Rapid Prototyping of flexible Embedded Systems on multi-DSP Architectures

Bernhard Rinner, Martin Schmid and Reinhold Weiss
Institut fiir Technische Informatik
Technische Universitit Graz
Inffeldgasse 16/1, 8010 Graz, Austria

[rinner, schmid,

Abstract

The functionality of a typical embedded system is speci-
fied once at design time and cannot be altered later during
the whole mission period. There are, however, a number
of important application domains that ask for both flexibil-
ity and availability. In such a flexible embedded system the
functionality can be modified while the application is run-
ning.

This paper presents a rapid prototyping environment for
flexible embedded systems on multi-DSP architectures. This
prototyping environment automatically maps and schedules
an application onto a multi-DSP architecture and intro-
duces a special, lightweight reconfiguration environment
onto the target platform. A running multi-DSP application
can, therefore, be modified by reconfiguring software tasks.
By using our prototyping environment the modified appli-
cation can be tested, simulated and emulated prior to the
implementation on the target.

keywords: embedded system; multi-DSP architectures;
task reconfiguration; testability; rapid prototyping

1 Introduction

Digital signal processing (DSP) functionality is increas-
ingly embedded into more and more applications. Often
multi-DSP architectures are used to keep pace with the ever
increasing performance requirements. The functionality of
such a typical embedded systems is specified once at design
time and cannot be altered later during the whole mission
period. There are, however, a number of important appli-
cation domains that ask for both flexibility and availabil-
ity, i.e., systems operating in remote and hostile environ-
ments, systems with extraordinary long mission periods and
embedded systems that must not be shut down during up-
date periods. Examples for such embedded systems include
satellite receivers with update functionality, high-level con-
trollers for technical processes and communication systems.

rweiss]@iti.tu-graz.ac.at

In a flexible embedded system, a potential modification
of the functionality must already be taken into account at
the initial design and implementation. Two aspects are es-
pecially relevant in this context.

Support for design and implementation Even with a
fixed functionality the development of an embedded sys-
tem is often supported by tools for design automation and
prototyping [2]. Support for design and implementation is
almost mandatory for flexible embedded systems, i.e., the
modified application must be thoroughly simulated, tested
and emulated before it is downloaded to the target system.

Mechanism for reconfiguration In order to modify a
running application on an embedded system a special down-
load mechanism is necessary. This reconfiguration environ-
ment may not interfere with the DSP code execution and
must be a lightweight and predictable component since re-
sources on an embedded system are always rare.

This paper focuses on increasing the flexibility of em-
bedded multi-DSP systems. The key goals of this research
are (i) to support the design and implementation of flexible
embedded systems by a prototyping environment, (ii) to in-
tegrate a mechanism for the modification of the functional-
ity on a running application, and (iii) to improve the testabil-
ity of the embedded system. This work is based on PEPSY
— a prototyping environment for multi-DSP systems [6, 7].
Given a specification, i.e., an application model, a hardware
model and mapping constraints, PEPSY automatically maps
and schedules the DSP application onto the multi-DSP sys-
tem and synthesizes the complete code for each processor.

PEPSY has been extended by a reconfiguration mecha-
nism that allows to add, delete or modify software tasks.
This reconfiguration is completely integrated into PEPSY,
thus all of PEPSY’s main features such as optimization, per-
formance prediction and code generation, can be used when
modifying the functionality. Via the reconfiguration envi-
ronment, the communication between software tasks can
now be inspected. All of these actions are performed while

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

the application is running on the target system enabling

functional as well as performance testing at early stages in &

the development process. Fl—>
The rest of this paper is organized as follows. Section 2 ® ® @ \x / I \ I

presents the design flow for flexible embedded systems us- © — IE‘_’III

ing PEPSY. Section 3 describes the reconfiguration mecha- Ge) L

nism implemented on the target system and the host. Sec-
tion 4 presents experimental results. Section 5 discusses
related and future work.

