
Increasing Service Availability in Intelligent Video Surveillance Systems by Fault
Detection and Dynamic Reconfiguration

A. Doblander, A. Maier, B. Rinner
{doblander, maier, rinner}@iti.tugraz.at

Institute for Technical Informatics
Graz University of Technology

Graz, AUSTRIA

H. Schwabach
helmut.schwabach@arcs.ac.at

ARC seibersdorf research
Seibersdorf, AUSTRIA

Abstract – In this paper, we present an approach for
increasing service availability in intelligent video surveillance
systems (IVS). A typical IVS system consists of various
intelligent video sensors that combine image sensing with
video analysis and network streaming. System monitoring
and fault diagnosis followed by appropriate system
reconfiguration mitigate effects of faults and therefore
enhance the system’s fault tolerance. The applied monitoring
and diagnosis unit (MDU) allows the detection of both node-
and system-level faults. Lacking redundant hardware such
reconfigurations are established by graceful degradation of
the overall application. Multi-objective optimization is used
to compute a new degraded system configuration by trading
off quality of service (QoS), energy consumption, and service
availability. We demonstrate our approach by typical
scenarios in an IVS-system that necessitates reconfiguration.

Kurzfassung – In dieser Arbeit wird ein Ansatz zur
Verbesserung der Dienstverfügbarkeit in intelligenten
Videoüberwachungssystemen (IVS) präsentiert. Ein IVS-
System besteht typischerweise aus mehreren intelligenten
Videokameras die Szenen aufnehmen und diese Daten
analysieren und über ein Netzwerk versenden. Ein
Monitoring mit daran gekoppelter Fehlerdiagnose und
entsprechender Rekonfiguration verbessert die
Fehlertoleranz des gesamten Systems. Die verwendete
Monitoring und Diagnose Einheit (MDU) ermöglicht das
Erkennen von sowohl System- als auch Knoten-bezogener
Fehlfunktionen. Bei nicht redundanter Hardware wird die
Rekonfiguration durch angemessene Verringerung der
Gesamtqualität im System erreicht. Die Verringerung wird
im Detail durch optimierten Trade-off von Quality of Service
(QoS), Energieverbrauch und Dienstverfügbarkeit bestimmt.
Der Ansatz wird anhand eines typischen IVS-Szenarios das
Reconfiguration nötig macht näher verdeutlicht.

Keywords: Intelligent video surveillance; distributed
embedded real-time system; dynamic reconfiguration;
energy-awareness; quality-of-service adaptation; fault
tolerance, graceful degradation.

I. INTRODUCTION

A typical intelligent video surveillance (IVS) system
consists of various intelligent video sensors that combine
image sensing with video analysis and network streaming.
The design of these processing units allows to yield
various parameters of a captured scene and to compress a
live video-stream simultaneously. It is, therefore, a distrib-
uted system of collaborating intelligent cameras. Typically,
the system nodes (i.e. intelligent cameras) are implemented
as embedded multi-processor systems operating autono-

mously.
Typical video analysis algorithms are our target appli-

cation for traffic surveillance including motion detection,
MPEG-4 encoding, tracking of objects, detection of
stationary vehicles as well as the calculation of traffic
statistics (such as average speed, number of cars etc.).
Obviously, quality of service (QoS) is a major concern in
video surveillance. Thus, IVS systems typically contain
dedicated QoS-management mechanisms. Furthermore,
QoS is closely related to power consumption making
power-awareness an important design aspect as well. In
recent work [1] we therefore take advantage of QoS-
triggered dynamic power management.

Additionally, maintaining a high degree of service
availability is also an important design goal for autono-
mous operation of an embedded distributed system [2].
This work focuses on improving service availability in IVS
systems by enhancing its fault tolerance. System monitor-
ing and fault diagnosis followed by appropriate system
reconfiguration mitigate effects of faults. Lacking redun-
dant hardware such reconfigurations are established by
graceful degradation of the overall application. Multi-
objective optimization is used to compute a new (de-
graded) system configuration by trading off QoS, energy
consumption, and service availability.

II. RELATED WORK

Typical QoS-parameters in video surveillance are video
data quality and its distortions in network transmission
(jitter). Further parameters include quality metrics such as
image size, data rate or blockiness or the number of frames
per second (fps). However, parameters like the availability
of the service are also taken into account as QoS-aspect. In
case of low energy in parts of the system, the QoS gets
seriously affected and degraded. Thus, there is a close link
of these three parameters in IVS systems. In literature,
there is an emphasis on investigating the trade-off between
energy and QoS.

