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Abstract – In this paper, we present an approach for 
increasing service availability in intelligent video surveillance 
systems (IVS). A typical IVS system consists of various 
intelligent video sensors that combine image sensing with 
video analysis and network streaming. System monitoring 
and fault diagnosis followed by appropriate system 
reconfiguration mitigate effects of faults and therefore 
enhance the system’s fault tolerance. The applied monitoring 
and diagnosis unit (MDU) allows the detection of both node- 
and system-level faults. Lacking redundant hardware such 
reconfigurations are established by graceful degradation of 
the overall application. Multi-objective optimization is used 
to compute a new degraded system configuration by trading 
off quality of service (QoS), energy consumption, and service 
availability. We demonstrate our approach by typical 
scenarios in an IVS-system that necessitates reconfiguration. 
 

Kurzfassung – In dieser Arbeit wird ein Ansatz zur 
Verbesserung der Dienstverfügbarkeit in intelligenten 
Videoüberwachungssystemen (IVS) präsentiert. Ein IVS-
System besteht typischerweise aus mehreren intelligenten 
Videokameras die Szenen aufnehmen und diese Daten 
analysieren und über ein Netzwerk versenden. Ein 
Monitoring mit daran gekoppelter Fehlerdiagnose und 
entsprechender Rekonfiguration verbessert die 
Fehlertoleranz des gesamten Systems. Die verwendete 
Monitoring und Diagnose Einheit (MDU) ermöglicht das 
Erkennen von sowohl System- als auch Knoten-bezogener 
Fehlfunktionen. Bei nicht redundanter Hardware wird die 
Rekonfiguration durch angemessene Verringerung der 
Gesamtqualität im System erreicht. Die Verringerung wird 
im Detail durch optimierten Trade-off von Quality of Service 
(QoS), Energieverbrauch und Dienstverfügbarkeit bestimmt. 
Der Ansatz wird anhand eines typischen IVS-Szenarios das 
Reconfiguration nötig macht näher verdeutlicht. 
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I. INTRODUCTION 

A typical intelligent video surveillance (IVS) system 
consists of various intelligent video sensors that combine 
image sensing with video analysis and network streaming. 
The design of these processing units allows to yield 
various parameters of a captured scene and to compress a 
live video-stream simultaneously. It is, therefore, a distrib-
uted system of collaborating intelligent cameras. Typically, 
the system nodes (i.e. intelligent cameras) are implemented 
as embedded multi-processor systems operating autono-

mously. 
Typical video analysis algorithms are our target appli-

cation for traffic surveillance including motion detection, 
MPEG-4 encoding, tracking of objects, detection of 
stationary vehicles as well as the calculation of traffic 
statistics (such as average speed, number of cars etc.). 
Obviously, quality of service (QoS) is a major concern in 
video surveillance. Thus, IVS systems typically contain 
dedicated QoS-management mechanisms. Furthermore, 
QoS is closely related to power consumption making 
power-awareness an important design aspect as well. In 
recent work [1] we therefore take advantage of QoS-
triggered dynamic power management. 

Additionally, maintaining a high degree of service 
availability is also an important design goal for autono-
mous operation of an embedded distributed system [2]. 
This work focuses on improving service availability in IVS 
systems by enhancing its fault tolerance. System monitor-
ing and fault diagnosis followed by appropriate system 
reconfiguration mitigate effects of faults. Lacking redun-
dant hardware such reconfigurations are established by 
graceful degradation of the overall application. Multi-
objective optimization is used to compute a new (de-
graded) system configuration by trading off QoS, energy 
consumption, and service availability. 

II. RELATED WORK 

Typical QoS-parameters in video surveillance are video 
data quality and its distortions in network transmission 
(jitter). Further parameters include quality metrics such as 
image size, data rate or blockiness or the number of frames 
per second (fps). However, parameters like the availability 
of the service are also taken into account as QoS-aspect. In 
case of low energy in parts of the system, the QoS gets 
seriously affected and degraded. Thus, there is a close link 
of these three parameters in IVS systems. In literature, 
there is an emphasis on investigating the trade-off between 
energy and QoS. 

In [3] for instance, the authors investigate the trade-off 
between image quality and power consumption in wireless 
video surveillance networks. The work mainly focuses on 
the evaluation of sophisticated image compression tech-
niques. However, existing implementations lack of 
comprehensive handling of these three correlating parame-
ters. 



Fault tolerance in embedded real-time systems is often 
achieved by checkpointing mechanisms. In [4], an adaptive 
checkpointing algorithm is proposed that also minimizes 
energy consumption. That is, a schedule is derived that 
includes the checkpointing task in a way that dynamic 
voltage scaling is most effective. In our system, however, 
we do not have the (non-volatile) memory capacity and the 
computational resources for a checkpointing approach. 

In general purpose distributed computing it is common 
to use redundant hardware and employ load sharing 
techniques to increase fault tolerance (see, e.g., [5]). Given 
the tight cost constraints in the embedded market, how-
ever, we cannot afford hardware redundancy but depend 
on graceful degradation. 

Similarly to [6] we also distinguish between system-
level and application-level fault tolerance techniques. In 
this work the component faults, i.e., processor or sensor 
failures, are handled by system-level mechanisms. 
Whereas, inconsistent observations of multiple cameras are 
addressed by the application logic. 

There are also several approaches for integrating fault 
tolerance techniques into the middleware layer of distrib-
uted real-time and embedded systems. The goal is to shift 
the trade-off between real-time execution and fault toler-
ance from design time to runtime to support the application 
developer [7]. In this work we have not currently spent 
much attention on that issue but we will focus on it in 
future work. 

 

Fig. 1. Hardware Architecture of a Smart Camera Node of a 
Distributed IVS system. 

III. SYSTEM DESCRIPTION 

The considered video surveillance system is organized 
as a number of distributed smart cameras [8]. Each node is 
an embedded multi-processor platform equipped with a 
CMOS image sensor for video acquisition. A network 
processor (Intel XScale) and several DSPs (Texas Instru-
ments TMS320C64x) provide the necessary 
communication capabilities and computing power for 
video analysis algorithms. Currently, the prototype node 
[9] is realized comprising two DSPs and one network 
processor that serves as the managing unit and connects 

the camera to an Ethernet network. All three processors are 
connected by a PCI bus. A VGA image sensor is directly 
connected to one DSP. Alternative network media such as 
GSM/GPRS or WLAN are also possible. For an overview 
of the node hardware architecture refer to Fig. 1. 

Due to the heterogeneous processor hardware the soft-
ware architecture comprises two major parts. The network 
processor hosts the so called SmartCam-Framework (SC-
FW) which is run on top of Linux. As a counterpart on the 
DSPs the DSP-Framework (DSP-FW) is run on top of the 
DSP/BIOS operating system. A block diagram of the 
software architecture is depicted in Fig. 2. 

 

Hardware - DSP

DSP/BIOS (TI)

Hardware & Communication Channel Abstraction

Dyn. App. Loader RF 5

App nApp 1

Hardware - XScale IXP425

Linux 2.6.x

SmartCam-Framework - Linux

D
S

P
 -

 F
ra

m
e

w
o

rk Agent System App 1 App n

L
in

u
x

 
Fig. 2. Software Architecture of the Prototype Node. 

A key functionality in the software framework is the 
support for task migration. The dynamic loader (DL) 
provides dynamic linking for the DSPs and, therefore, 
allows for software reconfiguration during runtime. Tasks 
can be migrated to another DSP on the same node or to a 
DSP on a remote node. Memory
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To assure eligible migrations there is a resource man-
ager (RM) that keeps track of important system 
resources—CPU load, memory usage and DMA channel 
allocations for each processor, as well as PCI bus and 
network utilization for the overall node. Using this infor-
mation it can be determined if there are sufficient 
resources on the target host for a planned migration. 

The actual applications on the smart camera are video 
analysis and compression algorithms. Currently, four 
algorithms are considered: 

 Motion detection to detect motion, camera black-
outs and whiteouts. 

 MPEG-4 encoder for video compression 
 Stationary vehicle detection, which can also be 

used for detecting lost cargo. 
 Traffic statistics for computing average traffic 

speed, driving lane utilization and more 
 Vehicle Tracking (VT) e.g. to track hazardous-

cargo vehicles along tunnels. 
Unfortunately, the above algorithms are very demand-

ing with respect to computing resources and so it is hardly 
possible that all run simultaneously. However, not all 
algorithms are equally important at all times. So it is 
possible to reduce the quality-of-service (QoS) of less 
important components to permit others to be run too. 
Different quality levels are distinguished in terms of frame 
rate and image size. Each algorithm has to support three 
different QoS-levels Qi: 



 Full quality (Q1) 
 Reduced quality (Q2) 
 Minimum quality (Q3) 

Algorithms provide a dedicated interface for adjusting 
QoS-level settings. A QoS-level switch can be initiated by 
an algorithm itself or by the system software in reaction to 
special events. 

