
EMBEDDED MIDDLEWARE ON DISTRIBUTED SMART CAMERAS

Bernhard Rinner, Milan Jovanovic and Markus Quaritsch

Graz University of Technology
Institute for Technical Informatics

Inffeldgasse 16, 8010 Graz, AUSTRIA

ABSTRACT

Two trends emerge in recent image processing research: distributed
computing and embedded processing. Both trends are exempli ed
in smart cameras which combine image sensing, image processing
and communication on a single embedded device. Networks of dis-
tributed smart cameras help to overcome some hard problems that
are inherent in single-camera systems.

Designing, implementing and deploying image processing ap-
plications for cooperating distributed cameras is much more com-
plex than for single-camera systems. In this paper, we focus on
software services required for distributed embedded image process-
ing on a network of smart cameras. We identify important middle-
ware services and present our lightweight middleware implemented
on our distributed SmartCams. A multi-camera tracking application
demonstrates the bene ts of our approach.

Index Terms— image processing, embedded systems, smart
cameras, distributed systems, middleware

1. INTRODUCTION

Image processing has been a very active research area over the last
decades, and results of this research can now be found almost ev-
erywhere. The market for image processing technology is rapidly
increasing; its applications range from machine inspection over se-
curity to consumer products.

Two trends emerge in recent image processing research: dis-
tributed computing and embedded processing. These trends are very
well exempli ed in smart cameras [1, 2] which combine image sens-
ing, image processing and communication on a single embedded de-
vice. Smart cameras have a substantial processing and communi-
cation infrastructure onboard and can perform advanced image pro-
cessing algorithms such as motion detection, segmentation, tracking
and object recognition in real-time. They typically deliver color and
geometric features, segmented objects or rather high-level decisions
such as wrong way drivers or suspect objects. The abstracted results
may be transferred either within the video stream, e.g., by color-
coding, or as a separate data stream. Note that the onboard com-
puting infrastructure of smart cameras is often exploited to perform
high-level video compression.

Developing distributed image processing applications is chal-
lenging, and a substantial system-level software would strongly sup-
port the implementation. However, embedded platforms with lim-
ited resources, typically, do not provide middleware services well-
known on general-purpose platforms. In this paper, we focus on
such system-level software for distributed image processing, i.e., we

This research has been partially supported by the Austrian Research Pro-
motion Agency under grant 810072.

identify important domain-independent services for deploying, net-
working and operating a smart camera network. We then discuss
application-speci c services for spatial and temporal calibration.

The remainder of this paper is organized as follows: Section 2
identi es the potential of distributed smart camera systems. Sec-
tion 3 discusses middleware services for distributed smart cameras.
Section 4 presents our smart camera architecture (SmartCam) and
the middleware services we have implemented. Section 5 demon-
strates the bene ts of our middleware by a multi-camera tracking
application. Section 6 concludes this paper with a brief discussion.

2. DISTRIBUTED SMART CAMERAS

Distributed image processing de nitely introduces several compli-
cations. However, we strongly believe that the problems which this
approach solves are much more important than the challenges of
designing and implementing a network of distributed smart cam-
eras (DSCs). DSCs help to overcome some very hard problems that
are available in single-camera systems.

Occlusion is a major problem for single cameras. When multiple
views of a subject are available, it is much more likely to see parts
of an object that is occluded in the eld of view of one camera by
switching to a different camera.

In a multi-camera setting, it is more likely that one camera is
closer to an object than in a single camera setting. Thus, objects of
interest can be captured with higher resolution.

Local processing close to the image sensor abstracts the result-
ing data, and onboard compression signi cantly reduces the amount
of the output. Thus, distributed processing helps to reduce the re-
quired bandwidth for communication among the camera network.

Real-time considerations also argue in favor of distributed com-
puting. Local processing avoids round-trip delays to a server and
sharing common resources which in turn increase the predictability
of the processing time.

By having access to cameras with different views of the scenario,
we may overcome failures of individual cameras. Distributed com-
puting enables fault-tolerance and helps to increase the reliability of
the multi-camera system.

