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ABSTRACT

Automatic detection of persons is an important applica-
tion in visual surveillance. In general, state-of-the-art sys-
tems have two main disadvantages: First, usually a general
detector has to be learned that is applicable to a wide range
of scenes. Thus, the training is time-consuming and requires
a huge amount of labeled data. Second, the data is usually
processed centralized, which leads to a huge network traffic.
Thus, the goal of this paper is to overcome these problems,
which is realized by a person detection system, that is based
on distributed smart cameras (DSCs). Assuming that we have
a large number of cameras with partly overlapping views, the
main idea is to reduce the model complexity of the detector
by training a specific detector for each camera. These de-
tectors are initialized by a pre-trained classifier, that is then
adapted for a specific camera by co-training. In particular, for
co-training we apply an on-line learning method (i.e., boost-
ing for feature selection), where the information exchange is
realized via mapping the overlapping views onto each other
by using a homography. Thus, we have a compact scene-
dependent representation, which allows to train and to evalu-
ate the classifiers on an embedded device. Moreover, since the
information transfer is reduced to exchanging positions the re-
quired network-traffic is minimal. The power of the approach
is demonstrated in various experiments on different publicly
available data sets. In fact, we show that on-line learning and
applying DSCs can benefit from each other.

Index Terms— visual on-line learning, object detection,
multi-camera networks

1. INTRODUCTION

Due to an increasing number of surveillance cameras and lim-
ited available human resources for analyzing the upcoming
data autonomous video analysis (e.g., person detection or de-
tection of unusual events) is becoming more and more im-
portant. In particular, in recent years there has been a cru-

∗This work was supported by the FFG project EVis (813399) under the
FIT-IT program, the FFG project AUTOVISTA (813395) under the FIT-IT
program, and the Austrian Joint Research Project Cognitive Vision under
projects S9103-N04 and S9104-N04.

Fig. 1. A Scene is observed by multiple cameras with partly
overlapping fields of views (first row). At each camera a clas-
sifier is applied to detect persons (second row). In order to
improve the detection results (lower false positive rate as well
as increasing detection rate) the classifier is updated (last row)
in a co-learning manner by combining the decision of all n
camera views (third row).

cial scientific interest to improve automatic person detection.
Thus, more sophisticated data representations and more effi-
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cient learning methods were developed. In addition, due to
large number of cameras the acquisition costs and the energy
consumption for such systems are increasing and huge net-
work resources and powerful computational back-ends are re-
quired. Therefore, distributed smart cameras (DSCs) are get-
ting more and more established in autonomous surveillance
systems since their advantages are manifold: low costs, scal-
ability, low energy consumption, sustainability, etc.

Smart cameras, in general, combine video sensing, process-
ing and communication on a single embedded platform [1,2].
They represent a prominent example for embedded computer
vision and have been the subject of study for quite some time
in both, research labs and companies. Research on smart cam-
eras intensified significantly in the last decade. Many proto-
types have been implemented on various platforms (e.g., [3–
5]) and smart cameras have been successfully demonstrated
in many applications (e.g., [6–8]). A more detailed overview
can be found in [9].

Moreover, smart cameras are highly applicable for dis-
tributed systems. Thus, DSCs embody the trend in sensor
networks to increase in-network processing [10]. For multi-
camera applications, image processing migrates from central
workstations to the distributed embedded sensors. This dis-
tributed computing approach helps to reduce the communica-
tion load within the network of cameras and to increase the re-
liability and scalability of the multi-camera application. Such
networks can take advantage of the basic techniques of ad-hoc
networking developed for sensor networks, but they also need
additional layers to manage the local and distributed process-
ing.

However, these reduced resources (i.e., memory, compu-
tational power, and bandwidth) limit the computer vision meth-
ods, that can be applied. Thus, common approaches collect-
ing data over time at a central node, which is analyzed and
merged later on, can only be applied to some extent. For in-
stance, it is not possible to compute dense stereo [11], which
allows for increasing the robustness in multi-camera systems.
Neither can we use fusion methods on image data for detec-
tion, even though very good results are obtained using these
methods on other platforms [12]. Thus, especially for person
detection, in most DSC systems each mote operates isolated,
mostly applying simple motion detection algorithms, which
achieve adequate results. However, motion detectors yield
high false detection rates (e.g., due to shadows, reflections, il-
lumination changes, etc.), cannot detect non-moving targets,
and cannot discriminate between different kinds of (moving)
objects.

