
Real-Time Video Analysis on an Embedded Smart Camera
for Traffic Surveillance

Michael Bramberger, Josef Brunner, Bernhard Rinner
Institute for Technical Informatics

Graz University of Technology, AUSTRIA
{bramberger, brunner, rinner}@iti.tugraz.at

Helmut Schwabach
Video & Safety Technology

ARC seibersdorf research, AUSTRIA
helmut.schwabach@arcs.ac.at

Abstract

A smart camera combines video sensing, high-level vid-
eo processing and communication within a single embedded
device. Such cameras are key components in novel surveil-
lance systems.

This paper reports on a prototyping development of a
smart camera for traffic surveillance. We present its scal-
able architecture comprised of a CMOS sensor, digital sig-
nal processors (DSP), and a network processor. We further
discuss the mapping of high-level video processing algo-
rithms to embedded DSP-based platforms and identify typ-
ical pitfalls for the porting of software from desktops to
embedded platforms. Our mapping strategies are demon-
strated on an algorithm for automatic detection of station-
ary vehicles. This algorithm is migrated from a Matlab-
based prototyping implementation to an embedded DSP im-
plementation in our smart camera.

Our implemented smart camera prototype streams the
video data over an IP-network to a central monitoring sta-
tion and is able to detect stationary vehicles and blocking
cargo on highways within the required real-time constraints
of six seconds.

Keywords: smart camera; traffic surveillance; embedded
system digital signal processor; stationary vehicle detec-
tion;

1. Introduction

Surveillance systems nowadays undergo a dramatic shift.
Traditional surveillance systems of the 1st and 2nd gener-
ation employed essentially analog CCTV cameras to cap-
ture the monitored scenes. The captured data was then trans-
ferred to digital backend systems where some computation
or storage took place. Current semiconductor technologies
enable systems to leap forward to 3rd generation surveil-
lance systems where the AD conversion and even highly

sophisticated computation such as video compression take
place in the video sensors (cp. Figure 1) [11]. Smart cam-
eras [15] even extend the functionality of 3rd generation
video sensor by providing on-board high-level video pro-
cessing. Thus, novel surveillance systems are moving to-
wards distributed, decentralized systems, which feature ex-
tended functionality, improved error-resistance as well as
improved utilization of the provided infrastructure.

Clearly, traffic surveillance – especially highway surveil-
lance – benefits greatly from this evolution. For exam-
ple, the on-site and online computation of traffic parame-
ters such as average speed or lane occupancy will improve
the capabilities of traffic management systems; the auto-
matic detection of dangerous situations such as accidents
or wrong-way drivers will dramatically improve traffic se-
curity. 3rd generation surveillance systems, however, intro-
duce additional (real-time) constraints to the components of
the surveillance system. Especially, the smart camera must
perform its high-level tasks within tight timing constraints
and with limited resources for computation, memory and
power.

This paper reports on the prototype development of a
smart camera for traffic surveillance. The smart camera (i)
captures a video stream using a sophisticated CMOS image
sensor, (ii) performs high-level video analysis, e.g., aver-
age speed and stationary vehicle detection, (iii) compresses
the video stream using MPEG-4, and (iv) transfers the com-
pressed data via an IP-based network to a base station [2].
This smart camera is therefore a key component of novel
surveillance systems.

The main contributions of this work include (i) the real-
time implementation of customized high-level video algo-
rithms on embedded platforms, (ii) the development of a
flexible and scalable smart camera architecture, and (iii) the
real-time demonstration of the automatic detection of sta-
tionary vehicles and blocking cargo on highways using our
smart camera.

The migration of high-level video processing from gen-
eral-purpose systems to embedded systems also asks for

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE

Figure 1. The evolution of surveillance systems from 1st to 3rd generation. In 3rd generation sys-
tems AD conversion and high-level computing such as video compression is performed in the video
sensors.

different software development methods. Although the em-
bedded platforms provide sufficient computing perfor-
mance, efficiently developing and porting efficient software
for these platforms is a difficult and tedious task. High-level
video algorithms have been mostly prototyped and devel-
oped on general-purpose computers using languages such
as Matlab or C++. However, a direct mapping of these al-
gorithms to the embedded platform does not yield the re-
quired performance in most cases because the compiler
and code generation tools are not able to exploit the hard-
ware features of the embedded platform [8]. The use of
optimized image libraries for the embedded platform con-
siderably increases the performance. However, due to the
complexity of the high-level algorithms the required per-
formance may even not be met by using the (low-level)
image libraries only. In these cases a mapping of the algo-
rithm is required.