3. MIDDLEWARE SERVICES FOR DISTRIBUTED SMART
CAMERAS

3.1. Related Middleware Approaches

Designing, implementing and deploying image processing applica-
tions for distributed smart cameras is much more complex than for
single-camera systems. On general-purpose platforms, distributed
applications are often based on a middleware system which provides
services for networking and data transfer [3].

IV ­ 13811­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007

On DSC networks we would like to take advantage of middle-
ware services as well. However, the requirements of a middleware
for distributed image processing on embedded devices are signif-
icantly different. Component-based middleware such as DCOM or
CORBA are targeted for general-purpose computing and are not suit-
able for resource limited devices. The CORBA technology has been
adapted to resource constrained real-time systems, e.g., by the Real-
Time CORBA (RT-CORBA) speci cation and its “TAO” implemen-
tation [3]. However, this approach is still very resource consuming.

On the other hand, recent research in wireless sensor networks
(WSN) has come up with some interesting middleware concepts as
well [4]. Due to the nature of WSNs these middleware systems es-
pecially focus on reliable services for ad-hoc networks and energy-
awareness [5].

DSC networks are different to WSNs in various aspects. First,
the amount of data to be processed is much higher in DSC networks
than in WSNs. Second, individual processing nodes in a DSC net-
work are more capable than in WSNs. While resource constraints
on the embedded smart cameras are important, the resource limita-
tions, especially energy, are of top priority in WSN. Third, due to
ad-hoc networking, communication in WSN has a very dynamic na-
ture. DSCs, on the other hand, are typically connected via wired
networks providing higher communication bandwidths.

3.2. Middleware services

In the following, we brie y identify important services required for
an ef cient deployment and execution of image processing appli-
cations on DSC networks. These services are described from an
application-oriented perspective.

Deployment services. Deployment services help to initiate the DSC
network and to start up the image processing application.

The dynamic loading service enables to change the functionality
of an individual camera after compile-time. The new functionality is
provided by a dynamically loadable executable. Using this service
functions can also be removed from individual cameras. Functional
units are often referred to as tasks.

The allocation service helps to nd the optimal allocation of in-
dividual tasks among the cameras. In general, task allocation is a
complex problem, and nding the optimal solution requires some
form of modeling of the overall application and the available re-
sources of the DSC network.

The monitoring service delivers the actual state of an individual
camera including the available resources and the allocated tasks. The
camera’s state information is important for optimizing the resource
allocation and for providing fault-tolerance mechanisms.

Operational services. Operational services are responsible for the
ef cient coordination and con guration of the DSC network during
runtime.

Synchronization provides a well-de ned temporal relation among
the cameras. This temporal relation is important for collaborative
image processing. However, the required temporal accuracy depends
on the image processing algorithm and may range from frame syn-
chronization among the cameras to a very relaxed synchronization.

Code mobility enables the migration of code and data from one
camera to another during runtime. Mobile code is a powerful pro-
gramming paradigm which supports the design and execution of dis-
tributed applications.

Recon guration is related to allocation in the sense that it sup-
ports changing the allocation during runtime. Thus, the allocation of

WLAN

GPRSSerial

Ethernet

Sensor

CMOS

Iri
s

Sensor Control

Memory

DSP

DSP
Video Encoding

Memory

Processing UnitSensing Unit

PCI

Communication Unit

Video Analysis

Network
Processor

Linux

Fig. 1. The hardware architecture of our smart camera.

tasks can be be dynamically modi ed. The DSC network can then
react to changes in its environment and the camera’s internal state.

Networking services. Networking services establish transparent
services for communication, data transfer and resource management
in the DSC network.

Data and naming services provide the basic mechanism for ef-
cient communication among the cameras. For distributed image
processing, two important services can be separated: Streaming ser-
vices deliver image data at a certain QoS over the network. Messag-
ing services are required to coordinate the cameras.

Resource management helps to keep track of all resources in the
DSC network.

Application-speci c services. These services are speci c to im-
age processing and may vary strongly among different applications.

