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Abstract

Model-based monitoring relies on a comparison between the predicted behavior of a model and
the measured behavior of a supervised system. Especially in technical environments, a monitoring
system must be able to reason with incomplete knowledge about the supervised system, to process
noisy and erroneous observations and to react within a limited time.

We present MOSES, a model-based monitoring system that combines and extends methods from
artificial intelligence and control engineering. MOSES relies on models with known structure and
parameters that may be imprecisely specified by numerical intervals. It uses numerical techniques
to derive the trajectories of these imprecise models and reduces the model’s uncertainty by refuta-
tion. MOSES checks the consistency between measurements and model’s prediction by exploiting
qualitative information from residuals.

MosEs expresses and reasons with incomplete knowledge, processes incrementally measurements
to enable online operation, and reduces the model’s uncertainty during the monitoring procedure.
It has been implemented on a Linux PC and evaluated by online monitoring of a complex heating
system.

keywords: model-based monitoring; imprecise models; uncertainty space partitioning; parameter
estimation

1 Introduction

The primary objective of monitoring is to detect abnormal behaviors of a supervised system as soon as
possible to avoid shutdown or damage. Due to the increased complexity of many supervised systems
monitoring is becoming more and more important. Especially technical systems such as robots, space
crafts or automobiles provide a vast number of challenges for a monitoring system [Rin02]. In such
environments, the monitoring system must be able to reason with incomplete knowledge about the
supervised system, to process noisy and erroneous observations and to react within predefined time
windows.

A particularly important and widely-applied approach is model-based monitoring [HCAK90] [CP99]
which relies on a comparison between the predicted behavior of a model and the observed behavior of
a supervised system. A discrepancy between the predicted and the observed behavior indicates a fault
in the supervised system. Model-based monitoring techniques have been investigated and developed
within the artificial intelligence (DX Diagnosis) and the control engineering (FDI Fault Detection and
Isolation) communities over the last years.

Model-based monitoring makes use of mathematical models of the supervised system. However,
a perfectly accurate and complete model of a technical system is never available. There is always
a mismatch between the technical system and its mathematical model even if there are no faults
present. For model-based monitoring it is, therefore, important how to express and reason with
incomplete knowledge.
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We present an alternate approach to model-based monitoring of technical systems (called MOSES,
for MOnitoring using uncertainty Space partitioning for tEchnical Systems) that combines and extends
techniques from DX and FDI. Our approach [RW02b] [RW02a] is based on imprecise models where the
structure of the models is known and the parameters may be imprecisely given as numerical intervals.
These parameter intervals span the uncertainty space of the model. From an imprecise model based
on intervals only bounds on the trajectory, i.e., envelopes, can be derived. When new measurements
become available MOSES checks the consistency of this new information with the model’s prediction
and refutes inconsistent parts from the uncertainty space of the model. This keeps the predicted
envelopes small and improves the fault recognition capabilities.

Our approach bridges and extends methodologies from the FDI and the DX communities in the
following way:

(1) Modeling the incomplete knowledge about the supervised system is based on differential equa-
tions which are augmented by numerical intervals of parameters. In general, reasoning with
intervals is complex and tedious. However, by focusing only on individual points on the surface
of the model’s uncertainty space we can use standard numerical methods, i.e., Runge-Kutta
integration, for deriving the envelopes.

(2) Measurements and prediction are checked for consistency by exploiting qualitative information
from the residuals. Discrepancies are only reported when there is no overlap between the mea-
surements and the predicted envelopes.

(3) By refuting parts of the uncertainty space that are provably inconsistent, MOSES also performs
model refinement during monitoring. This technique originates from semi-quantitative system
identification [KRK00] [RK99] and is extended to online monitoring.

By exploiting measurements as soon as possible for online monitoring, by refining the uncertainty
space conservatively through refutation, and by applying standard numerical techniques for deriving
the trajectories of imprecise models, our approach combines and complements techniques from FDI
and DX and helps make them more widely and robustly available.

The remainder of this paper is organized as follows. Section 2 presents the basic monitoring ap-
proach of MOSES. Section 3 sketches the implementation of MOSES and introduces some experimental
results. Section 4 discusses related work and Section 5 concludes this paper with a discussion and an
outlook for future work.

2 Monitoring by Refuting Subspace Models

2.1 Overview

Monitoring methods based on imprecise models can reason with incomplete knowledge in the model as
well as with noisy measurements. A main drawback of this approach, however, is that the envelopes
may diverge very rapidly which delays or even inhibits a fault recognition. We have revised this
interval approach to model-based monitoring with the primary goal to keep the resulting envelopes as
small as possible.

