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Abstract

As most technical systems such as plants, automo-
biles and robots are getting more and more complex,
the need for automatic monitoring and diagnosis of
such systems is steadily increasing. Technical systems
provide many challenges for a monitoring and diag-
nosis systems, whereas the most important ones are:
First, technical systems are typically dynamic, i.e.,
they change their state while the monitoring and di-
agnosis system is processing its input. Second, the su-
pervised system is in most cases not completely known,
and an exact model of that system may not be spec-
ified. Third, the observations can only provide an in-
complete view on the supervised system due to discrete
sampling, limited observability and noise.

In this paper, we present our model-based approach
to monitoring and diagnosing technical systems. We
address the challenges by (i) modeling the supervised
system as a hybrid system and (ii) tracking continu-
ous mode hypotheses. We have used this approach to
implement a self-calibrating monitoring system which
starts with a coarse description of the supervised sys-
tem and exploits the observation to refine the behavior
prediction and the underlying model. We discuss im-
portant issues to extend self-calibrating monitoring to
diagnosing technical systems.

keywords: semi-quantitative reasoning; hybrid sys-
tems; tracker; self-calibrating monitoring; diagnosis

Introduction

As most technical systems such as plants, automobiles
and robots are getting more and more complex, the
need for automatic monitoring and diagnosis is steadily
increasing. The primary objective of monitoring and
diagnosis is to detect abnormal behaviors as soon as
possible to avoid possible shutdown or damage, to pro-
pose hypotheses for detected abnormal behaviors, and
to isolate possible faulty components.

This paper reports on recent results from an ongo-
ing research project about monitoring and diagnosing
technical systems. The goal of this project is to de-
velop a model-based monitoring and diagnosis system
(MDS) for online operation. This MDS is targeted for
technical systems, such as intelligent robots, automo-
tive applications and production processes. Common

to all these systems is the tight connection between the
(supervised) physical object and the monitoring and di-
agnosis system. Data from the supervised system is
read via sensors, and (control) actions are issued from
the monitoring and diagnosis system to the supervised
system via actuators.

Technical systems provide a vast variety of challenges
for a monitoring and diagnosis system. These chal-
lenges are mainly influenced by the properties of the
technical system and the expected functionality of the
monitoring and diagnosis system. In the following, we
briefly summarize the main challenges.

Dynamic Systems Technical systems are typically
dynamic, i.e., they change their internal state while
the monitoring and diagnosis systems is processing
its input. Thus, the monitoring and diagnosis system
must be able to reason with the temporal evolution
of the technical system, and the underlying model(s)
must be able to express and predict dynamic behav-
iors.

Incomplete Knowledge Traditional monitoring ap-
proaches typically use a single precise model of the
supervised system. However, even if the system is be-
having properly, precise parameter values and func-
tional relationships are often not known. More im-
portantly, monitoring and diagnosis systems are de-
signed to detect unexpected events or faults, after
which knowledge of the system is by definition incom-
plete. The modeling framework for technical systems
must therefore be able to express incomplete knowl-
edge.

Uncertain Observations The accurate state of tech-
nical systems can not be observed through measure-
ments due to the following reasons. First, measure-
ments from the technical system may be corrupted by
faulty sensors or noise. Second, limited observability
of the supervised system as well as discrete sampling
reduce further the capability to observe the accurate
state of technical systems.

We address these challenges by (i) modeling the tech-
nical system as a hybrid system and (ii) by monitoring
continuous mode hypotheses using trackers. In the re-
mainder of this paper we present our approach in detail
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Figure 1: Monitoring and diagnosis architecture based
on trackers.

and demonstrate its application to self-calibrating mon-
itoring. Self-calibrating monitoring starts with a coarse
description of the technical system and uses the obser-
vation stream to refine the behavior prediction and to
reduce the imprecision in the underlying model. A brief
discussion on related work and an outlook for further
work concludes this paper.

Our Tracker-Based Approach to
Monitoring and Diagnosis
Overview

Our general architecture for monitoring and diagnosis is
centered around trackers. This architecture originates
from the MIMIC approach (Dvorak & Kuipers 1991)
and is an extension from our previous work (Rinner &
Kuipers 1999b)(Rinner & Kuipers 1999a).

An overview of the general architecture is depicted in
Figure 1. A set of (active) trackers monitors the state
of the supervised system. A tracker monitors a partic-
ular hypothesis by comparing the observation from the
technical system with the predicted behavior of the hy-
pothesis. When a discrepancy between observation and
prediction is detected, the discrepancy is signaled to
the tracker manager and the tracker is dropped from
the set of active trackers. The tracker manager then
proposes new hypotheses, i.e., it generates new mod-
els which may better capture the current behavior of
the supervised system. For each new hypothesis, a new
tracker is initiated and added to the set of active track-
ers. Thus, our monitoring and diagnosis architecture
allows to track multiple hypotheses in parallel.