2 Automated Design of Multi-DSP Systems

Figure 1 depicts the overall design flow for the auto-
mated design and implementation of multi-DSP applica-
tions. This design flow is integrated into the prototyping
environment PEPSY [8]. During the initial design, PEPSY
automates the parallelization of data-flow oriented appli-
cations onto heterogeneous multi-processor systems, i.e.,
it computes an optimized multi-processor implementation
given a specification, resource constraints and an objective
function.

The specification of the design problem is based on two
models. The application model describes the overall ap-
plication by an extended data-flow graph G 4 [1], i.e., the
nodes of this graph represent (functional) tasks of the appli-
cation and the arcs represent data dependencies between the
tasks. The hardware model describes the multi-processor
system onto which the application is mapped. Each pro-
cessing element is represented by a node of this graph Gg.
Physical point-to-point connections are described by the
arcs. Restrictions on the mapping of tasks onto processing
elements may be specified by mapping constraints m.

The optimizer computes an optimized multi-processor
implementation I, i.e., it approximates an optimal mapping
and scheduling for all tasks given the specification subject
to an objective function and resource constraints. The im-
plementation further includes code for the reconfiguration
environment. The mapping and scheduling generated by
the optimizer consist of a task list for each processor. This
task list includes the application tasks as well as the sender
and receiver tasks introduced for inter-processor commu-
nication. For each task, start and end times are predicted
by the optimizer using a communication model for buffered
data transfer [6]. This communication model is the basis
of PEPSY’s performance prediction. Additional parameters
such as the task’s memory requirement and deadline as well
as the processor’s memory capacity may be specified and
used to express more complex design goals than the stan-
dard multi-processor scheduling problem [8].

The final step in this prototyping environment is auto-
matic code generation and synthesis. The goal of this step
is to generate the multi-processor application, i.e., to gener-
ate, compile, link and download the complete code.

application model Ga hardware model GH

optimizer and
performance predictor

g

optimized implementation |

P:
P: []
P: [

[code synthesis j

|

code
download

reconfiguration environment

Figure 1. Design flow of our PEPSY prototyping
environment.

3 Reconfiguring Embedded Applications

In order to extent PEPSY to the reconfiguration of flex-
ible embedded systems, two modifications are necessary.
First, a reconfiguration environment must be introduced on
the target system. Second, a dedicated interface must be in-
tegrated on the host system. This host tool controls the data
transfer between host and target and communicates with
PEPSY (Figure 2).

3.1 Reconfiguration Environment

The reconfiguration environment is a software compo-
nent on the target platform and provides the basic function-
alities (i) to read communication data from the target sys-
tem to debug the application, (ii) to load data onto the target
hardware, and (iii) to load code to modify a running appli-
cation on the target system at the task level. These modifica-

2
Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03) CSFK/[PUQTER
1530-1591/03 $17.00 © 2003 IEEE SOCIETY

tions must be performed without any interference with the
DSP code execution in order to guarantee the availability of
the prototype hardware.

In the context of PEPSY’s design flow, the reconfigura-
tion environment has to fulfill further strong requirements:

1. The environment’s functionality must be an easy-to-
add and lightweight component.

2. The environment must be scalable, i.e., the functional-
ity must be independent of the number of DSPs on the
target system.

3. The environment’s execution time must be small and
must be included into PEPSY’s performance predic-
tion.

4. The data transfer between host and target system dur-
ing reconfiguration must be secured in order to detect
transmission faults.

5. Starvation and deadlock situations during reconfigura-
tion must be avoided.

These requirements are fulfilled by introducing a ded-
icated kernel task on each processor at the initial design.
This kernel task implements the functionality of the recon-
figuration environment and is executed at the beginning of
each loop cycle prior to any application tasks. During its
execution the kernel performs the necessary operations and
terminates strictly after a predetermined time. To guarantee
a small lightweight kernel, only the necessary functional-
ity for communication and data up- and download is imple-
mented and only a small portion of data can be transferred
between host and DSP within a single loop iteration. The
memory management of all DSPs is handled by the host.