IV. MONITORING AND DIAGNOSIS 

A key requirement for dynamically reacting to faults 
and failures is to detect abnormal behavior and isolate 
affected system components. It is important for the recon-
figuration process to know which resources are not 
available after a fault has occurred. It is the responsibility 
of a special monitoring and diagnosis unit (MDU) to 
indicate faulty system behavior and present a diagnosis to 
the configuration manager as seen in Fig. 3: 

 

Fig. 3. Monitoring, Diagnosis and Reconfiguration. 

The major concern of this work is on establishing eli-
gible system configurations in case of faults. Monitoring 
and diagnosis techniques applied to yield necessary diag-
nostic information are, therefore, only briefly described. 

The IVS system as described in Sec. III can be viewed 
from two perspectives. First, the system view considers the 
overall distributed application. That is, all nodes (hardware 
and system software) including all algorithms running on 
these nodes. Second, the node view considers only a single 
node. 

According to these two different views the monitoring 
and diagnosis process comprises also a system-level part 
and a node-level part. For local faults only the MDU of the 
corresponding node is involved in the monitoring and 
diagnosis procedure. Node-level faults that are currently 
diagnosable are 

• Crash-faults of DSPs 
• Crash-fault of the CMOS-sensor 
• Crash-faults of algorithms 
• (memory leaks). 
More interesting, however, are the system-level faults. 

Detection of system-level problems involves multiple 
nodes sharing monitoring information and exploiting 
application specific knowledge. Faults of this category that 
are currently diagnosable are 

• Value-faults of instances of the stationary vehicle 

detection algorithm 
• Value-faults of instances of the traffic statistics 

algorithm 
To detect and diagnose such erroneous algorithm be-

havior a majority decision is employed by comparing 
results of three neighboring nodes. Because in typical 
traffic surveillance applications it can be expected that 
cameras within a dedicated geographical area observe very 
similar events. Assuming that all camera nodes are ar-
ranged in regular intervals alongside a freeway (or tunnel) 
observations of neighboring cameras are equal but appear 
at different times. The distributed diagnosis is performed 
by a simple communication protocol based on [10] and 
[11]. 

V. OPTIMIZATION AND TRADE-OFFS 

It is the optimizer's task to compute a system configu-
ration by multi-objective optimization. By adding 
"maximum availability" to "minimum energy consump-
tion" and "maximum QoS" we get a total of three different 
optimization criteria. As these are conflicting criteria the 
resulting system configuration will always be subject to a 
trade-off.  

In general, determining a configuration is a mapping of 
intended functionality onto remaining system resources. 
For setting a specific system configuration the optimizer 
uses the framework's capabilities for dynamic software 
reconfiguration as previously described. 

Depending on the actual system’s requirements, the 
goal of optimization may vary in between the three objec-
tives QoS, energy and availability. In a typical surveillance 
scenario for instance, the system may execute in full 
quality (Q1) with no respect to energy efficient execution 
but to maximum service availability and proper function of 
the overall-system. This quality level is usually used for 
human supervision whenever detailed scene information is 
required like in critical situations such as accidents.  

In order to maximize energy savings, the quality level 
may get degraded to Q2. This quality level still delivers 
proper input for sufficient function of the traffic analysis 
algorithms but in a more energy-aware way. Nevertheless, 
if a system-level fault appears, the optimizer needs to force 
a proper reconfiguration due to the sort of malfunction. In 
case of an incorrect recognition of stationary vehicles the 
algorithm in the corresponding node needs to be restarted. 
In case of damage or not applicable resetting of a node due 
to hardware errors, the quality may need to be degraded to 
the minimum quality level Q3 to fulfill the optimization 
goal of minimum availability.  

VI. CASE STUDY 

We demonstrate our approach by a typical IVS-setup. 
It consists of seven smart cameras that execute various 
tasks and are equipped along a one-way road in a tunnel as 
depicted in Fig. 4:  



In further work we intend to extend our approach to 
include means for achieving bounded detection latency 
and bounded recovery time. Especially for safety-critical 
applications like traffic surveillance it is important to 
guarantee well defined time bounds also for a distributed 
implementation. We also intend to better integrate the fault 
tolerance mechanism into our software framework (i.e. 
middleware) to make them less dependent on a specific 
application and support application development. 

Fig.4. A Typical IVS-Setup along a Tunnel. 
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