In contrast, by using appearance-based methods based on
powerful machine learning algorithms (e.g., [13]) higher de-
tection rates can be achieved while keeping false positive rates
low. Such approaches, however, demand a huge amount of la-
beled training data. Yet in practice, there is often not enough
labeled data available. Moreover, hand-labeling of data is te-
dious and in some cases not even feasible. Additionally, as

these detectors are usually trained in the lab for broad appli-
cation they have to cover a wide variety of possible scenarios
and might thus be quite complex. But assuming a stationary
camera setup, which is the case for most surveillance appli-
cations, we have only to cover a certain fixed scene. Thus, a
specialized detector would perform better than a general de-
tector in terms of both, accuracy and efficiency (e.g., [14]).
In addition, since the complexity of the task is reduced the
amount of required training samples can be reduced.

The contribution of this paper is twofold. First, we show
that we can train a person detector on-line on a smart cam-
era, which has the advantage that a detector can be tuned to
a specific scene. Therefore, the complexity of the detector
is reduced while the precision and the recall are increased.
The second contribution is that we can train these detectors
utilizing multiple partly overlapping cameras in a co-training
(semi-supervised) [15] manner. In order to allow for cam-
era collaboration we require only rough geometric knowledge
(i.e., ground-plane homography) of the scene. Then the cam-
eras can teach each other by exchanging detection results (co-
ordinates), which makes our approach also suitable for large
camera networks. The overall principle of the proposed ap-
proach is illustrated in Fig. 1.

In particular, we apply the approach of Roth et al. [16] to
train the off-line classifier, which we then steadily improve by
co-training using on-line boosting for feature selection [17].
For co-training, we use the homography between two cam-
eras, which allows to project a patch from one local camera
coordinate system to another. Hence, only the location and
not the whole image has to be transfered between the cameras,
which dramatically reduces the required bandwidth. More-
over, since we apply an on-line learning method, a sample
can be discarded directly after the update, which reduces the
memory requirements and the computational costs for updat-
ing. In the experimental evaluation, we show that the pro-
posed approach is highly suitable for embedded systems due
to its thin required system resources. In order to show gen-
eral applicability, we demonstrate the method on two publicly
available data sets.

The remainder of this paper is as follows. In Section 2 we
review co-training and on-line boosting for feature selection.
Based on that, in Section 3, we introduce our co-training sys-
tem using multiple camera networks with partly overlapping
views. In addition, we show that the traffic within the multi-
camera network is quite small and it is perfectly suitable for
an embedded system, described in Section 4. Experiments on
two challenging datasets for person detection in Section 5 fur-
ther illustrate these advances. Finally, we conclude the paper
with a summary and an outlook in Section 6.



2. PRELIMINARIES

2.1. Co-Training

It is well known (e.g., Nigam et al. [18]) that also unlabeled
samples contain information about the joint distribution of the
data. Since unlabeled samples can be obtained significantly
easier than labeled samples the main goal would be to take
advantage of the statistical properties of the labeled and un-
labeled data by using a semi-supervised approach. Hence,
a seed classifier, that was trained from a smaller number of
labeled samples, can be improved by taking into account a
large number of available unlabeled samples. This, in fact,
is afforded by co-training, which was originally proposed by
Blum and Mitchell [15].

The main idea is to split the instance space into two views1

and to train a separate classifiers for each view. These classi-
fiers are then applied in parallel, where one classifiers teaches
the other (i.e., unlabeled samples, that are confidently labeled
by one classifier, are added to the training set of the other
classifier). It was proven in [15] that co-training converges if
two strong conditions are fulfilled. First, the two views must
be conditional independent and, second, each of them should
be able to solve the task. Hence, to satisfy these conditions
training samples are required for which one of the classifiers
is confident whereas the other one is not. Since it is hard to
assure these conditions in practice – in particular the first one
– these requirements were relaxed later on [19]. Nevertheless,
a fairly strong assumption on the training algorithms remains,
i.e., they should never provide a hypothesis that is “confident
but wrong”.