The kernel task has been implemented on Texas Instru-
ments TMS320C40 DSPs. It has been entirely written in
assembler to provide a small footprint and fast execution.
The transmission protocol implemented provides the func-
tionality to (i) request the status of the kernel task, (ii) to ini-
tialize the download of code, (iii) to download a data packet
to memory, (iv) to start a task, and (v) to send memory con-
tents to the host.

A memory protection mechanism has been implemented
to protect the kernel code and the auxiliary memory loca-
tions from being overwritten by the process of data down-
load onto the target system.

Communication between the kernel tasks and the host
is realized in a master/slave structure. All (reconfigura-
tion) communication is initiated by the host, and the cor-
responding data is sent to the kernel task mapped on the
DSP directly connected to the host. Data for kernel tasks
on all other DSPs is routed through a tree-structured net-
work. DSP kernel tasks receive commands or transmit them

Pepsy’s performance
prediction

memory visualization
manager tool

JUr il

host tool

code
generation
tools

LT

Task library =} user interface

application

reconfiguration environment

multi-DSP system

Figure 2. Integration of the reconfiguration
environment and the host tool into PEPsY.

to the next DSP in the tree structure. The advantage of this
structure is that starvation or deadlock situations caused by
blocking communications can be avoided. If the host initi-
ates a data upload from a DSP, it first sends the command
to the dedicated DSP and waits until the data upload has
completed. No other communication is initiated between
the request and completion of the upload.

The transmitted data is partitioned into packets of size
not larger than the size of the communication buffers (16
words for the TMS320C40). By transferring only a single
packet within a single kernel task, communication can’t get
blocked. The transfer of a single packet is secured by a
CRC. In case of a transmission failure, a retransmission is
initiated at the next kernel tasks call. The tree structure is
also scalable. Additional DSPs can be simply added to the
leafs of the tree.

3.2 Host Tool

The host tool is able to display and to use all features of
the kernel task in order to extend the system to the desired
level of functionality. This tool can directly communicate
with the kernel of an individual DSP; commands are then
executed by the kernel. Afterwards a return packet is sent
back to the host.

The host tool introduces an access layer between basic

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

protocol commands and PEPSY (see Figure 2). It allows to
directly download data and code of tasks stored in the com-
mon object file format (COFF). The required memory man-
agement of the DSPs is handled separately at the host. Be-
fore downloading a task, the memory manager determines

DAC

7 2 4 2 4 2 4 2
0 #4 30 #3 30 #2 3—{0 #q

free locations for code and data sections. A linker command 5C40 4| |5C40, |5C40, |5C40
file is automatically generated and the sections are linked to 1 3
these memory areas. ’_r
For the purpose of observation and debugging, the tool
loads communication data from the target hardware. To ad-
dress communication data, the user has to specify a commu- ADC HOST

nication buffer. First, the buffer’s address is obtained from
the memory manager. Subsequently, the host sends a com-
mand to the DSP containing the buffer address to upload a
portion of data starting at the buffer address. The maximum
size of buffer data to be inspected is 16, which corresponds
to the packet size for the data transfer. Finally, the data can
be visualized online or stored for later analysis.

In the case of reconfiguration, a task is transferred to a
DSP and the executive’s loop is altered. At the beginning,
the user defines the position of the newly-inserted task in
the schedule of the application and the accessed communi-
cation buffers. PEPSY’s performance prediction then deter-
mines the communication and computation delays for this
altered application. The memory manager determines free
memory space for the task’s code and data memory de-
mands. Task information is retrieved from a task library
file. A specially generated linker command file addresses
the free memory space on the DSP. Afterwards, the code
generation tools produce a file in the common object file for-
mat (COFF), which can be directly loaded onto the DSP’s
memory by the host tool. Subsequently, an altered execu-
tive loop is generated and loaded onto the DSP addressing
the newly-inserted task in the favored schedule. Finally, the
kernel task switches from the old to the altered executive
loop.

We have measured the maximum kernel execution time
as about 5 ps during a data transfer. The transfer of a single
word to any DSP requires at most 0.25 ps.

