Lessons Learned from Prototyping
Parallel Computer Architectures for AI Algorithms

Bernhard Rinner
Institute for Technical Informatics
Technical University Graz
A-8010 Graz, AUSTRIA

b.rinner@computer.org

Abstract

For many years algorithms from the field of artificial
intelligence (AI) have been targeted for paralleliza-
tion. This paper reports on our experience in paral-
lelizing and distributing AI algorithms, i.e., the de-
sign and prototype implementation of parallel com-
puter architectures for AI algorithms. While the pre-
sented prototypes have been designed for specific ap-
plications, the underlying algorithms are quite general
and frequently-used Al search methods, i.e., constraint
satisfaction and simulated annealing. Our prototypes
achieve speedup factors of several orders of magnitude.

keywords: parallel and distributed AI; specialized
computer architecture; constraint satisfaction; simu-
lated annealing

Introduction

For many years algorithms from the field of artificial
intelligence (ATI) have been targeted for parallelization.
The general parallelization approach is to partition the
search problem of the AI algorithm and distribute the
subproblems among multiple processing nodes. Over
the years significant progress has been achieved in the
parallelization and the development of specialized ar-
chitectures for AI applications (Moldovan et al. 1992)
(IEEE Computer 1992) (Higuchi et al. 1994). In most
cases, the need for increased performance was the driv-
ing factor for the parallelization effort.

Parallelization has also been applied as a key tech-
nique for performance improvement in many different
areas, such as ordinary and partial differential equa-
tions, linear algebra and digital signal processing. AT al-
gorithms, however, have a different characteristic than
the numerical algorithms in the areas listed above. This
difference results in a complex parallelization process
which is probably more complicated than used for nu-
merical algorithms.

This paper reports on our experience in paralleliz-
ing and distributing AI algorithms, i.e., the design and
prototype implementation of parallel computer archi-
tectures for AI algorithms. Our approach extends the
parallelization of AI algorithms using general-purpose
multiprocessors and results in a higher performance and

Reinhard Schneider
Institute for Technical Informatics
Technical University Graz
A-8010 Graz, AUSTRIA

schneider@iti.tu-graz.ac.at

an improved scalability than the general-purpose mul-
tiprocessor approach. While the presented prototypes
have been designed for specific applications, the under-
lying algorithms are quite general and frequently-used
AT search methods, i.e., constraint satisfaction and sim-
ulated annealing. Therefore, our results might be of in-
terest for a broad community within the fields of Al,
parallel processing and computer architecture.

Design of Specialized Computer
Architectures

This section presents the key steps in the design of
specialized computer architectures with emphasis on
the design differences between AI and numerical algo-
rithms.

Algorithm Analysis

The goal of the algorithm analysis is to detect runtime-
dominant portions which can be easily distributed
among several processing nodes. Thus, the analysis
deals with (i) profiling, (ii) identifying the hierarchi-
cal structure and the control flow of the algorithm, and
(iii) determining the dependencies between algorithmic
units, such as modules, functions and statements.

AT algorithms can be typically characterized as fol-
lows: First, Al algorithms offer only low to medium
inherent data parallelism. Second, they have a high al-
gorithmic complexity, e.g., NP-complete. Finally, the
control structures of AI algorithms are often complex
and data-dependent which means that the order of ex-
ecution is only determined at runtime. This charac-
teristic is different to numerical algorithms and has a
great influence on the remaining steps in the design of
parallel computer architectures.

Partitioning

The goal of partitioning is to identify tasks, i.e., parts
of the overall algorithm which can be easily distributed
among the processing nodes. To ease the distribution
the tasks should have no or only a few dependencies
between them. Due to the characteristic of Al algo-
rithms, i.e., low data parallelism and data-dependent
control structures, the partitioning may not be defined

before runtime. Therefore, dynamic partitioning may
be required.

Architecture Design

The goal of architecture design is to find processing el-
ements that are suitable for executing the tasks and a
topology that optimally matches the structure of the
partitioned algorithm. Furthermore, the bandwidth
and latency of the communication network should cor-
respond to the task structure and granularity. Another
goal of the architecture design is scalability, i.e., that
the performance of the computer architecture can be
adapted to the problem complexity by adding more pro-
cessing elements.

A problem of the architecture design is that the par-
titioning may not be known before runtime and the
architecture cannot be modified at runtime.! In most
cases, the (static) computer architecture, therefore, is
only a compromise over all partitionings generated dur-
ing runtime.

Mapping and Scheduling

The goal of mapping and scheduling is to determine
where and when each task is to be executed. Mapping
and scheduling is in general NP-complete. Since the
tasks may not be known before runtime, dynamic map-
ping and scheduling is necessary. To keep the runtime
required for mapping and scheduling small, approxima-
tion methods or heuristics can be applied resulting in a
suboptimal mapping and scheduling.