Calibration is required in various degrees in distributed image
applications. Determining the spatial relation among the individual
cameras is important. The required spatial accuracy also depends on
the application and may range from a pixel-based registration of the
individual eld of views to a graph-based neighborhood relation.

QoS services provide a network-wide QoS of the image process-
ing application.

4. MIDDLEWARE IMPLEMENTATION

4.1. SmartCam Architecture

Figure 1 depicts the hardware architecture of our smart camera (Smart-
Cam) [2] which is comprised of a sensing unit, a processing unit and
a communication unit. A CMOS image sensor is the core of the sens-
ing unit. It delivers color images up to VGA resolution at 25 frames
per second to the processing unit via a FIFO memory. The process-
ing unit is composed of a variable number of digital signal proces-
sors (DSPs) which are connected via a local PCI bus. The image
processing algorithms are executed on these DSPs. An ARM-based
network processor controls the communication unit which has two
main tasks. First, it coordinates the internal communication among
the DSPs as well as the DSPs and the network processor. Second, it
provides IP-based communication channels to the outside world.

IV ­ 1382

Application

Code Mobility Naming Services
Data Services

MonitoringSubscribeLoading

SmartCam Framework

Linux Kernel

Network Processor Processing Unit

Publish/Dynamic

QoSgurationAllocation Reconfi

Operating
System

Domain specific
Services

Distribution
Services

Host
Services

Hardware

DSP Driver

Fig. 2. The architecture of the SmartCam middleware.

4.2. SmartCam Middleware

On our SmartCam we employ a lightweight middleware which aims
to ease the development of distributed image processing applica-
tions. The different services provided by the middleware can be or-
ganized in a layered architecture. The functionality of each layer is
adapted from [3]. Figure 2 sketches the architecture of our Smart-
Cam middleware.

Operating system. The operating system along with its hardware
drivers and communication channels builds the basic layer of our
architecture. On the network processor, a standard Linux kernel ver-
sion 2.6.17 is used. A custom kernel module (DSP driver) is respon-
sible for managing the communication between the DSPs as well
as the DSPs and the network processor via the PCI bus. The DSP
framework [6] running on each DSP abstracts the DSPs, handles the
communication with the network processor and provides an environ-
ment for the video processing algorithms.

Host services. The SmartCam framework [6] builds the founda-
tion of the host services. It provides a basic message-oriented com-
munication mechanism between applications on the network proces-
sor and image processing algorithms on the DSPs. The services for
(1) dynamic loading, (2) publish/subscribe, and (3) monitoring op-
erate on top of the SmartCam framework.

Dynamic loading allows to load image processing algorithms
dynamically during runtime on the DSPs. On the network proces-
sor, a dynamically loadable executable is sent to the DSP whereas
the DSP framework is responsible for loading and starting the exe-
cutable on the DSP.

The publish/subscribe service provides a exible communica-
tion mechanism. Data sources and data sinks are connected dynami-
cally whereas the data source and data sink can be located on differ-
ent processors on the smart camera.

The monitoring service observes the utilization of various re-
sources on an individual smart camera. Our monitoring is dedicated
to important resources on the embedded platform such as CPU us-
age, memory utilization as well as the utilization of the communica-
tion channels on each processor, i.e., DMA channels on the DSPs,
PCI bus, utilization of network channels.

Distribution services. While the lower layers provide services for
applications on a single camera, this layer integrates multiple smart
cameras to a distributed image processing system. In our implemen-
tation we use a mobile agent system as foundation for distributed
applications.

An agent system usually supports communication between agents
independent of the current host an agent resides on. The agent sys-
tem further facilitates the abstraction of image processing tasks by
mobile agents. Low-level image processing is implemented as DSP
executable while the agent contains the application logic and con-
trols the image processing algorithm. Code mobility is also inherent
to a mobile agent system. Mobile agents can migrate between the
hosts as required. Exploiting dynamic loading of DSP executables
allows to migrate the image processing algorithm as well.

Domain-speci c services. On top of the distribution services op-
erate the domain-speci c services (1) allocation, (2) recon guration,
and (3) quality of service (QoS). We have modeled the task alloca-
tion as a constraint satisfaction problem (CSP) [7]. A solution of
the CSP corresponds then to an allocation of tasks to cameras. The
allocation is performed before runtime as an deployment service.