For object recognition, co-learning was applied by Levin
et al. [20]. In an off-line setting, they start with a small num-
ber of hand labeled samples and generate additional labeled
examples by applying co-training of two boosted classifiers.
One is trained directly from gray-value images whereas the
other is trained from background subtracted images. The ad-
ditional labels are generated based on confidence-rated pre-
dictions. After some samples are newly labeled (using confi-
dence-rated update rules), the training process is started again
from scratch. In general, the approach is not limited to two
views but can be extended to multiple views (e.g., [21, 22]).
Zhou and Li [22] extended the original co-training approach
for three classifiers. Moreover, Javed et al. [21] apply an ar-
bitrary number of classifiers and extended the method for on-
line learning. In particular, they first generate a seed model
by off-line boosting, which is improved later on by on-line
boosting. The co-training is then performed on feature level,
where each feature (i.e., global PCA features) corresponds to
a base classifier. If an unlabeled sample is labeled very confi-
dently by a subset of such base classifiers it is used for both,
updating the base classifiers and the boosting parameters.

1For instance, in order to discriminate between apples and bananas one
“view” might be shape while the other might be color.

2.2. On-line Boosting

Boosting, in general, is a widely used technique in machine
learning for improving the accuracy of any given learning al-
gorithm [23]. In this work, we focus on the (discrete) Ad-
aBoost algorithm, which has been introduced by Freund and
Shapire [24]. The goal is to learn a binary classifier, i.e., to
learn a mapping H : x → {−1, 1}. This classifier

H(x) = sign
( N∑

n=1

αnhn(x)
)

(1)

corresponds to a linear combination of N weak classifiers
hn. A weak classifier has to perform only slightly better than
random guessing and is trained using a weight distribution
(initialized uniformly) over the set of labeled training sam-
ples {(x1, y1), . . . , (xL, yL)}. With respect to the error of the
trained weak classifier hn the corresponding voting weight
αn as well as the weight distribution are updated. This is re-
peated until a certain stopping criterion is met.

Furthermore, as has been shown by Friedman et al. [25],
boosting provides a confidence measure

P (y = 1|x) =
eH(x)

eH(x) + e−H(x) . (2)

Boosting can be also applied for feature selection [26].
The basic idea is that each feature corresponds to a weak
classifier and that boosting selects an informative subset from
these features. In fact, various different feature types may be
applied, but similar to the seminal work of Viola and Jones
[27] in this work we use Haar-like features, which can be cal-
culated efficiently using integral data-structures.

Boosting, was originally developed for off-line learning,
i.e., all training samples must be given in advance. In contrast,
for on-line learning methods at each time only one training
sample (x, y) is provided to the learner. Since for many appli-
cations it is advantageous having an on-line learning method
Grabner and Bischof [17] introduced an on-line approach for
boosting for feature selection, which is based on the on-line
boosting algorithm of Oza et al. [28]. The main idea is to
introduce selectors and to perform on-line boosting on these
selectors and not directly on the weak classifiers. A selec-
tor hsel

n (x) can be considered a set of M weak classifiers
{h1(x), . . . , hM (x)}. Once a fixed number of N selectors
hsel

1 , .., hsel
N was initialized with random features the selectors

are updated whenever a new training sample (x, y) is avail-
able. For that purpose, all weak classifiers within a selec-
tor are updated and the weak classifier with the smallest esti-
mated error is selected and the voting-weight αn for the n-th
selector hsel

n is updated. Since no weight distribution over
the training samples is available the importance λ (initialized
with 1) of an example is used for training instead, where the
sample and the importance are propagated through the set of
selectors. In fact, it is increased if the sample is mis-classified



and decreased otherwise. Thus, the algorithm focuses on the
hard examples.

Contrary to the off-line version, an on-line classifier is
available at any time of the training process, which allows
continuous learning and improving (i.e., re-training) an exist-
ing classifier.