In our approach, we exploit the measurements from the supervised system as soon as possible to
refine the uncertainty in the model and the derived envelopes. The key step in our approach is to
partition the uncertainty space of the model into several subspaces. The trajectories derived from
each subspace are then checked for consistency with the measurements. Each inconsistent subspace is
refuted and excluded from further investigations. Partitioning and consistency checking are continued
resulting in a smaller uncertainty space of the model. When all subspaces are refuted, a discrepancy
between the model prediction and the observation has been recognized and a fault has been detected.
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2.2 Imprecise Modeling and Subspace Partitioning

In general, a technical system can be modeled as differential equation of order n

x(t) = £(x(t), u(t), p(t))
y(t) = g(x(2), p(?))

where x(t) is the state vector, u(t) is the input vector, p(t) is the parameter vector, y(t) is the
output vector, and g and f are vector functions. In an exact model, p(¢) is a vector of real numbers.
However, in a model with uncertain parameters, p(t) is replaced by a vector of intervals p(t) =
[(p,(2),P1(2)), (py(t), P2(t)), " -+ (QK(t),ﬁK(t))]T, where K is the number of uncertain parameters. A
model with uncertain parameters, i.e., an imprecise model, can therefore be described as:

(1)

X(t) = £((t), u(t), B(1)) 2)
y(t) = g(x(2), B(?))

Equation 2 is the starting point of our approach. It defines an imprecise model of the supervised
system with K uncertain parameters. This model has a K-dimensional uncertainty space. A partition
is defined as

a(t) = (g, (1), @1 (%)), (@, (1), D (1), -+, (4, (8), Tuc ()] (3)

with q(¢) C p(¢). Thus, a partition divides the uncertainty space into smaller regions. A model based
on a partition of the uncertainty space is referred to as subspace model. The system equation of a
subspace model m is formally defined as:

z(m) ~(m ~(m

(1) = £ (1), (2), G (1) @

ym (1) = g(&%™ (), @™ (¢)).

To apply imprecise models in M OSES, we must compute their trajectories. A simple but intractable
method to derive the trajectories is to repeat a numerical integration starting from any point within
the uncertainty space.! If we assume monotonicity it is sufficient to focus only on few points of the
uncertainty space.

2.3 Consistency Checking

With the monotonicity assumption of x(¢) and y(¢) with regard to the parameters p(t) over the range
of the intervals, the (uncertain) state of a subspace model can be represented by the (exact) state
at extremal points, i.e., corner points, of a subspace. The corner points of a subspace are defined
as all combinations of upper and lower bounds of a partition §(t) and can be represented as set
QM (t) = {(]l(m) (t)} with i = 1,...,2K. Thus, an uncertainty space of dimension K results in 2K
corner points.

The consistency of a subspace model m can be simply checked by computing the state of each corner
point and checking whether the measurement lies within the ”state space” of all corner points [RW02a).
Note that this is an incremental procedure because the new ”state space” at ¢t can be computed from
the state space at ¢ — 1. Since this technique is based on the calculation of an exact state (at corner
points), we can use standard numerical methods for computing the solution of differential equations.
Note that subspaces are only refuted when they are genuinely inconsistent with the measurements.

Figure 1 depicts the consistency check which is realized by computing the residuals for each state
at the corner points of the subspace m. Then the consistency can be simply determined by comparing
the signs of the maximum and minimum values of the residual.

An additional source of uncertainty in technical systems is measurement noise. In MOSES noise
can be simply handled as additional uncertain parameters, i.e., the measurements are superimposed

!Note that for deriving the trajectories of imprecise models it is also sufficient to focus on points belonging to the
external surface of the uncertainty space [BB94]. However, the number of trajectories to be computed is still infinite,
even if it is of a lower order.
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Figure 1: Consistency checking demonstrated with an one-dimensional uncertainty space and three
subspaces 1, §2, and §3. The residuals at the corner points of subspace §; are both negative, therefore,
the model with the subspace §¢; is inconsistent with the measurement. In subspace g2, the residuals
at the corner points have different signs. Thus, §o is consistent. For the parameter range of subspace
g3 the monotonicity assumption is violated. In this case, checking the residuals’ signs at the corner
points is not feasible.

by a fixed (noise) interval. The residual is then computed using this interval. Note that uncertain
parameters representing measurement noise may not be divided during dynamic partitioning.