Prototypes

This section presents two parallel computer architec-
tures for AI algorithms prototyped at our research in-
stitution.

Multiprocessor Architecture for
Qualitative Simulation

In this project, a special-purpose computer architecture
for the qualitative simulator QSim (Kuipers 1994) has
been developed. Qualitative simulation involves deriv-
ing a dynamic system’s behavior given only weak and
incomplete information about it. This technique excels
at predicting all physically behaviors derivable from this
incomplete knowledge.

The generation of all possible behaviors basically re-
quires the solution of two different problems: First,
given a qualitative model and partial information about
the initial state, determine all complete, consistent
qualitative states. Second, given a qualitative model
and a complete qualitative state, determine its immedi-
ate successor states. QSim solves both problems by ap-
plying well-known AT techniques, i.e., constraint prop-
agation and constraint satisfaction (Mackworth 1992).

'Only if the architecture is capable of dynamic reconfig-
uration may the functionality and interconnection structure
be modified at runtime.

During a simulation run, many different constraint sat-
isfaction problems (CSP) must be solved. The CSPs
are defined by the qualitative model and the values of
the current state.

The design of this application-specific computer ar-
chitecture is based on an analysis of the QSim algorithm
including extensive runtime measurements taken from
a QSim implementation (Platzner, Rinner, & Weiss
2000). We apply two strategies for performance im-
provements: (i) parallelizing and mapping more com-
plex QSim functions onto a multiprocessor and (ii) sup-
porting small but runtime-intensive functions with spe-
cialized processing elements. The first strategy parti-
tions the CSPs into tasks that can be executed in par-
allel using a master/slave topology. Since the CSPs are
only known at runtime, dynamic partitioning is neces-
sary. Our dynamic partitioning method VBP (Platzner
& Rinner 1998) divides the search space into an arbi-
trary number of independent subspaces. Dynamic par-
titioning enforces dynamic mapping and scheduling. To
keep the overhead small, we apply an online list schedul-
ing strategy which is simple and is able to guarantee
a worst-case deterioration from the optimal schedule.
The second strategy accelerates low-level functions by
implementing them in hardware, i.e., in specialized co-
processors. The main features of the coprocessor design
are (i) exploitation of parallelism at the instruction- and
operation-level, (i) use of optimized data types, (iii)
and use of customized on-chip memory architectures.

By combining both design strategies, we achieve
a heterogeneous multiprocessor architecture (see Fig-
ure 1). We chose the digital signal processor
TMS320C40 as the processing element because of its six
independent communication channels and its high I/0
performance. We prototyped the coprocessors on field-
programmable gate arrays (FPGAs). Figure 2 com-
pares the speedup factors of the QSim computer archi-
tecture to a standard QSim implementation in Lisp us-
ing three different simulation models (STLG, RCS and
QSEA) (Platzner, Rinner, & Weiss 1997). The speedup
factors of three different architectures are shown to
demonstrate the scalability of our QSim computer ar-
chitecture: the QSim computer architecture consisting
of a single processing element (single PE), 7 process-
ing elements (7 PEs), and 7 processing elements with
coprocessor support (7 PEs + coprocessors).

A Parallel Computer Architecture for
Simulated Annealing

In this project, a special-purpose computer architecture
for simulated annealing (SA) has been developed. SA is
an optimization algorithm based on local search (Aarts
& Lenstra 1997). This technique is able to solve NP—
complete combinatorial optimization (CO) problems.
SA searches the solution space by local search within
the neighborhood of the current solution. The gener-
ation of a new solution as well as the possible accep-
tance of deteriorations are performed randomly. The
sequence of solutions generated during the search forms

front-end

processing element

TMS320C40

LT
processing element processing element processing element
TMS320C40 TMS320C40 TMS320C40
copr ocessor
L] XC4013
processing element
TMS320C40
ﬁ @
COpr ocessor
XC4013

Figure 1: Example of the multiprocessor architecture for the qualitative simulator QSim.

10 O standard QSIM

Esingle PE
0 | O7PEs+
STLG RCS QSEA
model

p

Figure 2: Speedup factors of the QSim computer archi-
tecture compared to a standard QSim implementation
in Lisp.

a Markov chain. The convergence of the algorithm is
proved by Markov theory. The quality of the solution
is rated by a cost function, which assigns a scalar value
to each solution.

The inner loop of SA performs one step in the
Markov—chain, consisting of (i) the random selection
of a new solution in the neighborhood, (ii) the genera-
tion of the selected solution, (iii) the computation of the
cost changes, and (iv) the acceptance decision. Typi-
cally, billions of iterations are necessary to reach the
optimal solution.