We identify typical pitfalls for the porting of software
from desktop platforms to embedded architectures based
on digital signal processors (DSP), e.g., excessive memory
access, inefficient data handling and data formats [7]. Our
mapping strategies are demonstrated on an algorithm for au-
tomatic detection of stationary vehicles. This algorithm is
migrated from a Matlab-based prototyping implementation
to a DSP implementation in our smart camera.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the architecture of the smart camera and Sec-
tion 3 briefly introduces the video analysis algorithm for
the automatic detection of stationary vehicles and blocking
cargo. Section 4 discusses typical pitfalls for the mapping
to embedded DSP platforms. Section 5 describes the map-
ping and implementation of the stationary vehicle detection
on our smart camera. Section 6 presents experimental re-
sults, and Section 7 discusses related and future work.

2. System Architecture

2.1. System Overview

Beside the functional requirements, traffic surveillance
adds environmental requirements to smart cameras. Since
smart cameras are deployed aside highways and in tunnels
they are exposed to harsh environmental influences such as
rapid changes in temperature and humidity as well as wind
and rain. Additionally, the system’s power dissipation has
to be considered due to two reasons. (i) High power dissipa-
tion typically leads to excessive waste heat which requires
active cooling to be dissipated. Since moving parts are sub-
ject to wear, active cooling is not desirable. (ii) Due to lim-
ited power resources at exposed locations, where the sys-
tem may be fed by a solar panel, it is necessary to lower the
power consumption as much as possible [1].

2.2. Hardware

As depicted in Figure 2, the smart camera is divided into
three major parts: (i) the video sensor, (ii) the processing
unit, and (iii) the communications unit.

2.2.1. Video Sensor The video sensor represents the first
stage in the smart cameras overall data flow. The sensor cap-
tures incoming light and transforms it into electrical signals
that can be transferred to the processing unit.

A CMOS sensor best fulfills the requirements for a video
sensor. These sensors feature high dynamics due to their
logarithmic characteristics and provide on-chip ADCs and
amplifiers.

Our first prototype of the smart camera is equipped with
the LM-9618 CMOS sensor from National Semiconductor.
Its specification is enlisted in Table 1.

2.2.2. Processing Unit The second stage in the over-
all data flow is the processing unit. Due to the high-
performance on-board image and video processing the re-
quirements on the computing performance are very high.

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE

Memory

Memory

Ethernet WLAN

Serial GPRS

PCI
Processing Communication

Cam Control

 C

Interfaces
Video Encoding

DSP

Sensor Control

Image Processing

DSP

Traffic Statistics

CMOS-Sensor

In
te

rf
a

ce

Sensing

(Infrared-) Flash

PTZ/Dome Interface

Figure 2. System architecture of the smart camera.

Dynamic range Type Resolution Max. fps ADC-Resolution Sensor control
100 dB Monochrome 640×480 30 12 bit I2C

Table 1. Video sensor specification.

A rough estimation results in 10 GIPS computing perfor-
mance. These performance requirements together with the
various constraints of the embedded system solution are ful-
filled with digital signal processors (DSP). The smart cam-
era is equipped with two TMS320C6415 DSPs from Texas
Instruments (TI) running at 600 MHz. Both DSPs are
loosely coupled via the on-board PCI bus, while each pro-
cessor is connected to its own local memory. The various
tasks are statically mapped to the DSPs to avoid over-
head induced by a global scheduler.

The video sensor is connected to one DSP via a FIFO
memory to relax the timing between sensor and DSP. The
image is then transferred into the DSP’s external memory
and via the PCI bus to the other components (DSP and net-
work processor).