In [3] for instance, the authors investigate the trade-off
between image quality and power consumption in wireless
video surveillance networks. The work mainly focuses on
the evaluation of sophisticated image compression tech-
niques. However, existing implementations lack of
comprehensive handling of these three correlating parame-
ters.

Fault tolerance in embedded real-time systems is often
achieved by checkpointing mechanisms. In [4], an adaptive
checkpointing algorithm is proposed that also minimizes
energy consumption. That is, a schedule is derived that
includes the checkpointing task in a way that dynamic
voltage scaling is most effective. In our system, however,
we do not have the (non-volatile) memory capacity and the
computational resources for a checkpointing approach.

In general purpose distributed computing it is common
to use redundant hardware and employ load sharing
techniques to increase fault tolerance (see, e.g., [5]). Given
the tight cost constraints in the embedded market, how-
ever, we cannot afford hardware redundancy but depend
on graceful degradation.

Similarly to [6] we also distinguish between system-
level and application-level fault tolerance techniques. In
this work the component faults, i.e., processor or sensor
failures, are handled by system-level mechanisms.
Whereas, inconsistent observations of multiple cameras are
addressed by the application logic.

There are also several approaches for integrating fault
tolerance techniques into the middleware layer of distrib-
uted real-time and embedded systems. The goal is to shift
the trade-off between real-time execution and fault toler-
ance from design time to runtime to support the application
developer [7]. In this work we have not currently spent
much attention on that issue but we will focus on it in
future work.

Fig. 1. Hardware Architecture of a Smart Camera Node of a
Distributed IVS system.

III. SYSTEM DESCRIPTION

The considered video surveillance system is organized
as a number of distributed smart cameras [8]. Each node is
an embedded multi-processor platform equipped with a
CMOS image sensor for video acquisition. A network
processor (Intel XScale) and several DSPs (Texas Instru-
ments TMS320C64x) provide the necessary
communication capabilities and computing power for
video analysis algorithms. Currently, the prototype node
[9] is realized comprising two DSPs and one network
processor that serves as the managing unit and connects

the camera to an Ethernet network. All three processors are
connected by a PCI bus. A VGA image sensor is directly
connected to one DSP. Alternative network media such as
GSM/GPRS or WLAN are also possible. For an overview
of the node hardware architecture refer to Fig. 1.

Due to the heterogeneous processor hardware the soft-
ware architecture comprises two major parts. The network
processor hosts the so called SmartCam-Framework (SC-
FW) which is run on top of Linux. As a counterpart on the
DSPs the DSP-Framework (DSP-FW) is run on top of the
DSP/BIOS operating system. A block diagram of the
software architecture is depicted in Fig. 2.

Hardware - DSP

DSP/BIOS (TI)

Hardware & Communication Channel Abstraction

Dyn. App. Loader RF 5

App nApp 1

Hardware - XScale IXP425

Linux 2.6.x

SmartCam-Framework - Linux

D
S

P
 -

 F
ra

m
e

w
o

rk Agent System App 1 App n

L
in

u
x

Fig. 2. Software Architecture of the Prototype Node.

A key functionality in the software framework is the
support for task migration. The dynamic loader (DL)
provides dynamic linking for the DSPs and, therefore,
allows for software reconfiguration during runtime. Tasks
can be migrated to another DSP on the same node or to a
DSP on a remote node. Memory

Memory

Ethernet WLAN

Serial GPRS

Processing Communication

XScale
IXP425

InterfacesDSP
TMS320C6416

CMOS-Sensor

In
te

rf
a

ce

Video Interface

(Infrared -)
Flash

PTZ / Dome
Interface

PCI

Ir
is

.

.

.

DSP
TMS320C6416

To assure eligible migrations there is a resource man-
ager (RM) that keeps track of important system
resources—CPU load, memory usage and DMA channel
allocations for each processor, as well as PCI bus and
network utilization for the overall node. Using this infor-
mation it can be determined if there are sufficient
resources on the target host for a planned migration.

The actual applications on the smart camera are video
analysis and compression algorithms. Currently, four
algorithms are considered:

 Motion detection to detect motion, camera black-
outs and whiteouts.

 MPEG-4 encoder for video compression
 Stationary vehicle detection, which can also be

used for detecting lost cargo.
 Traffic statistics for computing average traffic

speed, driving lane utilization and more
 Vehicle Tracking (VT) e.g. to track hazardous-

cargo vehicles along tunnels.
Unfortunately, the above algorithms are very demand-

ing with respect to computing resources and so it is hardly
possible that all run simultaneously. However, not all
algorithms are equally important at all times. So it is
possible to reduce the quality-of-service (QoS) of less
important components to permit others to be run too.
Different quality levels are distinguished in terms of frame
rate and image size. Each algorithm has to support three
different QoS-levels Qi:

 Full quality (Q1)
 Reduced quality (Q2)
 Minimum quality (Q3)

Algorithms provide a dedicated interface for adjusting
QoS-level settings. A QoS-level switch can be initiated by
an algorithm itself or by the system software in reaction to
special events.

