
R E S E A R C H F E A T U R E

0018-9162/06/$20.00 © 2006 IEEE68 Computer P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

mented software framework, our embedded cameras
offer system-level services such as dynamic load distri-
bution and task reconfiguration. In addition, we com-
bined several smart cameras to form a distributed
embedded surveillance system that supports coopera-
tion and communication among cameras.

Although smart cameras have various applications,
we focus on traffic surveillance, which imposes demand-
ing video-processing and compression-algorithm
requirements on the camera’s hardware and software.
The “From Analog to Digital Smart Cameras” sidebar
provides a discussion of the evolution of smart camera
surveillance systems.2

To meet the requirements of an innovative traffic-sur-
veillance system—that is, the ability to autonomously
monitor the traffic along a highway section, computing
traffic statistics, delivering a compressed live video to
the monitoring station, and performing high-level video
analysis such as detecting a wrong-way driver or an acci-
dent—the distributed surveillance architecture must be
scalable and flexible.

To demonstrate our distributed surveillance system’s
feasibility, we developed a prototype implementation
consisting of several smart cameras. We assigned video-
based surveillance tasks to clusters of smart cameras and
dynamically and autonomously mapped tasks to indi-
vidual cameras. Both this task mapping and the tasks’
QoS level autonomously adapt to the surveillance sys-
tem’s state and the available resources.

Current high-performance embedded cameras combine video sensing, video processing,

and communication within a single device.These smart cameras are key components for

novel surveillance systems.

Michael Bramberger, Andreas Doblander,
Arnold Maier, and Bernhard Rinner
Graz University of Technology

Helmut Schwabach
Austrian Research Centers, Seibersdorf

R ecent advances in computing, communication,
and sensor technology are pushing the devel-
opment of many new applications. This trend
is especially evident in pervasive computing,
sensor networks, and embedded systems.

Smart cameras, one example of this innovation, are
equipped with a high-performance onboard computing
and communication infrastructure, combining video
sensing, processing, and communications in a single
embedded device. By providing access to many views
through cooperation among individual cameras, net-
works of embedded cameras can potentially support
more complex and challenging applications—including
smart rooms, surveillance, tracking, and motion analy-
sis—than a single camera.

Wayne Wolf and colleagues described the required
computing and communication performance and the
real-time and quality-of-service (QoS) requirements of
the image-processing algorithms executed on a single
embedded smart camera.1 Their two-camera prototype
uses a standard PC equipped with Tri-Media image-pro-
cessing boards. Our work extends the smart camera con-
cept even further.

We designed our smart camera as a fully embedded
system, focusing on power consumption, QoS manage-
ment, and limited resources. The camera is a scalable,
embedded, high-performance, multiprocessor platform
consisting of a network processor and a variable num-
ber of digital signal processors (DSPs). Using the imple-

Distributed Embedded
Smart Cameras for
Surveillance Applications

February 2006 69

SYSTEM ARCHITECTURE
Smart cameras are a core component of future traf-

fic-surveillance systems. High-level computing and
communication capabilities in the smart cameras’
embedded platform increase surveillance system func-
tionality, flexibility, and scalability. For example,
basic video compression (MPEG-4 advanced simple
profile) and video processing (such as stationary vehi-
cle detection) require an overall computation perfor-

mance of about 10 billion instructions per second
(GIPS) and a transfer rate of about 1 megabyte per
second (Mbps). Additional onboard video analysis
increases the computation and communication
requirements.

We chose a commercial off-the-shelf software/
hardware architecture to support fast prototype devel-
opment and achieve flexibility and performance at a
reasonable price.

Over the past two decades, surveillance systems have been
an area of intense research. Recently, much research effort has
focused on video-based surveillance systems,especially for pub-
lic safety and transportation systems.1,2

Video-based surveillance systems have evolved in three gen-
erations. First-generation surveillance systems used analog
equipment throughout the overall system. Analog closed-
circuit television cameras captured the observed scene and
transmitted the video signals over analog communication lines
to the central back-end systems,which displayed and archived
the video data.

Second-generation surveillance systems use digital back-end
components,allowing real-time automated analysis of the incom-
ing video data.Therefore,automated event detection and alarm
generation significantly increased the amount of simultaneously
monitored data and the overall surveillance system’s quality.

Third-generation surveillance systems have completed the
digital transformation. In these systems, the video signal is con-
verted into the digital domain at the (digital) cameras, which
transmit the video data via a computer network such as a local
area network.The digital cameras can also directly compress
the video data to save bandwidth.The back-end and trans-
mission systems of third-generation surveillance systems have
also increased their functionality. For example, they use intel-
ligent hubs3 to collect the video data, aggregate the informa-
tion from different cameras,and transmit it to the video archive
and the operators.