2.2.3. Communications Unit The final stage of the smart
camera’s overall data flow is represented by the communi-
cations unit. The unit is primarily composed of an Intel XS-
cale IXP425 processor, which directly manages most on-
board communications like PCI, Ethernet, USB, and serial
communications. Wireless LAN and GSM/GPRS are con-
nected using a generic interface. This interface enables the
connection of various peripherals or communication sys-
tems with low effort.

A second class of interfaces is also managed by the com-
munication unit. Flashes, pan-tilt-zoom heads (PTZ), and

domes are controlled using the communication unit. The
moving parts (PTZ, dome) are typically controlled using se-
rial interfaces like RS232 and RS422. Additional in/outputs
are also provided, e.g., to trigger flashes or snapshots.

2.3. Software

The software architecture of the smart camera is basi-
cally divided into two parts:
DSPs are configured to basically run computation intensive
tasks like video compression (MPEG-4 simple profile), im-
age analysis, or traffic parameters calculation. Since recon-
figurability and scalability are important issues, the DSPs
are running on Texas Instruments’ Reference Framework
5 (RF5) in combination with TI’s XDAIS algorithm stan-
dard [13], which enables the exchange and reconfiguration
of algorithms during runtime [12]. All reconfiguration and
control actions are controlled by the system control proces-
sor as described below.
XScale processor is primarily used for system control and
communication purposes. Therefore a standard operating
system eases the development of internal and external com-
munication services like web-services, proprietary control
connections, or PCI-communications. Hence (Embedded-)
Linux has been chosen to be used.

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE

3. Stationary Vehicle Detection (SVD)

We demonstrate the mapping of high-level image analy-
sis algorithms to an embedded DSP architecture on a spe-
cific video analysis algorithm, i.e., stationary vehicle detec-
tion (SVD) in tunnels [9]. The fundamental requirements for
this algorithm are a stationary camera position and pretty
static ambient light conditions – both requirements are typ-
ically fulfilled in tunnels. Thus, intensity changes are only
caused by the motion of vehicles or by noise, e.g., reflec-
tions or lights of cars.

Intensity changes are exploited by the SVD algorithm.
Gray-scale image frames (in 8 bit resolution) serve as in-
put; the algorithm delivers image areas where a stationary
vehicle has been detected as output. The basic idea of the al-
gorithm is to maintain a background model of the observed
scene, i.e., to identify regions where the intensity has not
recently changed significantly. Thus, pixels not included in
the background model represent the foreground, e.g., mov-
ing vehicles, of the observed scene. A stationary vehicle
can, therefore, be detected when a sufficiently large fore-
ground area has become a (stationary) background.

Figure 3 depicts the main steps of the SVD algorithm.
These steps are repeated whenever a new frame is captured.
The k least recently captured image frames Ii of size n×m
are stored in a frame buffer. In the first step the statistics of
the pixel’s intensity is computed and stored in the observa-
tion distribution (OD) matrix of size n × m. Each element
of the OD matrix holds the mean value µod and standard de-
viation σod of the pixel’s intensity distribution over the last
k frames.

In the second step, the OD values are used to adapt the
values of the background model (BG) which are stored in
the BG matrix. The BG represents the long-term intensity
distribution of each pixel. Each element of the BG matrix
also holds values for the mean µbg and the standard devi-
ation σbg . Note that the smaller the value of σbg the more
confidence we have that the corresponding pixel belongs to
the background of the image scene. Thus, the standard de-
viation of the OD and the BG are used to control the rate
of the BG adaptation. The parameters of the background
model are adapted according to the following equations:

µbg = (1 − f) · µbg + f · µod

σbg = (1 − f) · σbg + f · σod.
(1)

The update factor f is computed as

f =
α

1 + ea·(σod−σbg)
(2)

where α defines an upper limit on f (typically 0.1) and a
(typically 1.0) is a scaling factor. The BG matrix is initial-
ized with large values for σbg . Thus, no pixel is associated
with the background during initialization.

In the third step the algorithm identifies long-term in-
tensity changes between the BG and the OD distribution.
If the distributions represented by the corresponding ele-
ments in the BG and OD matrixes are significantly different,
new background areas (pixels) have been identified. The re-
sult of this statistical test is stored in a binary image of size
n × m.