Currently, our approach has been implemented us-
ing semi-quantitative reasoning techniques. These tech-
niques excels in expressing and reasoning with incom-

plete knowledge. The main parts of our model-based
monitoring and diagnosis architecture are (i) the mod-
eling and simulation component, (ii) the trackers, and
(iii) the tracker manager. We describe the main parts
in the following;:

Modeling and Simulation

We model and simulate technical systems as hybrid sys-
tems (Iwasaki et al. 1995)(Nishida & Doshita 1987).
Hybrid systems exhibit a sequence of piecewise contin-
uous behaviors interleaved with discontinuous changes
(Branicky 1995). A continuous segment of the system’s
behavior is referred to as mode of operation and a dis-
continuous change is referred to as transition between
modes.

The two main reasons for using hybrid systems in
our approach are (i) model simplification and (ii) dis-
crete control of physical systems. Many complex sys-
tems exhibit fast nonlinear behaviors that are irrelevant
for many applications. In such cases, fast nonlinear sys-
tem behaviors can be abstracted to discrete transitions
resulting in a hybrid system model of the complex phys-
ical system (Mosterman & Biswas 1997). Our MDS
is also targeted for monitoring and diagnosing techni-
cal systems with embedded discrete supervisory con-
trollers. Supervisory controllers impose multiple con-
tinuous behavior segments that are best modeled as a
hybrid system.

We assume that there are three possible causes for
discontinuous changes in the model of a technical sys-
tem. First, the autonomous operation of the technical
system moves from one operating mode to the next.
Second, the operator/controller takes a known action.
In this case, we know the effect of the action, i.e., the
new mode, but not a priori the condition or time when
the action is issued. Finally, an unexpected and exter-
nally caused event such as a failure takes place. In this
case, we do not know the new mode and, therefore, no
pre-defined model is available as in the other cases.

The SQSIM framework (Kay 1998)(Kuipers 1994)
is used to model and simulate technical systems.
A continuous mode is imprecisely modeled by semi-
quantitative differential equations (SQDEs). Impreci-
sion in the SQDE is represented by numerical inter-
vals bounding possible values of unknown parameters,
and by static envelopes — functions bounding the pos-
sible graphs of unknown monotonic functions. The
SQSIM simulator generates the behavior prediction of
the mode. There are three levels of abstracted prop-
erties of the trajectories, corresponding to the level of
detail derived by the components of SQSIM: qualitative
(QSIM), event (Q2), and dynamic envelope (NSIM) de-
scriptions (Figure 2). The qualitative description is de-
fined by a sequence of symbols (], © and 1) represent-
ing the derivative’s sign (qdir) of the trajectory at time
points and intervals between time points. The event de-
scription specifies intervals bounding the trajectory at
particular time points, i.e., magnitude and time ranges.
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Figure 2: SQSIM describes the mode trajectory (SQ
prediction) at the qualitative, event and dynamic enve-
lope level. The observed data is abstracted at the same
levels (SQ trend).

The dynamic envelope description bounds the trajec-
tory by a lower and an upper envelope. A trend rep-
resents the abstracted properties of the observed data
(Figure 2), i.e., symbols representing the qdir, bound-
ing intervals on extrema and bounding envelopes for
monotonic segments.

Transition functions specify the discontinuous
changes from one continuous mode to another. Tran-
sition functions may be either triggered by an au-
tonomous operation of the system, i.e., when the va-
lidity region of a mode is exceeded or a known opera-
tor/controller action.

Tracker

The objective of the tracker component is to track a sin-
gle hypothesis about the current state of the technical
system. The tracker is initialized with the behavior pre-
diction of the hypothesis. It consumes an observation
stream from the technical system and produces infor-
mation about the matching between observation and
behavior prediction.

The observation stream from the technical system
may be preprocessed, i.e., filtered and abstracted, at
the instrumentation interface. Matching the observa-
tion with the prediction is achieved by intersecting the

observation stream
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Figure 3: The tracker architecture based on SQUID.

observation and the prediction. If the intersection is
empty, a discrepancy between the prediction and the
observation has been detected. Otherwise, the observa-
tion supports the prediction derived from the model of
the hypothesis. The intersection between observation
and prediction is transferred to the tracker manager.

Since we model the technical system as a hybrid sys-
tem, the tracker monitors a single mode hypothesis. A
particular hypothesis is, therefore, a sequence of mode
hypotheses [H1 (to, tl); H2 (tl, tg); N Hn(tnfl, tn)] with
mode changes at ¢y ...%¢,—1-

The tracker is currently realized by SQUID (Kay,
Rinner, & Kuipers 2000), a method for semi-
quantitative system identification. SQUID compares
the semi-quantitative trajectory descriptions generated
by SQSIM (the SQ prediction) and the corresponding
properties of the observation (the SQ trend). If the ob-
servation provides sufficient new information, it refines
the underlying SQDE model. If the overlap between
SQ prediction and SQ trend is empty, a discrepancy
has been detected. Figure 3 presents the architecture
of a tracker based on SQUID. It consists of three steps:

Trend forming generates an SQ trend describing
each variable in the observation stream by break-
ing the samples into monotonic segments. The
segments are determined by computing the slope
of a linear least-squares fit to the data within a
sliding window over the samples. Dynamic enve-
lope descriptions for monotonic segments are gener-
ated by MSQUID, a neural network-based estima-
tor for monotonic functions (Kay & Ungar 1993;
1999), out to any given confidence bound. Each seg-
ment representing an extremum is described by the
segment’s time interval and the minimum and maxi-
mum sample values over that interval.

The goal is to detect the qualitative dynamics of the
underlying signal in the noisy observation. In the
current implementation it is assumed that Gaussian



noise of fixed mean and variance is superimposed on
the “pure” signal. For each observed variable, pa-
rameters specify bounds on mean and variance for
noise.

Trend mapping compares the SQ trend derived from
the observations with the SQ prediction by stepping
through both sequences. If an inconsistency is de-
tected between the trend and the prediction, the cur-
rent hypothesis is refuted, so the mapping process
and the current tracker are aborted.

Mapping at the qualitative level generates a corre-
spondence between the symbols 1, © and | in the pre-
diction and the trend. A valid correspondence may
fail to be one-to-one because (i) the samples in the
observation stream may end before some of the qual-
itative changes in the prediction take place; (ii) the
prediction terminates with a mode change before the
end of the current trend; or (iii) the prediction may
include small qdir changes which are not detectable
in a noisy observation stream.

Mapping at the event level ensures consistency of cor-
responding behavior events in the trend and the pre-
diction, in the sense that their time and magnitude
bounds overlap.

Mapping at the dynamic envelope level ensures con-
sistency by intersecting the dynamic envelopes for
corresponding monotonic segments of the trend and
the prediction.

Model refinement takes place when trend mapping
decreases the bounds on some variables in the SQDE.
Parameter imprecision is refined by using interval
arithmetic to derive bounds on independent variables
from dependent ones. SQUID guarantees that por-
tions of the model space are ruled out only when they
are inconsistent with the observations (Kay, Rinner,
& Kuipers 2000).

By using SQUID a tracker clearly distinguishes be-
tween the cases where (i) an observation is consistent
with the model but provides no new information; (ii)
the observation provides new information further re-
ducing the current model space; and (iii) the observa-
tion provides new information that reduces the current
model space to the empty set, refuting the hypothesis.

Tracker Manager

The tracker manager coordinates all trackers during the
monitoring process. Thus, its main tasks are (i) to de-
tect mode changes and faults, (ii) to initiate new track-
ers at mode changes (and drop old ones), and (iii) to
discriminate among competing hypotheses.

Detection of Mode Changes and Faults Ana-
lyzing the data delivered by the trackers is important
for the detection of mode changes and the detection
of faults. Monitoring and diagnosis with tracking con-
tinuous mode hypotheses relies on the early detection
of mode changes. If a mode change is missed, fault

detection is delayed, and in the worst case the fault
may never be detected at all. In case of a missed
mode change, the (initially) correct hypothesis becomes
wrong and the corresponding tracker matches the ob-
served data of the new mode to the prediction of the old
mode. The wrong hypothesis is only detected when the
overlap between prediction and observation becomes
empty.

Mode changes may be detected in different ways, i.e.,
(i) by checking for abrupt changes in signals,! (ii) by
checking for exceeding an a priori known validity re-
gions of modes, and (iii) by exploiting auxiliary signals
from controllers indicating control actions. All tech-
niques are applied in our self-calibrating monitoring
system in order to avoid missing a mode change.

Faults may be detected at a mode change or during
tracking a mode hypothesis. A detected mode change is
caused by a fault when the mode changes is not due to
an autonomous operation or a known controller action.
Thus, if a mode change has been detected, the tracker
manager compares the detected mode change with the
possible mode changes of this mode. If it is a unknown
change a fault is signaled. During tracking the intersec-
tion between the SQ trend and the SQ prediction may
become empty indicating an inconsistency between pre-
diction and observation, i.e., detecting a fault. In order
to detect faults as early as possible the evolution of the
intersection is also monitored. A decreasing intersec-
tion is a strong indication for an (incipient) fault.

Instantiation of new Trackers In case of a mode
change, the tracker for the old mode must be dropped
from the list of active trackers and a tracker for the
new mode must be instantiated and added to the list of
active trackers. Self-calibrating monitoring makes an
important assumption about the mode changes: they
are either caused by the autonomous operation of the
technical system or by a known operator action. Thus,
the models of all modes are known, and no model gen-
eration is required by the tracker manager.

Our self-calibrating monitoring system refines the un-
derlying SQDE model during tracking. Although the
mode model for the new mode is known a priori, the
achieved refinements can only be incorporated into the
mode model at the tracker instantiation. Thus, model
refinements such as refined variable bounds or bounding
envelopes may be inherited from one model to the next
across a mode transition. In the current implemen-
tation, the user specifies the variables and functional
relations whose refinements may be inherited.

Discriminating Competing Hypotheses This
tracker-based architecture allows to track a number of
hypotheses in parallel. The difficulty is that in realis-
tic situations the number of possible hypotheses may
be intractable. So we must focus on the most plausible
fault hypotheses, but without sacrificing coverage. We

!Mode changes are often manifested in abrupt changes
of signals.



address the problem of a large number of concurrent
fault hypotheses by exploiting the likelihood of trackers
and by using heuristics to discriminate among compet-
ing trackers.

Conclusion

This paper has presented self-calibrating monitoring —
a monitoring and diagnosis approach based on tracking
continuous mode hypotheses. Self-calibrating monitor-
ing is an important step toward completely diagnosing
technical systems. It facilitates the treatment of incom-
plete and imprecise knowledge of the supervised system
as well as uncertain and noisy observations, all of which
is important in technical environments.

In this approach, imprecision is expressed by guaran-
teed intervals for the prediction and the observation.?
These "hard” bounds are essential for genuinely re-
futing hypotheses during the monitoring and diagnosis
process. These "hard” bounds may, however, get large
and should be complemented by ”soft” bounds derived
by statistical methods such as parameter estimation.

Closely related work to this research has been done by
Biswas et al. (Mosterman, Zhao, & Biswas 1998)(Man-
ders, Mosterman, & Biswas 1999). In their framework
for model-based diagnosis the physical system is mod-
eled by a temporal causal graph. Qualitative candidate
models are derived from this representation and param-
eter estimation techniques are applied to fit the candi-
date models to the observation (Manders et al. 2000).
This quantitative/qualitative approach to diagnosis has
been recently extended to hybrid systems (Narasimhan
et al. 2000).

TrenDx (Haimowitz & Kohane 1993) is a monitoring
system which uses a semi-quantitative representation
of a behavior and attempts to fit data to this behavior
representation. Since TrenDx uses pre-defined behavior
templates no refinement can be performed. Loiez and
Taillibert (Loiez & Taillibert 1997) use piecewise poly-
nomial functions, so-called temporal band sequences,
to bound the observation stream. The behavior of
components in analog circuits is modeled by sums of
temporal functions including derivatives of any order.
This approach is only able to detect discrepancies but
not to predict the behavior of the system. Mcllraith
et al. (Mcllraith et al. 1999) present an approach for
diagnosing hybrid systems where all mode transitions,
i.e., the history of executed actions, are known. Can-
didate generation and model estimation are based on
the model-based diagnosis framework of (Mosterman,
Zhao, & Biswas 1998) and a tracker-based framework
is adopted to refine multiple candidates.

Further work of this project includes the modeling
and simulation component, the tracker manager, and
the application of the MDS. We are currently inves-
tigating to extend our semi-quantitative modeling ap-
proach with HCC (Gupta et al. 1995), a hybrid mod-

2The observed data stream is bounded by the function
estimator MSQUID out to any confidence bound.

eling environment based on concurrent constraint pro-
gramming languages. An important issue is how HCC
can be exploited for automatic model building. In or-
der to extend self-calibrating monitoring to diagnosis,
the tracker manager must be able to automatically se-
lect relevant model fragments to express initially weak
knowledge about a fault to a mode model. Finally, we
will demonstrate our monitoring and diagnosis system
on a complex technical system.
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