IV. MONITORING AND DIAGNOSIS

A key requirement for dynamically reacting to faults
and failures is to detect abnormal behavior and isolate
affected system components. It is important for the recon-
figuration process to know which resources are not
available after a fault has occurred. It is the responsibility
of a special monitoring and diagnosis unit (MDU) to
indicate faulty system behavior and present a diagnosis to
the configuration manager as seen in Fig. 3:

Fig. 3. Monitoring, Diagnosis and Reconfiguration.

The major concern of this work is on establishing eli-
gible system configurations in case of faults. Monitoring
and diagnosis techniques applied to yield necessary diag-
nostic information are, therefore, only briefly described.

The IVS system as described in Sec. III can be viewed
from two perspectives. First, the system view considers the
overall distributed application. That is, all nodes (hardware
and system software) including all algorithms running on
these nodes. Second, the node view considers only a single
node.

According to these two different views the monitoring
and diagnosis process comprises also a system-level part
and a node-level part. For local faults only the MDU of the
corresponding node is involved in the monitoring and
diagnosis procedure. Node-level faults that are currently
diagnosable are

• Crash-faults of DSPs
• Crash-fault of the CMOS-sensor
• Crash-faults of algorithms
• (memory leaks).
More interesting, however, are the system-level faults.

Detection of system-level problems involves multiple
nodes sharing monitoring information and exploiting
application specific knowledge. Faults of this category that
are currently diagnosable are

• Value-faults of instances of the stationary vehicle

detection algorithm
• Value-faults of instances of the traffic statistics

algorithm
To detect and diagnose such erroneous algorithm be-

havior a majority decision is employed by comparing
results of three neighboring nodes. Because in typical
traffic surveillance applications it can be expected that
cameras within a dedicated geographical area observe very
similar events. Assuming that all camera nodes are ar-
ranged in regular intervals alongside a freeway (or tunnel)
observations of neighboring cameras are equal but appear
at different times. The distributed diagnosis is performed
by a simple communication protocol based on [10] and
[11].

V. OPTIMIZATION AND TRADE-OFFS

It is the optimizer's task to compute a system configu-
ration by multi-objective optimization. By adding
"maximum availability" to "minimum energy consump-
tion" and "maximum QoS" we get a total of three different
optimization criteria. As these are conflicting criteria the
resulting system configuration will always be subject to a
trade-off.

In general, determining a configuration is a mapping of
intended functionality onto remaining system resources.
For setting a specific system configuration the optimizer
uses the framework's capabilities for dynamic software
reconfiguration as previously described.

Depending on the actual system’s requirements, the
goal of optimization may vary in between the three objec-
tives QoS, energy and availability. In a typical surveillance
scenario for instance, the system may execute in full
quality (Q1) with no respect to energy efficient execution
but to maximum service availability and proper function of
the overall-system. This quality level is usually used for
human supervision whenever detailed scene information is
required like in critical situations such as accidents.

In order to maximize energy savings, the quality level
may get degraded to Q2. This quality level still delivers
proper input for sufficient function of the traffic analysis
algorithms but in a more energy-aware way. Nevertheless,
if a system-level fault appears, the optimizer needs to force
a proper reconfiguration due to the sort of malfunction. In
case of an incorrect recognition of stationary vehicles the
algorithm in the corresponding node needs to be restarted.
In case of damage or not applicable resetting of a node due
to hardware errors, the quality may need to be degraded to
the minimum quality level Q3 to fulfill the optimization
goal of minimum availability.

VI. CASE STUDY

We demonstrate our approach by a typical IVS-setup.
It consists of seven smart cameras that execute various
tasks and are equipped along a one-way road in a tunnel as
depicted in Fig. 4:

In further work we intend to extend our approach to
include means for achieving bounded detection latency
and bounded recovery time. Especially for safety-critical
applications like traffic surveillance it is important to
guarantee well defined time bounds also for a distributed
implementation. We also intend to better integrate the fault
tolerance mechanism into our software framework (i.e.
middleware) to make them less dependent on a specific
application and support application development.