As depicted in Figure 1 the consistency check does hold only as long as the monotonicity of the
residual with regard to the parameters is given. However, simply to assume monotonicity would result
in a strong limitation to the modeling of technical systems. MOSES does not rely on monotonic models.
It uses a special check to test for monotonicity before applying the consistency check. Only when the
check confirms monotonicity the consistency check is applied [RWO02a].

3 Implementation and Experimental Results

This section briefly sketches the implementation and some experimental results of MOSES. The basic
monitoring approach described in the previous section has already been extended to (hybrid) systems
with discrete transitions including a check for the monotonicity of the state values and a generalized
consistency check [RW02c]. In this section, however, we briefly sketch the implementation and some
experimental results of MOSES.

3.1 Moskes Implementation

The monitoring system MOSES has been completely implemented on a standard PC running Linux.
The software — including a graphical user interface (Figure 2 — has been implemented in C/C++.
MOSES communicates with the technical system via a standard process control computer. The per-
formance of MOSEs is evaluated using both a simulated as well as a ”real” supervised system. The
evaluation is performed in offline and online operation as well.

3.2 Fault Detection Performance

[

We demonstrate the performance of our monitoring algorithm on a “real” technical system which is
comprised of three heating/cooling components mounted on a thermal conductive plate. A process
control computer (B&R 2003) controls the three heating/cooling components. The measured samples
as well as the control actions issued are transferred to MOSES via a RS 232 interface.

Our model of the heating system includes the temperature T;, the heat flow ¢;, the thermal
conductivity L; and the thermal mass C; of the three components; it is a third order differential
equation with a total of 8 uncertain parameters.
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Figure 2: User interface of MOSES.
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Figure 3: Scenario of an intermittent fault (left) and fault detection by observing temperature sensor
T3 (right). The sensor readings of all four temperature sensors as well as the induced fault are plotted
in the left graph. The derived trajectories and the sensor reading for temperature sensor T3 are
plotted in the right graph.

We demonstrate the fault detection performance using an intermittent fault scenario in component
3 of the heating system (Figure 3 (left)). At ¢ = 0 the heating element of component 2 is switched on;
all other actuators remain turned off. Starting at ¢ = 14.6s, the heating element of component 3 is
switched on and off several times. Figure 3 (right) depicts the situation of detecting this fault scenario
by observing only the temperature sensor of component 3. At ¢ = 18.4s, the sensor value exceeds the
trajectory derived from the imprecise model. Note, that the envelopes are kept quite small for all the
time.

Table 1 presents the time required by our monitoring system for detecting the intermittent fault
in the heating system. This table summarizes the results from experiments where the uncertainty
space of the model and the number of observed variables have been varied. Model #1 has the largest
uncertainty space and model #4 has the smallest uncertainty space. The parameter intervals of these
models are presented in Table 2. Note that observing only T1 is not sufficient in order to detect the
fault within the observation period of 110.7s.
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observ. variables fault recognition [s]
model #1 | model #2 | model #3 | model #4
T1, T2, T3 3.8 3.8 3.8 3.8
T1, T2 > 96.1 74.1 53.1 47.8
T1 > 96.1 > 96.1 > 96.1 > 96.1

Table 1: Time required to detect the intermittent fault using MOSEs.

Space No. Ly Lo Lo C1 Cy size
#1 [0.11,0.13] | [0.13,0.18] | [0.62,0.86] | [48,68] | [49,66] | 162
#2 [0.11,0.13] | [0.15,0.18] | [0.62,0.76] | [48,60] | [59,66] | 14
#3 [0.12,0.13] | [0.15,0.18] | [0.62,0.76] | [51,57] | [60,65] | 2.5
#4 [0.12,0.13] | [0.15,0.18] | [0.62,0.76] | [51,54] | [61,65] 1

Table 2: Achieved parameter refinement of our heating system. The size of the uncertainty space is
specified as the product of the range of the parameter intervals to the size of model #4.

3.3 Refining Imprecise Models

Partitioning results in more but smaller subspace models. If a subspace model is inconsistent with
the measurements, the subspace model is refuted and excluded from further investigation. This can
result in a smaller uncertainty space after refutation and also in smaller bounds on the uncertain
parameters, if the measurement and the system is fault-free. This can also be seen as a form of
parameter estimation.