3. SYSTEM APPROACH

The overall camera network is depicted in Fig. 2. We have
a setup with n partly overlapping cameras, each of them ob-
serving the same 3D scene. In general, the objects-of-interest
can move in the world coordinate system {xw, yw, zw}. But
since the main goal in this paper is to learn a person detector,
we can assume that the objects-of-interest (i.e., the persons)
are moving on a common ground-plane. However, having
overlapping camera views the local image coordinate system
{xi, yi} can be mapped onto each other by using a homog-
raphy based on an identified point in the ground-plane. In
addition, for each camera an estimation of the ground-plane
is required. Both, the calibration of the ground-plane and the
estimation of the homography, are discussed more detailed in
Section 3.1. Once we have calibrated the scene we can start
co-training. In fact, in our approach the different views on the
data are realized by different camera views. The thus defined
co-training procedure is discussed in Section 3.2. In addition,
in this section we summarize the required system resources
for the proposed approach, i.e., the memory requirements, the
computational costs, and the necessary data transfer between
the cameras.

Fig. 2. System overview of the proposed approach: multiple
partly overlapping cameras observe a scene and collaborate
during update phase.

3.1. Scene Calibration

As illustrated in Fig. 2 the size of one and the same object in
the camera coordinate system depends on the absolute posi-
tion of the object within the world coordinate system. Since
the objects (i.e., the persons) are constrained to move on the

ground-plane we can estimate the ground-plane for all cam-
eras obtaining the approximative expected size of the object
on a specific position on the ground-plane. In fact, for the
current setups we estimated the ground-plane manually by se-
lecting at least four corresponding points in each image, but
to have an autonomous system an unsupervised autonomous
approach (e.g., [29]) might be applied as well.

In addition, similarly to Khan and Shah [30], we use ho-
mography information to map one view onto another. It is
well known (see, e.g., [11]) that points on a plane from two
different views are related by a planar homography. The prin-
ciple is depicted in Fig. 3.

Fig. 3. Homography induced by a plane.

Hence, the plane induces a homography H between the
two views, where the homography H maps points xi from the
first view to points xj in the second view:

xj = Hxi . (3)

In particular, we estimate the homography by selecting
corresponding points manually. Once we have estimated the
homography H between all matrices we can map one view
onto another. For that purpose, we first estimate the base
points of detections in all camera coordinate systems. Then,
these base points are mapped onto a different camera coordi-
nate system by the estimated homography. Finally, by using
the thus obtained new base points in the new view we can su-
perimpose the detection (i.e., the bounding-box) from original
view onto the projected one. In this way, we can verify if a
detection in one view was also reported in a different one.

3.2. On-line Co-training

Similar to Levin et al. [20] in our co-training framework we
apply boosted classifiers. Thus, since the strong classifier
in Eq. (1) provides the probability given in Eq. (2), which
can be interpreted as a confidence measure, we can apply
confidence-based learning. But in contrast to existing ap-
proaches our approach differs in two main points: first, we
consider the different camera views as independent views for
co-training and, second, we apply an on-line method, which
ensures a more efficient learning.



To start the training process, we first train a general prior
HP by off-line boosting. Thus, a classifier is trained us-
ing a fixed set of positive X+ and negative labeled samples
X− [27]. Such a classifier is trained emphasizing on a high
recall rate rather than on a high precision and can therefore
be applied on all different views. Then, this classifier HP is
cloned and used as an initial classifier for all camera views.
Even exactly the same classifier is applied for that purpose
due to the different camera positions we get the independent
observations required for co-training. Since it has been shown
in [16] that off-line classifiers can be easily re-trained using
on-line methods (i.e., all acquired statistics are interpreted as
if they have been estimated on-line) these cloned classifiers
can be re-trained on-line and adapted for a specific camera.

In particular, to improve the corresponding classifiers, in
the following we propose a re-training approach for updating
n cameras, where we verify or falsify the obtained detections.
Assuming a low-bandwidth scenario we want to avoid to ex-
change any image data in terms of pixel information. Thus,
to minimize the required data exchange we perform collabo-
ration (i.e., co-training) only on patches of interest. For that
purpose, we define a confidence threshold Θ to classify the
predictions. All predictions Hi ≥ Θ of classifier i are as-
sumed to be “correct” decisions and thus are not further con-
sidered. From all others, regardless if the prediction is pos-
itive or negative, the corresponding confidences of the other
classifiers are requested. Thus, assuming that the response is
0 < Hi(x) < Θ two different cases have to be considered.