Intelligent cameras are a novelty in these surveillance sys-
tems.They perform a statically defined set of low-level image-
processing operations on the captured frames onboard to
improve the video compression and intelligent host efficiency.4,5

However, most video processing and analysis in current sur-
veillance systems is executed at a central host using standard
workstation racks. For example, in traffic surveillance, typical
video analysis tasks include video compression, detection of
stationary vehicles and wrong-way drivers,and computation of
traffic statistics such as average speed, lane occupancy, and
vehicle classification.6 The system designer statically assigns
the analysis of a camera’s video input to a specific workstation.
Modifying or reconfiguring this assignment during the surveil-
lance system’s operation is difficult.

Current processor technology allows the implementation of
smart cameras,7 which directly perform highly sophisticated
video analysis.These smart cameras integrate video sensing,
video processing, and communication into a single embedded
device; they’re designed as reconfigurable and flexible process-
ing nodes with self-reconfiguration, self-monitoring, and self-
diagnosis capabilities.

Smart cameras support the ongoing paradigm shift from a
central to a distributed control surveillance system.The main
motivation for this shift is increasing the surveillance system’s
functionality, availability, and autonomy. Smart cameras are key
components of these novel surveillance systems because they
provide sufficient performance for onboard video processing
and distributed control. Such surveillance systems can react
autonomously to changes in the system’s environment and to
detected events in the monitored scenes.

A static surveillance system configuration is no longer feasi-
ble;the system architecture must support reconfiguration,migra-
tion, quality of service, and power adaptation of analysis tasks.

References
1. Proc. IEEE, special issue on video communications, processing, and

understanding for third-generation surveillance systems,C.S.Regaz-
zoni,V. Ramesh, and G.L. Foresti, eds., Oct. 2001.

2. G.L. Foresti et al., “Active Video-Based Surveillance System:The
Low-Level Image and Video Processing Techniques Needed for
Implementation,” IEEE Signal Processing, Mar. 2005, pp. 25-37.

3. L.F. Marcenaro et al.,“Distributed Architectures and Logical-Task
Decomposition in Multimedia Systems,” Proc. IEEE, Oct. 2001, pp.
1419-1440.

4. W. Caarls, P.P. Jonker, and H. Corporaal,“SmartCam: Devices for
Embedded Intelligent Cameras,” Proc. 3rd Progress Workshop on
Embedded Systems, CD-ROM, STW, 2002.

5. N. Matsushita et al.,“ID CAM: A Smart Camera for Scene Cap-
turing and ID Recognition,” Proc. 2nd IEEE and ACM Int’l Symp.
Mixed and Augmented Reality,ACM Press, 2003, pp. 227-236.

6. V. Kastrinaki, M. Zervakis, and K. Kalaitzakis, “A Survey of Video
Processing Techniques for Traffic Surveillance,” Image and Vision
Computing, vol. 21, no. 4, 2003, pp. 359-381.

7. W. Wolf, B. Ozer, and T. Lv, “Smart Cameras as Embedded Sys-
tems,” Computer, Sept. 2002, pp. 48-53.

From Analog to Digital Smart Cameras

70 Computer

Hardware architecture
Figure 1 depicts the smart camera’s three main parts:

the sensing unit, processing unit, and communication
unit.

A highly dynamic, monochrome complementary
metal-oxide semiconductor (CMOS) image sensor is the
sensing unit’s heart. The sensing unit delivers images
with VGA resolution at up to 30 frames per second,
transferring the captured images via a first-in, first-out
(FIFO) memory to the processing unit.

The processing unit consists of DSPs, which offer a
good compromise between performance, power con-
sumption, and flexibility. Up to 10 Texas Instruments
TMS320C64x DSPs can deliver an aggregate perfor-
mance of up to 80 GIPS while keeping the power con-
sumption low. By using an adequate number of DSPs,
we adapt this scalable architecture’s computing perfor-
mance to the requirements of the real-time video analy-
sis and compression tasks targeted for the smart camera.

A local peripheral component interconnect (PCI) bus
couples the DSPs and connects them to the network
processor (Intel XScale IXP425). The network proces-
sor establishes the connection between the processing
and communication units and controls internal and
external communication. We chose the XScale proces-
sor because of its communication capabilities, low
power consumption, and integration of various inter-
faces. Internal communication between the DSPs or
between the DSPs and the network processor occurs
through the PCI bus.