Refinement of uncertain parameters has also been applied to estimate the parameters of our heating
system. We started the refinement with very large parameter intervals. In this experiment, the
initial parameters were given as L; = [0.01,1], Ly = [0.01,1], Li» = [0.01,10], Cy = [5,200] and
Cy = [5,200]. The inputs are estimated as ¢;; = ¢;3 = 1.24W and ¢;o = 32.8W.

We have executed a monitoring process on MOSES using this large subspace model and measure-
ments of 71, T5 and T3 from the (healthy) heating system. The achieved refinement on the parameters
are summarized in Table 2. The different refinements depend on the maximum number of subspace
models allowed during monitoring. Note that this corresponds to a reduction of the uncertainty space
of 8 orders of magnitude. The size of the uncertainty space can be defined as the product of the range
of all uncertain parameter intervals.

4 Related Work

Although, MOSES represents uncertainty by parameter intervals, it is not using interval models. MOSES
simulates the model at the corner points of the uncertainty space, and therefore, with exact parameter
values.

Model-based monitoring using uncertainty space partitioning is related to the interval identification
algorithm of Schaich et al. [SKKC99]. In their approach the consistency check is only performed at
the qualitative level. Thus, valuable detection time is lost, as long as the fault is only manifested in
a quantitative value. Additionally, the monotonicity of the states with regard to the parameters is
not checked, and, therefore, the derived envelopes may not be complete. Petridis an Kehagias [PK98]
have also developed an algorithm with subspace partitioning. Their partitioning is only performed in
advance and the consistency check is based on probabilities depending on the measurement noise and
Markovian time-varying parameters. Hence, they can not refute subspaces because the probabilities
will never reach zero. Not mentioned in the paper is that their algorithm converges to more than one
partition.

Bonarini and Bontempi [BB94] have developed a simulation approach for linear systems with
uncertain initial states and a monotonicity check. They have also described a technique to simulate
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models with uncertain parameters by introducing additional states which represent the parameter
values. Unfortunately, this leads to non-linear system equations, where the monotonicity check is
not always sufficient. Also related to our work is Armengol et al. [ATMVdIR00, AVTMSO01]. The
simulation is based on modal interval arithmetic, which produces overbounded and underbounded
envelopes of a technical system. To minimize the rate of false and missed alarms, the uncertainty space
is only partitioned at critical measurements (which lie between the underbounded and overbounded
envelopes). In comparison, our approach ”leads” to exact envelopes for linear systems, and, therefore,
the problem of false and missed alarms in the above mentioned sense does not exist.

Other work in monitoring [HM00, MRS98, Bog95] uses multiple models for fault detection. These
models represent known faults of the supervised system.

5 Discussion

In this paper, we have presented a model-based monitoring approach based on refining imprecise
models of the supervised system. The fundamental assumption of this approach is the monotonicity
of the state values with regard to the range of the parameters. In order to evaluate this assumption
we have implemented a special check for monotonicity. The uncertainty space of the imprecise model
is partitioned into smaller subspace models. When new measurements become available inconsistent
subspace models are refuted resulting in a smaller uncertainty space. When all subspace models have
been refuted, a fault has been detected.

This approach can also be seen as system identification, because refuting subspace models reduces
the uncertainty space, resulting in smaller bounding intervals on the parameters. Smaller intervals on
the parameters result in a faster fault recognition time. With dynamic uncertainty partitioning, it is
possible to partition parameter intervals online at the monitoring process. So, MOSES can adapt the
uncertain parameters to the real system at the beginning of the monitoring process, and continue to
detect faults with smaller uncertainty space.

However, this approach is in contrast to traditional system identification where the model space
is specified by a parameterized differential equation. Identification selects numerical parameter values
so that simulation of the model best matches the measurements. By using refutation instead of search
our method is able to derive guaranteed bounds on the trajectories.

There are several directions for future research. First, MOSES is currently able to monitor hybrid
system models when the transition between modes are known, e.g., by signals indicating a transition.
When the time of the transition is not known an additional source of uncertainty is introduced —
the time uncertainty between trajectory and measurements of the new mode. Second, MOSES uses
currently imprecise linear system models. Non-linear models are more expressive, however, they
significantly complicate the determination of the monotonicity of state variables. The computation of
the state at corner point is also not sufficient for computing the envelopes. Future research should,
therefore, be focused to special classes of non-linear system. Finally, MOSES can be viewed as a method
for tracking hypotheses and detecting discrepancies in the context of diagnosis. To develop a complete
fault diagnosis system for dynamic systems, MOSES could be combined with existing methods for
automated model building and proposing hypotheses given weak information between observations
and predictions [dKW87, Ng91].
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