The special computer architecture for SA shortens
the computation time by (i) parallel search on multiple
processing nodes and (ii) by instruction set extensions
of a standard processor core supporting fast movement
in the solution space.

We investigated several SA parallelization techniques
(Schmid & Schneider 1999) which either distribute
parts of a single step, i.e., selection (S), generation (G),
cost computation (C), and acceptance (A), a complete
step, or a sequence of steps among the available pro-
cessing elements (see Figure 3).

e The decision tree decomposition technique uses spec-
ulative computation to overlap parts of successive it-
eration steps. If the solution ¢ of iteration n (i)
is rejected, the starting solution of both iterations n
and n + 1 is the same; both iterations can start in
parallel. If ¢, is accepted, iteration n + 1 must start
from the new solution generated in n. In this case,
the calculation for i,41 starts immediately after step
(G) of iteration n.

e In the one—chain technique all slave processors work
on the same solution 4,,. The master processor se-
lects either the first, the best or a random solution
out of all accepted ones as new starting solution for
n + 1. The use of multiple processors increases the
number of solutions checked in the neighborhood of
in without changing the behavior of sequential SA.

e The division technique works similar to the one—chain
technique, but synchronization is done only after a
rather long sequence of steps computed individually
at each slave. The master either selects the first or
the best solution as the new starting solution. This
results in less communication and a higher speedup.

The processor core extensions (Schneider & Weiss
2000) for fast CO basically consist of an internal mem-
ory which efficiently represents one solution of a CO

accepted?

[sfle] ¢] [a]

s| ¢ c [a &
select !

y rejected?
s|] e [¢ [a]
decision tree decomposition

one-chain

| select (first, best, random) |

n+1

division

| select (first, best)

Tnak

Figure 3: SA parallelization techniques either distribute
parts of a single step (top), complete steps (middle) or
sequences of steps (bottom).

problem and instructions for memory manipulation.
Other hardware modules, such as a pseudo random
number generator, additionally, exploit instruction level
parallelism. Speculative parallel SA techniques are sup-
ported by synchronization and communication exten-
sions, which allow to reconfigure dynamically the com-
puter architecture, as well as by an acceptance predic-
tion unit.

A prototype of the architecture is implemented and
evaluated in parts on different platforms. The paral-
lelization techniques are implemented on a multipro-
cessor system consisting of 8 TMS320C40 digital signal
processors by Texas Instruments. The hardware exten-
sion modules are implemented and emulated on pro-
grammable hardware (FPGA). The experimental eval-
uation shows that the special-purpose computer archi-
tecture is capable of reducing the run—time by up to
three orders of magnitude (Fig. 4).

2192 @ 8 SA procs. 50 MHz*
O 8 SA procs. 13 MHz*

O 1 SA proc. 50 MHz*
O 1 SA proc. 13 MHz
8 procs. 50 MHz

W 1 proc. 50 MHz

1 10 100 1000 10000 Speedup

Figure 4: Speedup factors of the SA computer architec-
ture using the division technique compared to a soft-
ware solution on a single processor. As benchmark
the traveling salesman problem was used. Extrapolated
speedup factors are marked with an asterisk.

Lessons Learned

This section presents our key lessons learned from pro-
totyping parallel computer architectures for AI search
algorithms.

#1 Keep Overhead Introduced by
Dynamic Partitioning, Mapping and
Scheduling Small

Due to the high data-dependency of AI algorithms, dy-
namic partitioning, mapping and scheduling is often re-
quired in order to parallelize the algorithm. Then, these
functions have to be executed at runtime as individual
sequential tasks. From the viewpoint of performance
improvement, simple but fast methods for partitioning,
mapping and scheduling are in most cases preferable
over more complex methods. The deteriorations in par-
titioning, mapping and scheduling are outweighed by
the shorter runtime of the simpler methods.

Furthermore, the overhead introduced by the dy-
namic methods may even be the limiting factor for the
speedup. If the reduction of the execution time in the
parallelized search space is smaller than the time re-
quired for dynamic partitioning, mapping and schedul-
ing, there will be no performance gain by paralleliza-
tion.

#2 Migrate Software to Hardware to
Leverage Performance

Analysis of Al algorithms reveals that they often con-
sist of short and simple functions which are called very
often and thus dominate the overall runtime. Even a
small acceleration of these functions may speed up the
algorithm significantly. As our prototypes demonstrate,
a significant improvement can be achieved by migrat-
ing these low-level functions from software to dedicated
hardware. An important issue in software to hardware
migration is the interface between software and hard-
ware components.