4 Experimental Results

We demonstrate the modification of the functionality of a
flexible embedded system using PEPSY. A streaming filter
example on a multi-DSP architecture serves as example.

The target system for this experiment consists of four
TMS320C40 DSPs from Texas Instruments. As shown in
Figure 3 each processor of this multi-DSP system is con-
nected to each other. Communication to the host is handled
via DSP #1. This DSP is further connected to a data acqui-
sition board with a digital/analog converter (DAC) and an
analog/digital converter (ADC). The sampling rate of this
data acquisition board can be set up to 100 kHz. The cycle

Figure 3. The multi-DSP system consisting of
4 TMS320C40 processors used as target plat-
form for the experimental evaluation.

—‘c:

9

=& ®

Figure 4. Task graph of the application exam-
ple.

period of each DSP is 40 ns.

Figure 4 depicts the task graph of the filter example. At
each iteration through this graph a sample data word is read
from the data acquisition board by the ADC task. In the ini-
tial design this word is transmitted to a parallel filter bank
consisting of four FIR filters. The individual filter outputs
are summarized in task ADD4; the overall result is then de-
livered to the data acquisition board by the DAC task. The
maximum execution time for a single iteration is given by
125 ps determined by the sampling rate of the communica-
tion system of 8 kHz.

The hardware model Gy which is derived from Fig-
ure 3 and the application model G4 which is derived from
Figure 4 are the starting point for the optimization step in
PEPSY.

The result of the optimization step is shown in Figure 5.
In this gantt diagram the (static) task schedule is shown

“
Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03) CSFI;/IPUTER
1530-1591/03 $17.00 © 2003 IEEE SOCIETY

Figure 6. Modified task graph for redesign.

for each DSP. Note that PEPSY automatically inserts all re-
quired communication tasks denoted by R and S, respec-
tively. The kernel task K is introduced at the beginning of
each schedule. The kernel tasks are part of the reconfigura-
tion environment. PEPSY’s performance estimation results
in an overall execution time of 82.2 us. Thus, the real-time
constraint on the overall execution time for a single iteration
(125 ps) is not violated.

PEPSY finally synthesizes the complete code for the ex-
ecutive function as well as compiles, links and downloads
the application onto the target system. The measured overall
execution time is 85 ps which is very close to the estimated
time.

Figure 6 depicts a modification of the functionality in the
embedded multi-DSP application. A new filter task FIRS is
added to the filter bank which replaces filter task FIR4. The
number of execution cycles for task FIRS is 380.

The schedule derived by PEPSY’s performance predic-
tion is depicted in Figure 7. The delays are similar to the
ones from the initial design. PEPSY’s prediction of the over-
all execution time is 82,2 us. Since FIRS terminates before
the communication with DSP #4 is started, the replacement
of FIR4 with FIRS does not result in an increase of the over-
all execution time. PEPSY automatically generates the ex-
ecutive function and synthesizes the executive and the task
FIRS. The memory map for this tasks is managed by the
memory manager.

The task reconfiguration is controlled by the host tool
and consists of the following steps:'

1. The code and data for task FIRS is loaded into a free
memory area of DSP #1.

2. The modified code of the executive function is loaded
onto DSP #1.

"Note that in this example reconfiguration is only required on DSP #1.

3. The kernel task of the reconfiguration environment
starts the altered executive function.

The overall execution time for the modified filter appli-
cation on the multi-DSP system has been measured as 85
s which is the same small deviation from the estimation as
in the initial example.

5 Discussion

In this paper we have presented our improved prototyp-
ing system for the design and implementation of flexible
embedded systems on multi-DSP architectures. The pri-
mary goal of this research is to test, to predict the perfor-
mance and to emulate a modified multi-DSP application
prior to the implementation on the target. The prototyping
environment PEPSY is now able (i) to observe communica-
tion data between tasks, (ii) to modify communication data
between tasks and (iii) to reconfigure tasks while the overall
application is running at the target platform.