Fig.4. A Typical IVS-Setup along a Tunnel.
VIII. REFERENCES

The following scenario demonstrates the objective of
optimal QoS delivery. While all cameras perform in Q2
QoS-level, camera #3 detects a stationary vehicle. Fur-
thermore, the traffic statistic algorithms of the successive
(in direction of traffic) cameras #4 to #7 report a sudden
decrease of volume of traffic. These parameters indicate a
critical situation in the controlled area of camera #3 and
therefore force the MDU to generate an alert to the human
interface. The configuration manager then immediately
forces the corresponding device (camera #3) to increase its
QoS to full quality (Q1) in order to have optimal surveil-
lance conditions for the human interface. However,
cameras #4 to #7 can then reduce their quality level to
minimum quality (Q3) to save energy.

[1] A. Maier, B. Rinner, T. Trathnigg and H. Schwabach,
"Combined Management of Power-and Quality of Service in
Distributed Embedded Video Surveillance Systems", First
Int'l Workshop on Power-Aware Real-Time Computing,
September 2004, Pisa, Italy

[2] J. O. Kephart and D. M. Chess, "The Vision of Autonomic
Computing", IEEE Computer, vol. 36, nr. 1, January 2003,
pp. 41-50

[3] C.F. Chiasserini and E. Magli, "Energy Consumption and
Image Quality inWireless Video-Surveillance Networks", in
Proceedings of the 13th IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications, 2002.

[4] Y. Zhang and K. Chakrabarty, "Energy-Aware Adaptive
Checkpointing in Embedded Real-Time Systems", in
Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition (DATE'03), 2003

In the next scenario we focus on detecting a value-fault
caused by an instance of the stationary vehicle detection
algorithm. This results in a system-level fault detected by
the MDU that needs to be maintained by the configuration
manager. In this case, camera #5 reports a detected station-
ary vehicle, while all other cameras still report normal
motion. In particular, the traffic statistics behind camera #5
(i.e., of camera #6 to #7) indicate normal volume of traffic
in all surveillance areas.

[5] L. Lundberg, D. Häggander, K. Klonowska and C.
Svahnberg, "Recovery Schemes for High Availability and
High Performance Distributed Real-Time Computing", in
Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS'03), 2003

[6] J. Haines, V. Lakamraju, I. Koren and C. M. Krishna,
"Application-Level Fault Tolerance as a Comlement to
System-Level Fault Tolerance", Journal of Supercomputing
(Kluwer), vol. 16, 2000, pp. 53-68

However, the MDU recognizes this as possible incor-
rect configuration and forces the configuration manager to
reset and restart the SVD algorithm on camera #5. Never-
theless, the event generates a message to the human
interface to inform the supervisor.

[7] T. Bracewell and Priya Narasimhan, "A Middleware for
Dependable Distributed Real-Time Systems", in Proceedings
of the Joint Systems and Software Engineering Symposium,
2003.

Another scenario shows the behavior of the optimizing
unit in order to reduce the overall energy consumption. In
this case, the statistics manager reports a decreasing
volume of traffic over a longer period of time while still
executing all cameras in full quality level (Q1). The MDU
then forces the configuration manager to reduce the overall
quality level to minimum quality (Q3) and allows to
maximize energy savings.

[8] W. Wolf, B. Ozer and T. Lv, "Smart Cameras as Embedded
Systems", IEEE Computer, vol. 35, nr. 9, September 2002,
pp. 48-53

[9] M. Bramberger, J. Brunner, B. Rinner and H. Schwabach,
"Real-Time Video Analysis on an Embedded Smart Camera
for Traffic Suveillance", in Proceedings of the 10th IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS'04), 2004 VII. CONCLUSION

In this ongoing work we investigate a special method
for increasing service availability in intelligent video
surveillance (IVS) systems. Therefore, monitoring and
diagnosis capabilities are added to the system. In case of
faults a multi-objective optimization process is used to
determine a new degraded system configuration maintain-
ing as much functionality as possible. Mechanisms
developed in previous work are used for actual system
reconfiguration during runtime. In a practical example we
demonstrate the concept of the approach.

[10] J. G. Kuhl and S. M. Reddy, "Fault-Diagnosis in Fully
Distributed Systems", in Proceedings of the 11th IEEE
International Symposium on Fault-tolerant Computing
(FTCS-11), pp. 100-105, 1981

[11] A. Subbiah and D. M. Blough, "Distributed Diagnosis in
Dynamic Fault Environments", IEEE Trans. on Parallel and
Distributed Systems, vol. 15, nr. 5, May 2004, pp. 453-467

	I. INTRODUCTION
	II. RELATED WORK
	III. SYSTEM DESCRIPTION
	IV. MONITORING AND DIAGNOSIS
	V. OPTIMIZATION AND TRADE-OFFS
	VI. CASE STUDY
	VII. CONCLUSION
	VIII. REFERENCES