Due to homography projection errors and classification er-
rors, bounding boxes might be wrong aligned (label jitter).
Especially, for positive updates, wrong alignment might lead
to noisy updates, which ends up in drifting and thus in corrupt
classifiers. This could be limited by using motion informa-
tion. But as discussed in Section 1, other approaches, that do
not depend on a motion cue require central information merg-
ing, which makes them hardly applicable in a typical smart
camera setup without a central node.

Therefore, we propose a simple strategy, which limits the
problem of wrong detection alignments without having to build
a central confidence map. Each classifier holds only the con-
fidence map of its own predictions. For all requested sub-
patches x for which |H((x)| ≥ Θ the confidence map is
super-imposed with the requested confidences of the diverse
corresponding classifiers on the projected locations. After
that, in order to get the “interesting” positive samples and
the “interesting” negative decisions, in a post-processing step
simple non-maximum suppression and non-minimum suppres-
sion are applied on the merged confidences, respectively. Then,
only such samples are used for updating, which have the high-
est positive and highest negative disagreement. To further in-
crease stability, we keep a small pool of “correct” patches, in
order to perform an additional conservative verification and
falsification step. We will further refer to these update strate-
gies as verification and falsification.

Verification If all responses of the other classifiers
j = 1, . . . , n are also positive, the example is veri-
fied and added to the pool of positive examples: X+ =
X+ ∪ x.

Falsification If all responses of the other classifiers are nega-
tive, the example is classified as a false positive. Thus,
the classifier Hi is updated immediately using x as a
negative example. After each negative update the pool
of positive samples X+ is checked if it is still consis-
tent; otherwise a positive update is performed with the
corresponding sample.

With this very conservative update strategy the arising la-
bel noise can be minimized and thus the detections keep stable
over time (i.e., drifting can be limited). Since we are contin-
uously learning over time these few updates are sufficient to
adapt to the specific scene. Moreover, since the updates are
the computationally most expensive steps by minimizing the
number of required updated the over-all runtime can dramat-
ically be reduced. Note, if Hi has a negative response noth-
ing has to be done. However, the positive samples are col-
lected during the verification step and the local pool of scene-
specific samples X increases.

3.3. Resources

It has been shown that off-line trained object detectors (i.e.,
obtained by boosting for feature selection) are highly suitable
for embedded systems (e.g., [31]). The main advantage is that
the applied classifier can be trained using a powerful com-
puter and finally only the compact representation consisting
of a small number of features has to be stored on the embed-
ded device. In contrast, when applying an on-line learning
method (i.e., on-line boosting for feature selection) a huge
amount of features (i.e., O(NM), where M corresponds to
the number of selectors and N to the features for each selec-
tors) has to be stored on the embedded system. Thus, in the
following we discuss the advantages of the proposed approach
considering the required resources (especially memory) and
show that the method can even be applied if the system’s re-
sources are limited.

As features, which correspond to weak classifiers, we use
similar to [27] Haar-wavelets. Since these features can have
different sizes, aspect ratios, and locations within a given sub-
window all of these variations have to be stored. For instance,
even considering a small window size of 64× 32 pixels2, we
have to select from several hundred thousand different fea-
tures, in order to add only few selected to our final ensemble
classifier. Even for the simplest feature type, we have to store
at least two rectangles (each consisting of one x and one y co-
ordinate, respectively, as well its width and height). Addition-
ally, for each feature its statistics (i.e., mean and variance for

2This is the typical patch size used for person detection.



both positive and negative distributions) and its final decision
threshold Θ have to be stored . Again considering a 64 × 32
patch, such a system generates a maximum of 2, 655, 680 fea-
tures, resulting in at least 240 MB of required memory. Note,
this number grows dramatically [32] with the training patch
size. Fortunately, this set is highly over-complete (i.e., only a
small sub-set, usually 10%, is required in order to get proper
results). Hence, choosing a subset of only 10% of all possible
features reduces the required memory to 24 MB. For embed-
ded systems, this amount, however, can still be far too high.
Since in our approach on-line learning allows for training
highly scene-specific classifiers, they can be very compact.
In a typical scenario, we require only 100 selectors, where
each selector typically holds 150 different features, resulting
in a total number of 15, 000 features to be stored. Hence, we
only need 500 KB of memory, which finally is a reasonable
amount for most embedded platforms.