There are related prototyping systems for digital signal
processing applications known in the literature. These pro-
totyping systems lack, however, in the ability to support
functional modifications. Madisetti [5] presented the state
of the art and identified future challenges in prototyping
large DSP systems in the mid nineties. Fresse et al. [3] have
developed a prototyping environment for a multi-DSP sys-
tem targeted for image processing applications. Their envi-
ronment requires a functional description given by dataflow
graph and generates a parallel implementation onto a het-
erogeneous target platform. The GRAPE-II [4] environment
uses synchronous and cyclo-static data flow graphs as appli-
cation models. Grape-II maps and schedules the application
tasks onto a heterogeneous target system comprised of dig-
ital signal processors and dedicated hardware (FPGA).

Some operating systems in the area of DSP also support
some mechanisms for testing the overall application, e.g.,
Virtuoso [9]. A problem with operating systems is often
that they offer only very limited access to a running multi-
DSP application and introduce a (large) memory and perfor-
mance overhead into the application. On the other hand, the
overhead introduced by PEPSY’s reprogramming environ-
ment is very small compared to operating system (kernels).

Future work of this research is focused on (i) improving
the reprogramming environment, (ii) porting the extended
PEPSY framework to different target platforms, (iii) apply-
ing our improved prototyping framework on various appli-
cations and (iv) extend the design and reprogramming pro-
cess of PEPSY to heterogeneous systems with DSPs and FP-
GAs.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

RN T = K N 77777 %32 5 S

pspP#2 | x [alas¥ Frs []

DSP#3 | « X FiR2 [

psP#4 | « [P [s"] >
0 82,2ps

Figure 5. Gantt diagram of the optimized implementation of the initial design including the estimated

computation and communication times.

osen |3 T T3 IR ZZ577 0T

psP#2 | « [¥ FEE El

Dsp#3 | « [t FIR2 [s']

777 CR—CE
0 82,2ps

Figure 7. Gantt diagram depicting the schedule and predicted execution time of the redesign.
Changes from the initial schedule are colored dark gray.

References

(1]

(3]

[4]

(6]

S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee.
Synthesis of embedded software from synchronous
dataflow specifications. Journal of VLSI Signal Pro-
cessing Systems, 21(2), 1999.

M. Eisenring, L. Thiele, and E. Zitzler. Conflicting cri-
teria in embedded system design. IEEE Design & Test
of Computers, 17(2):51-59, 2000.

V. Fresse, M. Assouil, and O. Deforges. Rapid
prototyping of image processing applications onto a
multiprocessor architecture. In International Con-

ference on Acoustics, Speech, and Signal Processing
ICASSP2000, May 2000.

R. Lauwereins, M. Engels, M. Ade, and J. Peper-
straete. Grape-II:A System-Level Prototyping Environ-
ment for DSP Applications. IEEE Computer, 28(2):35—
43, February 1995.

V. K. Madisetti. Rapid Digital System Prototyping:
Current Practice, Future Challenges. IEEE Design &
Test of Computers, 13(3):12-22, 1996.

C. Mathis, B. Rinner, M. Schmid, R. Schneider, and
R. Weiss. A New Approach to Model Communica-
tion for Mapping and Scheduling DSP-Applications.

(7]

(8]

(9]

6

In Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing ICASSP
2000, pages 3354-3357, Istanbul, Turkey, June 2000.
IEEE.

B. Rinner, B. Ruprechter, and M. Schmid. Rapid Proto-
typing of Multi-DSP Systems Based on Accurate Per-
formance Estimation. In Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech, and Signal
Processing ICASSP 2001, Salt Lake City, U.S.A., May
2001. IEEE.

B. Rinner, M. Schmid, and R. Weiss. Automated De-
sign and Implementation of Parallel Signal Processing
Applications based on Performance Estimation. Tech-
nical Report TR 01/05, Institute for Technical Informat-
ics, Graz University of Technology, 2001.

E. Verhulst. Virtuoso: A virtual single processor pro-
gramming system for distributed real-time applications.
Microprocessing and Microprogramming, 40:103-115,
1994.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