The communication unit currently supports two inter-
faces for IP-based external communication: wired
Ethernet and wireless Global System for Mobile Com-
munications/general packet radio service (GSM/GPRS).

Software architecture
We designed the smart camera’s software architecture

for flexibility and reconfigurability. It consists of several
layers, which we group into two frameworks:

• the DSP framework, running on every DSP in the
system, and

• the SmartCam framework, running on the network
processor.

We based the architecture on the abstraction that the
application logic runs on the network processor and
loads and unloads the actual analysis algorithms onto
the DSPs as needed. Figure 2 is an overview of our smart
camera’s software architecture.

DSP framework. The DSP framework’s main pur-
poses are to

• provide an abstraction of the hardware and com-
munication channels,

• support dynamic loading and unloading of applica-
tion tasks, and

• manage the DSP’s on-chip and off-chip resources.

Of course, only the DSP connected to the image sen-

Iri
s

In
te

rf
ac

e

Complementary
metal-oxide

semiconductor
(CMOS)
sensor

Sensing

Digital
signal

processor
(DSP)

Digital
signal

processor
(DSP)

Processing

Memory

Memory

…

Network
processor

Interfaces

Ethernet
Wireless
local area
network

Serial

General
packet

radio service
(GPRS)

(Infrared-)
Flash

PTZ/dome
interface

Communication

Peripheral component
interconnect

(PCI)

Figure 1. Scalable smart camera hardware architecture.The hardware architecture consists of three main parts: (a) sensing unit,
(b) processing unit, and (c) communication unit.

(a)

(b) (c)

sor needs the sensor interface module. Algorithms on
different DSPs use the service-management facilities to
dynamically establish connections to each other. This is
important because the dynamic loader module can load
and unload all algorithms at runtime. Actually, only the
shaded modules on the left in the DSP framework in
Figure 2 must be available at startup. The system can
dynamically load all other components at runtime. We
built the DSP framework on Texas Instruments’
DSP/BIOS operating system.

SmartCam framework. The SmartCam framework,
illustrated in Figure 2, serves two main purposes:

• It provides an abstraction of the DSPs to ensure the
application layer’s platform independence.

• The application layer uses the provided communi-
cation methods—that is, internal messaging to the
DSPs and external IP-based communication—to
exchange information or offer data-relay services for
DSP algorithms.

Modules of this part of the software architecture sup-
port application development by providing high-level
interfaces to DSP algorithms and the DSP framework’s
functions.

The XScale processor runs standard Linux, easing
application development and providing many modules

for seamless internal and external communication on our
smart camera. The only customization of the Linux ker-
nel is the DSP kernel module, which the processor uses
to establish the connection to the DSPs via the PCI bus.

Distributed system architecture
Developers can use our embedded smart cameras to

implement a distributed intelligent video-surveillance
(IVS) system consisting of dozens of cameras.

To design a scalable distributed architecture, we par-
tition an IVS into distributed logical groups of typically
collocated smart cameras, or surveillance clusters. It isn’t
necessary to assign most traffic-surveillance tasks—such
as accident detection, vehicle classification, and com-
putation of traffic statistics—to a specific camera. Our
IVS architecture only requires an assignment to a specific
cluster. The IVS then dynamically and autonomously
maps surveillance tasks onto individual cameras depend-
ing on the cameras’ available resources and the system’s
current state.

We implement this dynamic reconfiguration of tasks
onto cameras using a mobile agent system (MAS) built
atop the SmartCam framework. In our MAS, agents rep-
resent surveillance tasks that can migrate dynamically
between the cluster’s cameras. Significant changes in the
observed environment or in the available resources trig-
ger a task migration. A dedicated agent in our MAS uses

February 2006 71

…
Surveillance

task 1

(such as MPEG-4
encoding)

Surveillance
task 2

(such as stationary
vehicle detection)

Surveillance
task n

(such as vehicle
tracking)

DSP algorithms

Service
manager

PCI
messaging

Dynamic
loader

CMOS
sensor

interface

Optional drivers

such as Global
System for Mobile
Communications

(GSM)/GPRS

DSP/BIOS
real-time operating system

DSP

PCI bus

Resource
manager

DSP framework

…
Real-time
protocol
(RTP)

video framing

DSP application
control

load/unload
algorithms

DSP
resource
monitor

User mode (application layer)

DSP frameworkSmartCam framework Processor boundary

Other
standard

Linux
applications

SmartCam framework middleware layer

Messaging

internal/external

DSP
management

Linux kernel

Network processor

Kernel mode

DSP kernel module

PCI messaging and synchronization

Softw
are architecture

Hardw
are

Figure 2. Smart camera software architecture.The overall architecture consists of the SmartCam framework (left) and the DSP
framework (right).