Considering the computational complexity, the algorithm
performs in O(N) for detecting target objects. Scanning the
window is very fast due to integral image structures, which
allow to evaluate each rectangle sum in constant time. More-
over, the updates can be performed very efficiently in
O(NMS), where S is the number of new samples. In our
approach, we use only S = 2 per frame.

Since in our approach each mote acts as autonomously
as possible no visual information, i.e., images, has to be ex-
changed among the cameras. Thus, from each view, only a
certain number of sub-patches confidence responses
O(|H(x)| < Θ) is required for co-training and have to be
transfered between the cameras. For that purpose, only the
corresponding coordinates (at overlapping areas) and their con-
fidences have to be transmitted. Hence, depending on the
choice of Θ, typically only a few hundred bytes per frame
have to be exchanged.

4. EMBEDDED PROTOTYPING PLATFORM
For our experimental evaluations we use a high-performance
embedded platform, which is shown in Fig. 4. The
MICROSPACE EBX (MSEBX945) embedded computer board
from DigitalLogic AG serves as single-camera platform. It
offers a compact EBX single-board construction (146mm ×
203mm), that allows for flexible positioning in real-world set-
tings. Additionally, it supports various interfaces such as RS-
232, LAN 100MB, FireWire over MiniPCI and USB. The
CPU-module (SMX945-L7400) consists of an Intel Core 2
Duo CPU running at 2×1500 MHz with a 667 MHz FSB. The
main characteristics of the MSEBX945 platform can be sum-
marized as: 2048MB DRAM Min-Max, USB 2.0, RS232C,
COM-Interface, 10/100BASE-T, 1GB-LAN PCIe, Mini PCI
Slot and PS/2 Interface. The total power consumption lies in
the range of 12–15 W.

Note that this platform is also capable of interfacing ad-
ditional sensors as well as performing various sensor fusion
algorithms [33]. We have implemented and tested interfaces

to the following sensors:

• Laser sensor (Noptel CM3-30) for distance measure-
ments and generation of altitude profiles

• Audio sensor (via USB) for stereo audio recordings

• Vision sensor (Baumer FWX14-K08 camera) for single
shot and video streaming (resolution 1392× 1040).

• Environmental sensor (ELV ST-2232) for light and tem-
perature measurements

Fig. 4. Our embedded prototyping platform MSEBX945.

5. EXPERIMENTS

In all experimental setups we assume static cameras with partly
overlapping views. For all cameras sharing a view-point area,
we estimate the ground-plane homography as described in
Section 3. The cameras are synchronized using simple NTP
protocol3 and are interconnected with each other over com-
mon Ethernet. To get the learning process started we trained
an initial off-line classifier using ten positive labeled samples
and twenty randomly chosen negative samples, respectively.
We favored higher recall rate than higher precision. To illus-
trate the high suitability of our approach in practice as well as
to increase comparability, we performed the experiments on
standard surveillance datasets for multiple cameras.

5.1. PETS 2006

In our first experiment, we evaluated our approach on the
PETS 20064 data set. In particular, the dataset shows the
concourse of a train station from four different views. For
our experiments we have selected sequences from two of the
four views (frontal view/Camera 3 and side view/Camera 4),

3http://www.ntp.org, (June 28, 2008)
4http://www.pets2006.net, (June28 ,2008)



which are different in view angle, size, and geometry. For
training and evaluation we selected independent sequences
from Dataset S7 (Take 6-B) and Dataset S5 (Take 1-G). Al-
though precise calibration data for the PETS 2006 data set
is publicly available, the homography was estimated as de-
scribed before.

To start the learning process the initial classifier was eval-
uated on both camera views. Later these initial classifiers
were updated by co-training. To demonstrate the learning
progress after a pre-defined number of processed training frames
we stored a classifier, which was then evaluated on the in-
dependent test sequence. The thus obtained results (i.e., we
evaluated the recall, the precision, and the F-measure) for spe-
cific time stamps t (i.e., t = 0, t = 20, and t = 50) are
summarized in Table 1:

Classifier 1
t recall precision F-measure
0 0.85 0.32 0.46

20 0.82 0.44 0.58
50 0.85 0.78 0.82

Classifier 2
t recall precision F-measure
0 0.72 0.68 0.70

20 0.75 0.69 0.72
50 0.75 0.95 0.84

Table 1. PETS 2006: recall, precision, and F-measure for
classifier 1 and classifier 2 after t = 0, t = 10 and t = 50
iterations.