In the final step the algorithm searches for connected
components in the binary image. If a connected compo-
nent exceeds a predefined area a stationary vehicle has been
identified.

Note that all except the final steps can be performed
for each pixel independently. This data-independence is ex-
ploited in the mapping on our DSP architecture.

4. Algorithm Mapping

High-level image analysis algorithms are typically pro-
totyped and tested using high-level languages such as Mat-
lab or C++ on a desktop computer. However, such proto-
typing code has to be carefully mapped to a DSP architec-
ture in order not to defeat the performance capabilities of
such architectures. In this section we identify the main pit-
falls in mapping a high-level algorithm to a DSP architec-
ture and discuss strategies for a successful mapping.

4.1. External memory access

Excessive (and unnecessary) access to external memory
is a major source for poor performance on embedded DSP
architectures. In many high-level languages memory man-
agement is (by intention) hidden from the programmer, and
complex and large data structures are used. While these fea-
tures ease the algorithm development, they often result in
many references to external memory. However, by a reor-
ganization of the program and by exploiting data indepen-
dence, access to external memory can be strongly reduced.

Consider for example the computation of the mean and
standard deviation in the SVD algorithm. In Matlab, this is
typically performed on matrices representing entire image
frames. The computation of the statistics basically requires
the following operations on the matrices A and B both of
size n × m.

Loads Stores
n × m matrices

sum=A+B 2 1
avg=sum/count 1 1
sum2=A*A + B*B 4 3
std_dev=sqrt(sum2-sum*sum) 4 3

When the entire matrix does not fit into the available in-
ternal memory (which is the case for many embedded DSP
architectures), this code fragment requires 11 load and 8
store operations of (n × m)-sized matrices. For image data

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE

Framebuffer
k Frames

I1 IkI2

i

j

Observation distribution Background model

f

Intensity change
detection

Connected component
analysis

Background
adaptation

Observation distribution
generation

Binary image

Pixel P(i,j)

od,µ odσ bg,µ bgσ
.

Figure 3. Main steps of the stationary vehicle detection.

avg[0]=
sum[0]/cnt

avg[1]=
sum[1]/cnt

sum[0]=
A[0]+B[0]

sum[1]=
A[1]+B[1]

sum2[0]=
A[0] 2+B[0] 2

. . .

sum[0]=
A[0]+B[0]

avg[0]=
sum[0]/cnt

sum[1]=
A[1]+B[1]

avg[1]=
sum[1]/cnt

.

.

.

sum2[1]=
A[1] 2+B[1] 2

sum2[1]=
A[1] 2+B[1] 2

sum2[0]=
A[0] 2+B[0] 2

Figure 4. Image-based vs. pixel-based com-
putation.

at full PAL resolution (720 × 576, 8-bit pixels), this results
in a total of 7.12 MB of transferred data. The large num-
ber of matrix store and load operations is caused by storing
and loading the intermediate results.

However, by migrating from an image-based to a pixel-
based computation the number of external memory accesses
can be largely reduced. In many image analysis algorithms
the data dependency between individual pixels is small. In
this case the successive steps of the algorithm can be applied
on individual (blocks of) pixels, and the intermediate results
can be stored in registers or internal memory. This migra-
tion from image-based to pixel-based computation can be
viewed as a “transposition” (Figure 4). The columns in the
left matrix correspond to the pixels; the rows correspond to
the individual steps of the image algorithm. The matrix is
processed in row major order. In pixel-based computation
(Figure 4 right) the matrix is transposed but still processed
in row major order.

Loads Stores
sum[l]=A[l]+B[l] 2 1
avg[l]=sum[l]/count 0 1
sum2[l]=A[l]*A[l] + B[l]*B[l] 0 1
std_dev[l]=sqrt(sum2[l]-

sum[l]*sum[l]) 0 1

The number of load and store operations has been de-
creased to two loads and four stores, whereas the stores are
only necessary, if the intermediate results (sum, sum2) are
needed for later computations. Since the code fragment is it-
erated (n×m)-times, the transferred data is reduced to 2.47
MB (including the intermediate results). If the intermediate
results are not used, the total memory transfer is 1.6 MB.