#3 Deploy Specialized Computer
Architectures

A good match between the parallel/distributed struc-
ture of the search problem and the multiprocessor archi-
tecture is a precondition for high performance. General-
purpose architectures are not flexible enough to achieve
a perfect matching between problem structure, multi-
processor topology and inter-processor communication
structure. By designing specialized computer archi-
tectures a weak match can be overcome. Addition-
ally, dynamic logic structures can be supported effi-
ciently (Schneider 2000). Our prototypes demonstrate
how specialized computer architectures can be tuned
for scalability. Thus, the performance can be adapted
to the problem complexity by adding more processing
elements and dedicated hardware.

#4 Exploit Parallelism at Multiple Levels

Obviously, the speedup can be improved if the paral-
lelism is exploited at multiple levels. However, by using
general-purpose multiprocessor or multicomputer archi-
tectures, parallelism can only be exploited at a single
level, i.e., at the task or application level. By deploy-
ing a specialized computer architecture with dedicated
hardware, i.e., combining lessons #2 and #3, high-level
parallelism can be exploited among the processing ele-
ments and low-level parallelism can be exploited within
the dedicated hardware.

#5 Be Aware of Differences in Sequential
and Parallel Search

Partitioning of the search space into smaller problems
may change the behavior of the search. This is ex-
emplified by our prototypes: The dynamic partitioning
method VBP (Platzner & Rinner 1998) in prototype 1,
not only divides the search space of the CSP into in-
dependent sub-spaces but may also prune genuinely in-
consistent parts. Thus, the overall space for the par-
allel search may be significantly smaller than for the
sequential search which may result in a super-linear
speedup. Due to the stochastic nature of the search
in prototype 2, the parallel search may converge faster
than the sequential search. This is because (i) spread-
ing the search increases the probability of finding better
solutions in the neighborhood of the current solution,
and (ii) merging (synchronizing) helps to overcome the
problem of being trapped in a local minimum.

Conclusion

In this paper we have presented two prototypes of par-
allel computer architectures for the general Al search
methods constraint satisfaction and simulated anneal-
ing. Due to differences in the algorithmic characteristic,
parallelization of AI algorithms is more complex than
parallelization of numerical algorithms. Dynamic parti-
tioning, mapping and scheduling especially complicate
the parallelization process.

Our approach of designing specialized computer ar-
chitectures results in runtime improvements of several
orders of magnitude.

Acknowledgments

This work has taken place at the Institute for Technical
Informatics, Technical University Graz and has been
supported in part by the Austrian Science Fund under
grant number P10411-MAT.

References

Aarts, E., and Lenstra, K. 1997. Local Search in Com-
binatorial Optimization. Interscience Series in Discrete
Mathematics and Optimization. John Wiley & Sons.

Higuchi et al., T. 1994. The IMX2 Parallel Associative
Processor for AI. IEEE Computer 27(11):53-63.

1992. IEEE Computer. Computer Architectures for
Intelligent Systems.

Kuipers, B. 1994. Qualitative Reasoning: Modeling
and Simulation with Incomplete Knowledge. Artificial
Intelligence. MIT Press.

Mackworth, A. K. 1992. Constraint Satisfaction. In
Shapiro, S. C., ed., Encyclopedia of Artificial Intelli-
gence, volume 1. John Wiley & Sons, Inc. 285—-293.

Moldovan, D.; Lee, W.; Lin, C.; and Chung, M. 1992.
SNAP Parallel Processing Applied to AI. IEEE Com-
puter 25(5):39-49.

Platzner, M., and Rinner, B. 1998. Design and Imple-
mentation of a Parallel Constraint Satisfaction Algo-
rithm. International Journal of Computers and Their
Applications 5(2):106-116. International Society of
Computers and Their Applications (ISCA).

Platzner, M.; Rinner, B.; and Weiss, R. 1997. Par-
allel Qualitative Simulation. Simulation Practice and
Theory — International Journal of the Federation of
European Simulation Societies 5(7-8):623-638. Else-
vier Science Publishers B.V.

Platzner, M.; Rinner, B.; and Weiss, R. 2000. To-
ward Embedded Qualitative Simulation: A Special-
ized Computer Architecture for QSim. IEFEE Intelli-
gent Systems 15(2).

Schmid, M., and Schneider, R. 1999. Parallel Simu-
lated Annealing Techniques for Scheduling and Map-
ping DSP-Applications onto Multi-DSP Platforms. In
Proceedings of the International Conference on Sig-
nal Processing Applications € Technology. Orlando,
U.S.A.: Miller Freeman, Inc.

Schneider, R., and Weiss, R. 2000. Hardware Sup-
port for Simulated Annealing and Tabu Search. In
Workshop on Biologically Inspired Solutions to Paral-
lel Processing Problems at the International Parallel
and Distribute Processing Symposium 2000. Cancun,
Mexico: Springer Verlag LNCS.

Schneider, R. 2000. Ein Spezialprozessor fiir kombina-
torische Optimierung. Ph.D. Dissertation, Institut fiir
Technische Informatik, Technische Universitit Graz.

