of Texas at Austin, from 1998 to 1999. His
research interests include parallel and distributed processing, embedded
systems, and mobile and pervasive computing. He has authored or
coauthored about 100 papers for journals, conferences, and workshops,
led several research projects, and served as a Reviewer, Program
Committee Member, Program Chair, and Editor-in-Chief.

Wayne Wolf (Fellow, IEEE) received the B.S., M.S.,
and Ph.D. degrees in electrical engineering from
Stanford University, Stanford, CA, in 1980, 1981,
and 1984, respectively.

He is Farmer Distinguished Chair and Georgia
Research Alliance Eminient Scholar at Georgia
Institute of Technology, Atlanta. He was with AT&T
Bell Laboratories from 1984 to 1989. He was on
the Faculty of Princeton University, Princeton, NJ,
from 1989 to 2007. His research interests include
embedded computing, embedded video and computer vision, and VLSI
systems.

Prof. Wolf is a Fellow of ACM. He received the ASEE Terman Award and
IEEE Circuits and Systems Society Education Award.

Vol. 96, No. 10, October 2008 | PROCEEDINGS OF THE IEEE 1575

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT GRAZ. Downloaded on November 3, 2008 at 03:23 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