4.2. Data transfer

Most embedded architectures provide caches and direct
memory access (DMA) to improve the memory transfer be-
tween the external memory and processor. While caching
is transparent to the programmer DMA typically achieves
an even higher performance than caching. A well-known
and regular data access pattern is an important precondi-
tion for effective DMA. Many image processing algorithms
fulfill this requirement. For these applications DMA trans-
fer is often realized by double buffering using “ping-pong”
buffers.

4.3. Number format issues

In high-level languages and on desktop computers the
used number formats are typically no big issue. The situa-
tion is completely different on embedded platforms which
are mostly comprised of fixed-point processors. On fixed-
point processors, floating-point operations have to be re-
alized in software and, therefore, dramatically degrade the

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE

Figure 5. Prototype of the smart camera.

performance compared to fixed-point operations. It is desir-
able to implement integer versions of the algorithm on the
embedded platform. However, this is not always possible.

A compromise is to transform floating-point numbers to
a self-defined fixed-point format consisting of a non-stan-
dardized number of integer and fraction bits. The number
of fraction bits can be typically limited for a specific appli-
cation. The Qm.n notation is an example of a signed fixed-
point number format with m integer bits, n fraction bits and
a single sign bit. Thus, a Qm.n number requires m + n + 1
bits.

The number of fraction bits defines the precision of the
number format. However, it is desirable to keep the total
bit-count of the fixed-point numbers low due to the follow-
ing reasons.
Memory is a crucial resource in embedded systems. Es-
pecially, internal memory has to be handled very carefully.
For example, a 16-bit fixed-point number preserves expen-
sive internal memory compared to a 32-bit number. Addi-
tionally, the amount of transferred data is reduced.
Parallelism can be improved by exploiting packed-data
processing capabilities of current DSPs. In some 32-bit
DSPs, such as the TMS320C64x from Texas Instruments,
two 16-bit or four 8-bit results can be concurrently com-
puted by a single 32-bit unit.

5. Implementation

The SVD algorithm has been implemented on a proto-
type of our smart camera (cp. Figure 5). The heart of our
prototype is the Network Video Development Kit - NVDK
from ATEME. The NVDK includes a Texas Instruments
TMS320C6416 DSP with 264 MB of on-board memory
and an Ethernet network extension card. We have extended
the prototype platform by an additional extension board that
connects a digital CMOS image sensor to the NVDK.

Starting point for the implementation on the smart cam-
era was a SVD prototype in Matlab. We applied all mapping
strategies discussed in Section 4 whereas all code transfor-
mations have been implemented in Matlab first to ease the
test of our modifications. After functional testing in Mat-

Case Approach Cycles Time fps

1 Matlab — 2900 ms 0.34
2 C++ 4200 M 7000 ms 0.14
3a C, no DMA 380 M 633 ms 1.57
3b C, DMA 304 M 508 ms 1.9
3c C, DMA, packed-data 250 M 416 ms 2.4

Table 2. Runtime and achieved frame rates of
different mappings of the SVD algorithm.

lab, the code was ported to C. No optimization in assembler
has been applied.

The first three steps of the SVD algorithm (OD genera-
tion, BG adaption and intensity change detection) have been
transposed to pixel-based computation. The connected com-
ponent analysis is still applied on the entire image. The
Matlab prototype has been realized in floating point arith-
metic. For the implementation on the smart camera proto-
type the fixed-point format Q9.6 has been chosen for the
computation of the OD and BG statistics. Whether the range
and precision of this number format is sufficient for the
SVD has been previously checked in Matlab. As a conse-
quence arithmetic operations such as multiplication, divi-
sion, square root, and exponential function, have been im-
plemented on the basis of the Q9.6 number function. The
image data transfer between external and internal memory
has been realized by DMA using double buffering (“ping-
pong” buffers). The size of the image blocks to be trans-
ferred can be configured.

6. Experimental Results

6.1. Computing Performance

Table 2 summarizes the achieved performance results for
different implementations of the SVD algorithm. This table
shows the cycles and required run time for processing a sin-
gle full-resolution PAL image as well as the achieved frame
rates.

Starting point for our experiments was a SVD algorithm
prototyped in Matlab 6.1R12. This prototype required 2.9 s
to process a single full-PAL resolution image on a standard
2.4 GHz Pentium 4 desktop computer (case 1).