72 Computer

IXP425 XScale network processor run-
ning at 533 MHz, with 256 Mbytes of
external memory and four PCI slots. The
IXP425 provides on-chip support for
Ethernet access, multiple serial ports,
and, most importantly, an on-chip PCI
host controller.

We use Ateme’s network video devel-
opment kits (NVDK) as the DSP plat-
form. These PCI boards, which are
plugged into the baseboard, consist of
Texas Instruments TMS320C6416 DSPs
running at 600 MHz. Each NVDK
board contains 264 Mbytes of memory
accessible via two different DSP exter-
nal memory interfaces.

Eastman Kodak’s monochrome sensor
LM-9618 captures the images in our
SmartCam prototype. The sensor provides
a high-dynamic range of up to 110 deci-
bels at VGA resolution. FIFO memory
connects the sensor to one of the DSPs.

System software
Linux (Kernel 2.6.8.1) operates the network proces-

sor, allowing access to a broad variety of open source
software modules. The SmartCam framework, which
executes atop Linux, ensures interoperability with the
DSPs. Java also runs atop Linux, supporting platform-
wide applications.

The DSP/BIOS real-time operating system operates
the DSPs. The DSP framework runs atop this RTOS and
serves as the SmartCam framework’s counterpart on the
network processor.

Distributed software
We use mobile agents to support the development of

our distributed surveillance system, consisting of loosely
coupled smart cameras. Mobile agents are most suitable
for this distributed application because we can encap-
sulate each surveillance task within a mobile agent,
which can then migrate between cameras. An MAS sup-
ports autonomous operation of the surveillance tasks.
Moreover, this approach is highly scalable and flexible.

In a typical MAS, individual agents migrate between
hosts, which execute the surveillance tasks. We’ve thus
extended the mobile agent to keep a DSP binary that
can be downloaded from the SmartCam’s network
processor to one of the DSPs.

The DSP agents have three parts:

• a module that manages the agent’s integration into
its environment,

• a DSP binary representing the agent’s functionality,
and

• an optional set of intermediate data.

a complex cost function to compute the optimal assign-
ment of tasks to cameras.3

QoS is a major concern in a distributed IVS. In video-
based surveillance, typical QoS parameters include frame
rate, transfer delay, image resolution, and video-com-
pression rate.4 The surveillance tasks might also offer sev-
eral QoS levels. Furthermore, the provided QoS levels can
change over time due to user interactions or changes in the
monitored environment. Thus, novel IVS systems must
include dedicated QoS management mechanisms.

Power awareness is another important design aspect
in distributed IVS systems because they must deliver
high-level QoS while using embedded devices that are
partly solar or battery powered. Our smart camera sup-
ports combined power and QoS management (PoQoS)5

for distributed IVS systems. PoQoS dynamically con-
figures the power and QoS level of the camera’s hard-
ware and software to adapt to user requests and changes
in the environment.

SMARTCAM PROTOTYPE
We’ve developed a prototype SmartCam using COTS

hardware components to test and evaluate our video-
surveillance system. The prototype shown in Figure 3
demonstrates our approach’s feasibility. It provides the
required computing and communication performance,
but not the desired form factor and reliability for real-
world use in harsh environments.

A single SmartCam consists of a network processor,
several DSPs, and a CMOS image sensor.

Hardware platform
Intel’s IXDP425 development board serves as the cam-

era platform. The baseboard is equipped with an Intel

Ethernet

Intel
baseboard

LM-9618 sensor

GSM/GPRS module

Network video
development kit

Figure 3. SmartCam prototype.This COTS-based prototype consists of a
baseboard equipped with an IXP425 XScale network processor, two
TMS320C6416 PCI boards, a CMOS image sensor, and a GSM/GPRS module.

DSP agents further comprise a set of DSP resource
requirements. The task allocation mechanism requires
these parameters to autonomously allocate surveillance
tasks to smart cameras.

SmartCam agents perform status information and
communication tasks. They are executed on the network
processor and can access the DSPs, but they don’t
include resource requirements or DSP binaries.