It can be seen, that even only a small number of frames
were processed the precision was significantly improved while
the recall rate stays at the same level. The same can be seen
from the precision-recall curves for both classifiers, which are
shown in Fig. 5. Moreover, the improving classifier perfor-
mance over time is illustrated in Fig. 6.

5.2. Pets 2001

In our second experiment, we demonstrate our approach on an
outdoor data set, i.e., PETS 20015. Compared to the previous
experiment, this scenario is more challenging since the target
objects are smaller and the background is characterized by
higher variability. In particular, from several available sets,
we chose dataset 2, which covers the scene from two different
view-points.

The experiments were performed in the same way as for
PETS 2006 described in Section 5.1. The obtained results for
t = 0, t = 20, and t = 50 are summarized in Table 2. The
corresponding precision-recall curves are given in Fig. 7.

5http://www.cvg.rdg.ac.uk/PETS2001, (June 28, 2008)
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Fig. 6. PETS 2006: increasingly better detection results over
co-training iterations.

Classifier 1
t recall precision F-measure
0 0.48 0.83 0.61
20 0.43 0.82 0.56
50 0.62 0.76 0.68

Classifier 2
t recall precision F-measure
0 0.56 0.69 0.62

20 0.44 0.47 0.45
50 0.69 0.79 0.73

Table 2. PETS2001: recall, precision, and F-measure for
classifier 1 and classifier 2 after t = 0, t = 10 and t = 50
iterations.

Similar to the results for the PETS 2006 data set it can
be seen that the precision is increased. Additionally, for this
specific data set also the recall was significantly increased.
Since the scenario is more complex the pre-trained prior can
not handle all variability of the positive samples. Hence, we



(a) classifier 1 (b) classifier 2

Fig. 5. PETS 2006: precision-recall-curves for classifier 1 (a) and classifier 2 (b).

additionally benefit from the proposed update strategy. But
due to the higher complexity of the scenario the final over-
all performance is worse compared to the simpler PETS 2006
discussed in the previous section. Again, finally, we show
some illustrative results of the increasingly improving detec-
tors in Fig. 8.

5.3. Detailed Performance Evaluation

Finally, we give some detailed performance measures on our
prototype platform. For performance evaluation tests of our
approach on the embedded platform we chose to set our focus
on Idle/System and User CPU load as well as on free/buffered
and cached amount of memory. Fig. 9 shows the breakdown
of the CPU load during a five minutes object detection process-
ing loop with two detection stops in-between. The perfor-
mance test is done on a sequence of images, each with a res-
olution of 348 × 260. In Fig. 10 the memory load break-
down of the same sequence is shown. The two other figures
(Fig. 11 and Fig. 12, respectively), picture the CPU and RAM
load breakdown analogously for a 90 second lasting image
sequence (with one detection stop at second 60).

6. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel approach for on-line learn-
ing classifiers in networks of distributed smart cameras. Our
main contribution is to motivate and demonstrate that both,
on-line learning (i.e., on-line boosting for feature selection)
and applying autonomously acting smart cameras, can ben-
efit from each other. Contrary to previous methods, we do
not rely on motion information and only have to label a few
samples in the start-up phase of the system. Performance de-
tails of our approach were given on two challenging and pub-
licly available standard data sets on pedestrian detection with
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Fig. 8. PETS 2001: increasingly better detection results over
co-training iterations..

wide-baseline views. Since we see our platform as a multi-
sensor fusion system, in future work, we plan to integrate
additional sensors (e.g., laser and audio) in order to acquire
further different “views” for our co-training approach.
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Fig. 7. PETS 2001: precision-recall-curves for classifier 1 (a) and classifier 2 (b).

Fig. 9. CPU load breakdown (5 minutes)

Fig. 10. Memory load breakdown (5 minutes)
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