On our smart camera prototype, we implemented two
different versions of the SVD algorithm to evaluate the
mentioned mapping and optimization techniques. This pro-
totype is equipped with a 600 MHz TMS320C6416 DSP.

The first version (case 2) was a class-based C++ imple-
mentation directly derived from the SVD Matlab code. The
matrix-oriented structure and the use of floating-point oper-
ations shortened the porting time to a few days. However,

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE

Internal External
code stack data data
5 kB 1 kB 330 kB 17 MB

Table 3. Memory requirements of the SVD al-
gorithm.

the achieved performance was very poor. The run time for
a single frame has been more than doubled compared to the
Matlab prototype. Excessive memory trashing and heavy
use of the dynamic memory management due to the class-
based structure are the main reasons for this poor perfor-
mance. Even the introduction of a fixed-point number for-
mat did not improve the performance substantially.

The second approach boosted the performance by more
than an order of magnitude. The mapping strategies in com-
bination with caching (case 3a) results in a frame rate of
1.57 fps. DMA transfers (case 3b) further reduces the run
time by 125 ms per frame. Thus, 18% of the computation
time of case 3a are used for memory transfers. Since we use
a 16-bit fixed-point format, almost half of the computation
can be done in parallel by utilizing the packed-data capa-
bilities of the TMS320C6416. This parallelization (case 3c)
leads to a further performance gain of approximately 17%.

6.2. Memory Requirements

Table 3 summarizes the memory requirements of our
SVD algorithm separated in internal and external memory.
The code’s footprint and the stack have a small size. Most
part of the internal data memory is required for the “ping-
pong” buffers for the DMA transfer. In our implementation,
the block size for the DMA transfer can be configured. If 8
complete rows of the image are chosen as buffer size, the
“ping-pong” buffers require 330 kB.

A total of 17 MB of the external memory is used to store
the frame buffer and the various temporary matrices used
for computation. The frame buffer utilizes 8 MB for stor-
ing 20 frames.

6.3. System Performance

The mentioned results only reflect the performance of
the migrated algorithm alone. The prototype has been fit-
ted with Ethernet access, networking stack, video acquisi-
tion and image conversion software to be able to run in a
stand-alone mode.

These additional tasks result in an overall performance
of 1.5 fps at full PAL resolution. However, the prototype
is not fitted with a network processor, so the final system
will achieve higher frame rates since the network proces-
sor will manage all communication issues. Again, the re-

duced memory bus utilization will yield in a higher perfor-
mance gain than the reduced need for processing power.

6.4. Real-World Demonstration

A sample output of the stationary vehicle detection is
depicted in Figure 6. The sequence shows the detection of
a stationary vehicle after a car crash in a tunnel. The left
image shows the situation immediately after the accident.
Approximately 3 seconds after the crashed car stopped its
movement, the the first parts of the crashed car are recog-
nized as a potential stationary area (middle image). After
additional 3 seconds, the system has detected the crashed
car as a stationary item and an alarm is generated (right im-
age). Note that the truck has not yet been detected as sta-
tionary since it has stopped its movement a few seconds
later than the crashed car. According to the real-time con-
straints, the stationary vehicle has been detected within six
seconds.

7. Discussion

In this paper we have presented a smart camera designed
for use in an 3rd generation traffic surveillance system.
To be able to meet the real-time requirements of a traffic
surveillance system while running high-sophisticated im-
age analysis algorithms, some strategies for mapping high-
level image analysis algorithms to DSP-based platforms
have been presented. These strategies have been applied
in the implementation of an algorithm for stationary vehi-
cle detection on an embedded DSP-platform. Although the
implementation has been limited to C-level optimizations,
the performance has been improved by an order of mag-
nitude. This improvement has enabled on-board and on-
line detection of stationary vehicles at full PAL-resolution
in our smart camera. It is important to recognize that dra-
matic performance improvements can be achieved by ap-
plying high-level strategies. Tedious hand-optimization of
assembly code can be avoided.