We’ve implemented additional agents that provide sys-
tem functionality, such as in the task-allocation system.
The system exploits mobile SmartCam agents to deter-
mine in a distributed manner how to optimally allocate
surveillance tasks to the cluster’s SmartCams.3

EXPERIMENTAL RESULTS
We used two identical SmartCam prototypes for eval-

uation and integrated up to three additional PCs
(Pentium III running under Linux at 1 GHz) into our
experimental setup to evaluate larger SmartCam net-
works. This integration was rather easy because the
complete SmartCam framework and the MAS could
execute on the PC without any modification.

We used diet agents(http://diet-agents.sourceforge.net)
running under Java as the MAS and applied the JamVM
Java virtual machine on the smart camera prototype.

In our first experiments, we compared the SmartCam
prototype’s Java performance with that of a standard
PC. The results showed that the interpreter-based
JamVM is about 20 times slower than the Sun Java run-
time environment (JRE) 1.4.2 (exploiting a just-in-time
compiler) on the PCs. Note that the native computing
performance between a Pentium III PC and the
SmartCam (XScale) differs only by a factor of two.

Table 1 lists the most important hardware and software
parameters of a SmartCam equipped with two DSPs.
Because the SmartCam prototype uses COTS components,
the amount of memory and, consequently, the power dis-
sipation, are higher than the design would require.

To evaluate and demonstrate the SmartCam hardware,
software, and distributed system architecture, we imple-
mented a multicamera, object-tracking application.

In our tracking approach, the multicamera system
instantiates only a single tracker task. This tracker (agent)
follows the tracked object, migrating to the SmartCam
that should next observe the object. We based the track-
ing agent on a Kanade-Lucas-Tomasi feature tracker.6

The tracker’s main advantage is its short initialization
time, which makes it applicable for multicamera object
tracking by mobile agents. Tracking agents control the
handover process, using predefined migration regions in
the observed scenes. When the tracked object enters a
migration region, the tracker initiates handover to the
next SmartCam.

We assign each migration region to one or more pos-
sible next SmartCams. Motion vectors help distinguish
among several SmartCams assigned to the same migra-

tion region. We also use these motion vectors to check
whether the object moves in the correct direction. The
migration regions and the motion vectors represent the
spatial relationship among the cameras. In many traf-
fic-surveillance scenarios, this spatial relationship is
rather simple, with only a single succeeding camera.

The colored polygons in Figure 4 represent migration
regions. We use a master-slave approach for the tracked
object handover. The master tracker identifies the object
in its field of view and tracks its positions (top left image
in Figure 4). As soon as the object enters a migration
region, the master tracker creates slave trackers on every
smart camera assigned to that migration region (center
images in Figure 4). The master tracker initializes these
slave trackers with the object’s identified features. When
the slave tracker identifies the tracked object in its field
of view, it terminates the master tracker and other slave
trackers, and becomes the master tracker.

Our experiments show that a tracking agent’s migra-
tion between SmartCams takes up to 1 second. The
migration time is an important parameter for multi-
camera tracking, limiting both maximum vehicle speed
and minimum camera distance.

The overall migration time also includes the task-allo-
cation system’s setup time—approximately 190 mil-
liseconds. Invoking task allocation provides the resources
for the tracking agent on the SmartCam. Although the
migration times are rather long—basically caused by the
SmartCam Java implementation—the master-slave archi-
tecture significantly reduces the influence of migration
times and network bandwidth on the handover proce-
dure between smart cameras. However, the master-slave
approach increases resource utilization because two or
more trackers are active at the same time.

Because tracking agents don’t reside on the same smart
camera for long, the task-allocation system manages
them as temporary agents. Therefore, the task-alloca-
tion system doesn’t try to reconfigure the surveillance
cluster but reduces the agents’ QoS level on the smart
camera, which is a fast way to free resources.

February 2006 73

Table 1. Smart camera prototype’s key features.

Parameter Value

Hardware-related
Processing power 9,600 MIPS
Onboard memory 784 Mbytes
Internal data transfer rate 100 Mbps
Estimated power dissipation 35 watts
Software-related
Basic Linux footprint 2.5 Mbytes
Complete Linux system (including Java 20 Mbytes
and the multiagent system)
Static DSP framework footprint 494 Kbytes

74 Computer

D eveloping the SmartCam prototype has given us
insight that might also be applicable to other distrib-
uted embedded systems. Our experiences show that

the keys to successful deployment of smart cameras are

• the integration of sensing, computing, and commu-
nication in a small, power-aware embedded device;

• the availability of high-level image/video processing
algorithms or libraries for the embedded target
processors (the DSPs);

• a lightweight software framework supporting glue-
less intra- and intercamera communication; and

• the availability of various system-level services such

as task mapping and QoS adaptation to allow
autonomous and dynamic operation of the overall
multicamera system.

Embedded smart cameras could potentially be de-
ployed in applications such as smart environments, intel-
ligent infrastructures, and pervasive computing. Aug-
menting the smart cameras with additional sensors
could transform them into a high-performance multi-
sensor system. By combining visual, acoustic, tactile, or
location-based information, the smart cameras become
more sensitive and can deliver more accurate results,
making them even more widely applicable. ■

Cam 1 Cam 2

Cam 1 Cam 2

Ti
m

e

Tracking at Cam 1

Vehicle enters
migration region

Slave is created on
Cam 2

Vehicle is identified at
Cam 2

Master at Cam 1
is terminated

Figure 4.Tracking a vehicle between succeeding smart cameras in a tunnel.The tracked vehicle’s handover at two adjacent
cameras (Cams 1 and 2) is based on a migration region (red areas). When the vehicle enters this region at Cam 1, the master
tracker initiates a slave tracker at Cam 2. When the slave tracker identifies the vehicle, it terminates the master tracker and
becomes the new master tracker.

Acknowledgments
We performed this work at the Institute for Technical

Informatics, Graz University of Technology. We acknowl-
edge the support received from Texas Instruments.

References
1. W. Wolf, B. Ozer, and T. Lv, “Smart Cameras as Embedded

Systems,” Computer, Sept. 2002, pp. 48-53.
2. G.L. Foresti, C. Mahonen, and C.S. Regazzoni, Multimedia

Video-Based Surveillance Systems, Kluwer Academic Pub-
lishers, 2000.

3. M. Bramberger, B. Rinner, and H. Schwabach, “A Method for
Dynamic Allocation of Tasks in Clusters of Embedded Smart
Cameras,” Proc. Int’l Conf. Systems, Man and Cybernetics,
IEEE Press, 2005, pp. 2595-2600.

4. R. Steinmetz and K. Nahrstedt, Multimedia Systems, Springer,
2004.

5. A. Maier, B. Rinner, and H. Schwabach, “A Hierarchical
Approach for Energy-Aware Distributed Embedded Intelli-
gent Video Surveillance,” Proc. IEEE/IFIP Int’l Workshop
Parallel and Distributed Embedded Systems, IEEE Press,
2005, pp. 12-16.

6. J. Shi and C. Tomasi, “Good Features to Track,” Proc. IEEE
Int’l Conf. Computer Vision and Pattern Recognition, IEEE
Press, 1994, pp. 593-600.

Michael Bramberger is a consultant for infotainment sys-
tems in the automotive industry. His research interests focus
on distributed dynamic task allocation in embedded multi-
processor systems. Bramberger received a PhD in telemat-
ics from Graz University of Technology. He is a member of
the IEEE. Contact him at bramberger@iti.tugraz.at.

Andreas Doblander is a PhD candidate at the Institute for
Technical Informatics at Graz University of Technology.
His research interests include middleware for smart embed-
ded DSP systems, software fault tolerance, and model-based
software development for embedded systems. Doblander
received an MS in electrical engineering from Graz Uni-
versity of Technology. Contact him at doblander@iti.
tugraz.at.

Arnold Maier is a PhD candidate at the Institute for Tech-
nical Informatics at the Graz University of Technology. His
research focuses on dynamic power-aware reconfiguration
methods for distributed embedded smart systems. Maier
received an MSc in telematics from Graz University of Tech-
nology. He is a student member of the IEEE. Contact him
at maier@iti.tugraz.at.

Bernhard Rinner is an associate professor in the Depart-
ment of Electrical Engineering and Information Technol-
ogy at Graz University of Technology. His research interests
include parallel and distributed processing, embedded sys-
tems, and mobile and pervasive computing. Rinner received
a PhD in telematics from Graz University of Technology.
He is member of the IEEE, the AAAI, and Telematik
Ingenieurverband, Austria. Contact him at b.rinner@
computer.org.

Helmut Schwabach works on business development for
embedded vision systems in the Austrian Research Centers,
Seibersdorf. His research interests include innovations in
embedded vision systems for surveillance and intelligent
traffic applications. Contact him at helmut.schwabach@
arcs.ac.at.

February 2006 75

Get access
to individual IEEE Computer Society documents online.

More than 100,000 articles and conference papers available!

$9US per article for members

$19US for nonmembers

www.computer.org/publications/dlib

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile ()
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