The overall objective of dynamic recon guration is to transfer
the network into a speci c con guration which better captures the
current requirements. Dynamic recon guration is performed at run-
time and requires some form of reasoning about the speci c con gu-
ration. Thus, we need some information about the state of the current
con guration as well as some objective for the next con guration.

We have implemented dynamic recon guration in three steps.
First, context sensing and analysis gathers information about the cur-
rent state of the DSC network. The current state is retrieved using the
monitoring service. Second, the computation of new con gurations
is determined by an optimizer which uses the contextual informa-
tion of the DSC network and the recon guration objective as input.
In our implementation, the recon guration objective is speci ed by
policies. Third, the recon guration enforcement performs the actual
transfer from the current to the next con guration. This enforcement
is implemented by our mobile agent system and the dynamic load-
ing services. All three steps are executed periodically in a so-called
recon guration loop.

Our middleware supports combined management of power and
QoS (PoQoS) [2]. PoQoS dynamically con gures the power and
QoS level of the cameras’ hard- and software to adapt to user re-
quests and changes in the environment.

5. CASE-STUDY: MULTI-CAMERA TRACKING

In this section, we present our implementation for tracking objects
in a network of smart cameras which is based on the middleware in-
frastructure described in section 4. Tracking an object on a single
camera uses the well-known CamShift [8] algorithm which in turn
has been extended to track objects among multiple cameras. In con-
trast to [9], our approach focuses on an autonomous, decentralized
solution for tracking an object among multiple cameras. Compared
to [10], we consider object tracking as an additional task which is
started on demand and our implementation targets on an embedded
platform.

The basic idea of our multi-camera tracking approach [2] is to
employ a single instance of a tracker for each object of interest. This
tracking instance always resides on the camera which observes the
object and follows the target from one camera to the next as it moves
within the supervised area. This means, that only a single camera has

IV ­ 1383

to perform the tracking task. The tracking instance consists of (1) the
tracking algorithm which extracts the trajectory of the object from
the video stream acquired by the camera, and (2) a mobile agent.
The mobile agent encapsulates the tracking algorithm and contains
the application logic. It is responsible for controlling the tracking
algorithm and following the target among the camera network. The
tracking agent itself acts autonomously depending on its strategy in
order to follow the target.

The handover of an object from one camera to the next is fully
decentralized and involves only adjacent cameras. When the tracked
object is about to leave the eld of view of the current camera, the
tracking agent has to continue tracking on the camera which will
observe the object next. Therefore, each camera has de ned a set
of so-called migration regions which are basically a polygon in the
2D image space. Each migration region is assigned to one or more
neighboring cameras. An additional direction vector helps to distin-
guish among several smart cameras assigned to the same migration
region [11].

In order to ease the development of distributed image process-
ing tasks, the application uses, among others, the following services
provided by the underlying middleware:

Abstraction of image processing. The application logic is imple-
mented in the mobile agent. In the case of our decentralized object
tracking, this means that the agent is responsible for following the
target from one camera to the next. But in order to perform the
correct actions, i.e., ascertain to reside on the camera observing the
object, the agent depends on the information obtained from the track-
ing algorithm. The concrete tracking algorithm used is exchangeable
and can be adapted to the current needs.

Code migration and dynamic loading. Code migration is funda-
mental for our tracking approach. The tracking algorithm is executed
only on the camera which observes the target. When the target leaves
the eld of view of the current camera, the agent has to migrate to
a neighboring camera. While agent migration is inherent to the mo-
bile agent system, the tracking algorithm also has to be aware of this
situation. Hence, the tracking algorithm has to be able to store its in-
ternal state and also reinitialize itself from a previously stored state.
Migrating an image processing task from one camera to another also
relies on dynamic loading and unloading of DSP algorithms.

Transparent messaging. From the class of networking services,
the presented tracking application exploits the service of transparent
communication. In order to visualize the position of the observed
object, its position can be displayed on a PC. Therefore, the tracking
agent sends messages containing the position of the target to a visu-
alizer agent which in turn draws the current position on the screen
or logs it to a le. Hence the communication is handled by the agent
system, both agents can migrate to another host and still communi-
cate with each other.

6. CONCLUSION

In this paper, we have presented the potential of distributed smart
cameras for solving important problems of current single-camera
systems. A middleware system would strongly support the applica-
tion development on the DSC network. We have implemented such
a middleware for our SmartCams which provides some services for
deployment, operation and networking. Our middleware focuses on

ef ciency and resource-awareness. It has been demonstrated on a
multi-camera tracking application.

From our experience, such a middleware eases the development
of distributed image processing applications in the following way.
First, it provides a clear separation between image processing algo-
rithm implementation and coordination of these algorithms among
different cameras. Second, it strongly supports scalability, i.e., to
develop applications for a variable number of cameras. Third, the
available resources can be better utilized by dynamic loading and
dynamic recon guration services which are usually not available on
embedded platforms.

7. REFERENCES

[1] Wayne Wolf, Burak Ozer, and Tiehan Lv, “Smart cameras as
embedded systems,” Computer, vol. 35, no. 9, pp. 48–53, Sept.
2002.

[2] Michael Bramberger, Andreas Doblander, Arnold Maier, Bern-
hard Rinner, and Helmut Schwabach, “Distributed embedded
smart cameras for surveillance applications,” Computer, vol.
39, no. 2, pp. 68–75, 2006.

[3] Douglas C. Schmidt, “Middleware for real-time and embedded
systems,” Communications of the ACM, vol. 45, no. 6, pp. 43–
48, June 2002.

[4] Mohammad M. Molla and Sheikh Iqbal Ahamed, “A Survey
of Middleware for Sensor Networks and Challanges,” in Pro-
ceedings of the 2006 International Conference on Parallel Pro-
cessing Workshops (ICPPW’06), Columbus, Ohio, USA, Aug
2006, pp. 223–228, IEEE.

[5] Yang Yu, Bhaskar Krishnamachari, and Viktor K. Prasanna,
“Issues in designing middleware for wireless sensor networks,”
IEEE Network, vol. 18, no. 1, pp. 15–21, Jan/Feb 2004.

[6] Andreas Doblander, Bernhard Rinner, Norbert Trenkwalder,
and Andreas Zoufal, “A Middleware Framework for Dynamic
Recon guration and Component Composition in Embedded
Smart Cameras,” WSEAS Transactions on Computers, vol. 5,
no. 3, pp. 574–581, March 2006.

[7] Michael Bramberger, Bernhard Rinner, and Helmut
Schwabach, “A Method for Dynamic Allocation of Tasks
in Clusters of Embedded Smart Cameras,” in Proceedings
of the IEEE International Conferens on Systems, Man and
Cybernetics, October 2005, pp. 2595 – 2600.

[8] Gary R. Bradski, “Computer vision face tracking for use in a
perceptual user interface,” Intel Technology Journal, , no. Q2,
pp. 15, 1998.

[9] Sven Fleck, Florian Busch, Peter Biber, and Wolfgang Straßer,
“3D Surveillance – A Distributed Network of Smart Cameras
for Real-Time Tracking and its Visualization in 3D,” in Pro-
ceedings of the 2006 Conference on Computer Vision and Pat-
tern Recognition Workshop, Jun. 2006, pp. 118 – 126.

[10] Senem Velipasalar, Jason Schlessman, Cheng-Yao Chen,
Wayne Wolf, and Jaswinder Pal Singh, “SCCS: A Scalable
Clustered Camera System for Multiple Object Tracking Com-
municating via Message Passing Interface,” in Proceedings of
IEEE International Conference on Multimedia and Expo 2006,
2006.

[11] Markus Quaritsch, Markus Kreuzthaler, Bernhard Rinner,
Horst Bischof, and Bernhard Strobl, “Autonomous multi-
camera tracking on embedded smart cameras,” EURASIP Jour-
nal on Embedded Systems, vol. 2007, 2007.

IV ­ 1384