In [14] Wolf and Kandemir identified the memory sys-
tem as a crucial resource in embedded systems. Principles
and an implementation example of assembly-level code op-
timizations for DSPs were proposed by Karadayi et al. [6],
Hwang and Sung [4] and Pham-Ngoc et al. [10]. Smart cam-
eras are also an emerging field of research. Wolf et al. [15]
presented a PC-based smart camera system with high-level
image processing. Regazzoni et al. [11] [3] identified smart
cameras as building blocks for third generation surveillance
systems.

Future research work includes (i) a further optimization
of the SVD implementation (including the exploitation of
instruction level parallelism), (ii) communication structures
and principles for knowledge-transfers between smart cam-

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE

Figure 6. Example output from the stationary vehicle detection.

eras, based on multi-agent systems, to enable (iii) the map-
ping of different high-level video algorithms on our DSP-
based smart camera including tracking and multi-camera
analysis. Additionally, we are interested in (iv) an automa-
tion of the high-level algorithm mapping to embedded DSP-
platforms [5], and the comparison of manual and automated
mapping as well as the evaluation of recently announced
tools for automated coding for embedded platforms, i.e.,
Mathworks’ Embedded Coder for Matlab/Simulink.

References

[1] M. Bhardwaj, M. Rex, and A. Chandrakasan. Power-aware
systems. In Proceedings of the Asilomar Conference on Sig-
nals, Systems and Computers, volume 2, pages 1695–1701,
2000.

[2] M. Bramberger, R. P. Pflugfelder, A. Maier, B. Rinner,
B. Strobl, and H. Schwabach. A smart camera for traffi c
surveillance. In Proceedings of the First Workshop on Intel-
ligent Solutions in Embedded Systems, pages 153–164, 2003.

[3] G. L. Foresti, P. Mähönen, and C. S. Regazzoni, editors. Mul-
timedia video-based surveillance systems. Kluwer Academic
Publishers, Boston, 2000.

[4] T. Hwang and W. Sung. Implementation of a digital copier
using TMS320C6414 VLIW DSP processor. In Proceedings
of the IEEE International Conference on Acoustics, Speech,
and Signal Processing, 2003.

[5] M. Jungmann and M. Beine. Automatic code generation for
safety-critical system development. Embedded Control Eu-
rope, pages 30–32, November 2003.

[6] K. Karadayi, V. Markandey, J. Golston, R. J. Gove, and
Y. Kim. Strategies for mapping algorithms to mediapro-
cessors for high performance. IEEE Micro, 23(4), July-Aug
2003.

[7] D. Menard, D. Chillet, F. Charot, and O. Sentieys. Auto-
matic floating-point to fixed-point conversion for DSP code

generation. In Proceedings of the International conference
on compilers, architecture, and synthesis for embedded sys-
tems, pages 270–276, 2002.

[8] K. Patel. Porting PC based algorithms to DSPs. Embedded
Edge, pages 15–19, Fall 2003.

[9] R. P. Pflugfelder and H. Bischof. Learning spatiotemporal
traffi c behaviour and traffi c patterns for unusual event detec-
tion. In 26th Workshop of the Austrian Association for Pat-
tern Recognition, pages 125–133, 2002.

[10] N. Pham-Ngoc, G. Lafruit, J.-Y. Mignolet, S. Vernalde,
G. Deconinck, and R. Lauwereins. A framework for map-
ping scaleable networked multimedia applications on run-
time reconfi gurable platforms. In Proceedings of the Interna-
tional Conference on Multimedia and Expo, pages 469–472,
2003.

[11] C. S. Regazzoni, V. Ramesh, and G. L. Foresti. Introduction
of the special issue. Proceedings of the IEEE, 89(10), Oct
2001.

[12] L. Sha. Upgrading real-time control software in the fi eld.
Proceedings of the IEEE, 91(7), July 2003.

[13] Texas Instruments. TMS320 DSP Algorithm Standard Rules
and Guidelines, October 2002.

[14] W. Wolf and M. Kandemir. Memory system optimization
of embedded systems. Proceedings of the IEEE, 91(1), Jan
2003.

[15] W. Wolf, B. Ozer, and T. Lv. Smart cameras as embedded
systems. IEEE Computer, 35(9):48–53, September 2002.

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE

	footer1:

