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Abstract

We present a model�based monitoring method
for dynamic systems that exhibit both discrete
and continuous behaviors� MIMIC �Dvorak
and Kuipers� ����� uses qualitative and semi�
quantitative models to monitor dynamic sys�
tems even with incomplete knowledge� Re�
cent advances have improved the quality of
semi�quantitative behavior predictions� used
observations to re	ne static envelopes around
monotonic functions� and provided a semi�
quantitative system identi	cation method� Us�
ing these� we reformulate and extend MIMIC to
handle discontinuous changes between models�
Each hypothesis being monitored is embodied
as a tracker� which uses the observation stream
to re	ne its behavioral predictions� its under�
lying model� and the time uncertainty of any
discontinuous transitions�

keywords� model�based monitoring
 model re�
	nement� hybrid systems

� Introduction

Physical systems are by nature continuous� However�
it is natural to simplify models by abstracting isolated
regions of rapid change to instantaneous discontinuities
separating regions of continuous behavior �Iwasaki et al��
����
 Nishida and Doshita� ���
�� Systems which exhibit
both continuous and discrete behaviors are called hybrid
systems � where a continuous segment of the system�s be�
havior is called a mode of operation and a discontinuous
change is called a transition between modes�

Model�based monitoring relies on a comparison be�
tween the predicted behavior of a model and the ob�
served behavior of a physical system� Traditional moni�
toring approaches typically use a single precise model of
the physical system� However� even if the system is be�
having properly� precise parameter values and functional
relationships are often not known� More importantly�
monitoring systems are designed to detect unexpected
events or faults� after which knowledge of the system is
by de	nition incomplete� A reliance on precise models
leads to overly�speci	c predictions� sacri	cing accuracy

and coverage exactly when it is most important for the
monitoring system to consider all possible scenarios�

The MIMIC framework �Dvorak and Kuipers� �����
addresses this need� 	rst by using qualitative and semi�
quantitative �SQ� models in the QSIM representation
�Kuipers� ����� to express incomplete knowledge with
a guarantee that all possible real�valued behaviors are
covered
 and second� by tracking multiple qualitatively�
distinct hypotheses in parallel� SQSIM �Kay� ����� ex�
tends the semi�quantitative inference power of QSIM by
deriving and reasoning with dynamic envelopes guar�
anteed to bound the real behaviors consistent with an
SQ model� SQUID �Kay� ����
 Kay et al�� ����� is a
semi�quantitative system identi	cation method based on
SQSIM that assimilates a set of observations to an SQ
model over a single continuous mode�

Time uncertainty at a mode transition has a partic�
ularly explosive e�ect on the uncertainty of predictions
from the SQ model after the transition� Therefore� we fo�
cus our attention 	rst on getting the most out of SQUID�
based tracking of a continuous mode hypothesis� and
second� on detecting the mode transition and re	ning
its time uncertainty� In our approach� the monitoring
system starts with a coarse description of the physical
system and uses the observation stream to re	ne the be�
havior prediction� its underlying model� and the time
uncertainty of any discontinuous transition� After pre�
senting the details of our extension and reformulation
of MIMIC� we present a non�trivial example and discuss
related work�

� Tracking Piecewise Continuous

Behaviors

A tracker embodies a continuous mode hypothesis and
con	rms or refutes the hypothesis by unifying its predic�
tions with the observed behavior� When the observations
provide su�cient new information� the tracker may be
able to re	ne the imprecision in the underlying model�
and thus make more precise predictions in the future�

��� SQ System Identi�cation

A tracker is based on SQUID �Kay et al�� ������ which
re	nes an imprecise model �SQDE� by a process called
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Figure �� Trend matching compares the prediction and
the observation corresponding to the level of detail in
the behavior prediction derived by SQSIM �qualitative�
segment and dynamic envelope description�� Trends de�
scribe the observed data at the same levels�

trend matching � Imprecision in the SQDE is represented
by numerical intervals bounding possible values of un�
known parameters� and by static envelopes � functions
bounding the possible graphs of unknown monotonic
functions�

Trend matching compares semi�quantitative trajec�
tory descriptions derived by SQSIM �the SQ prediction�
and the corresponding properties of the observations �the
SQ trend�� To re	ne the underlying model� portions of
the model space which cannot plausibly generate the ob�
servations are excluded�

There are three levels of abstracted properties of the
trajectories� corresponding to the level of detail derived
by the components of SQSIM� qualitative �QSIM�� seg�
ment �Q��� and dynamic envelope �NSIM� descriptions
�Figure ��� The qualitative description is de	ned by a
sequence of symbols ��� � and �� representing the deriva�
tive�s sign �qdir� of the trajectory at time points and
intervals between time points� The segment description
speci	es intervals bounding the trajectory at particular
time points� i�e�� magnitude and time ranges� The dy�
namic envelope description bounds the trajectory by a
lower and an upper envelope� A trend represents the ab�
stracted properties of the observed data �Figure ��� i�e��
symbols representing the qdir� bounding intervals on ex�
trema and bounding envelopes for monotonic segments�
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Figure �� Tracker architecture�

��� Tracker Architecture

Figure � presents the architecture of a tracker� The
tracker is initialized with the SQ prediction and the un�
derlying SQDE of the current mode� Information about
the time boundary and the time uncertainty of the cur�
rent mode may be given� The tracker consumes an ob�
servation stream and it either produces a re	ned SQ pre�
diction and SQDE� or detects a discrepancy between the
observation and the prediction� The observation stream
is a sequence of samples� numeric values for variables at
speci	ed times derived by possibly noisy sensors� Sam�
ples do not necessarily appear at a constant rate� and
need not be synchronized across variables�
Trend forming generates an SQ trend describing

each variable in the observation stream by breaking the
samples into monotonic segments �Kay et al�� ������ The
segments are determined by computing the slope of a
linear least�squares 	t to the data within a sliding win�
dow over the samples� Dynamic envelope descriptions
for the � and � segments are generated by MSQUID� a
neural network�based estimator for monotonic functions
�Kay and Ungar� ����
 ������ out to any given con	dence
bound� Each � segment is described by the segment�s
time interval and the minimum and maximum sample
values over that interval�

The goal is to detect the qualitative dynamics of the
underlying signal in the noisy observation� In the cur�
rent implementation it is assumed that Gaussian noise of
	xed mean and variance is superimposed on the �pure�
signal� Each observed variable has an error model that
speci	es bounds on mean and variance for noise�
Trend mapping compares the SQ trend derived from

the observations with the SQ prediction by stepping
through both sequences� If an inconsistency is detected
between the trend and the prediction� the current hy�
pothesis is refuted� so the mapping process and the cur�
rent tracker are aborted�



Qualitative mapping generates a correspondence be�
tween the qdirs in the SQ prediction and the SQ
trend� A successful correspondence may fail to be
one�to�one because �i� the samples in the observa�
tion stream may end before some of the qualitative
changes in the SQ prediction take place
 �ii� the SQ
prediction terminates with a mode change before
the end of the current SQ trend� leaving data to
correspond to the next mode
 or �iii� the SQ predic�
tion may include small qdir changes which are not
detectable in a noisy observation stream�

Segment mapping ensures consistency of corresponding
behavior segments in the SQ trend and the SQ pre�
diction� in the sense that their time and magnitude
bounds overlap� Consistency of segments is checked
by asserting the segment bounds of the SQ trend
to the corresponding segments of the SQ predic�
tion and propagating these bounds to the other vari�
ables in the SQDE using Q��s interval propagation
�Kuipers� ������

Dynamic envelope mapping ensures consistency by in�
tersecting the dynamic envelopes for corresponding
monotonic segments of the trend and the prediction�

Model re�nement takes place when trend mapping
decreases the bounds on some variables in the SQDE�
Parameter imprecision is re	ned by using Q� to derive
bounds on independent variables from dependent ones�
Q� propagates intervals across model variables at time
points and uses the �weak� Mean Value Theorem to
propagate those bounds over time intervals� The dy�
namic envelopes in the SQ trend provide more informa�
tion than just magnitude and time bounds over mono�
tonic segments� Model re	nement exploits this informa�
tion by introducing several instantaneous �snapshots�
over the monotonic trend segments and propagating the
smaller magnitude bounds at these time instants to other
model variables� The number of �snapshots� a�ects the
achieved re	nement and is speci	ed by the user� Func�
tional imprecision is re	ned by excluding portions from
the static envelopes that are inconsistent with the �re�
	ned� variable bounds� The trend matching techniques
guarantee that portions of the model space are ruled out
only when they are inconsistent with the observations
�Kay et al�� ������

If a mode change is manifested by a discontinuous
change of an observed variable or a sudden sign change of
its slope� the change becomes explicit in the purely qual�
itative trend� and is easy to detect� Otherwise� segment
and dynamic envelope trend mapping should eventually
refute the current model� but excessive imprecision in
the model and uncertainty in the data could prevent the
change from being recognized�

Once a mode change has been detected� the tracker for
the next mode is initialized with the variable values at
the transition point� The new tracker attempts to create
a mapping between its SQ prediction and the remaining
segments of the observed trend� Time uncertainty in
the mode change a�ects the current tracker and more

dramatically the following tracker� in an important way�

� Re�ning the Time Uncertainty of

Discontinuous Changes

We assume that there are three possible causes for dis�
continuous changes in the model of a complex system� �i�
the autonomous operation of the plant moves from one
operating mode to another
 �ii� the plant operator takes
a known action
 and �iii� an unexpected and externally
caused event such as a failure takes place� In the 	rst
two cases� the current and following modes are known�
In the third case� we assume that a separate diagnosis
engine proposes a set of fault hypotheses� which MIMIC
tracks in parallel�

A discontinuous change happens in an instant� Unfor�
tunately� with imprecise models and noisy and 	nitely
sampled observations� we may never be able to deter�
mine the precise instant when the change takes place�
The best we can do is determine time bounds on the
instant when the change occurred�

For matching a piecewise continuous model to a
stream of observations� it is particularly important to
make the time bounds on discontinuous changes as pre�
cise as possible� Time uncertainty on a mode change af�
fects the entire correspondence between prediction and
observation in the following mode� resulting in propa�
gating uncertainty� Figure ��c� shows how weak time
bounds on a discontinuous change can result in ex�
tremely weak bounds on the prediction of the follow�
ing mode� Therefore� we focus on improving these time
bounds�

��� Intersecting Trend and Prediction

We focus here on re	ning time uncertainty of a mode
change based on the intersection of SQ trend and SQ
prediction� After semi�quantitative reasoning has pro�
vided bounds on the transition time� advanced 	ltering
techniques based on statistical or digital signal process�
ing may be applicable�

When there is time uncertainty� the mapping between
the SQ trend and the SQ prediction is not 	xed� The
SQ prediction can be shifted relative to the SQ trend by
any o�set within the range of the time uncertainty�

However� a mapping is only valid if the SQ trend seg�
ment and the SQ prediction segment have a non�empty
intersection for every time�point t in the SQ trend� This
is exploited to derive re	ned bounds on the time uncer�
tainty of discontinuous changes �Figure ���

For � segments� the mapping is valid as long as �i� the
upper envelope of the trend is above the lower envelope
of the prediction and �ii� the lower envelope of the trend
is below the upper envelope of the prediction� More for�
mally� we can determine the lower bound tcmin and the
upper bound tcmax� respectively� as follows�

tcmin � minfts � �t� xtr�t� � xpr�t� ts�g
tcmax � maxfts � �t� xtr�t� � xpr�t� ts�g
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Figure �� Deriving bounds on the time uncertainty by
intersecting the SQ prediction and the SQ trend�

where xtr�t� is the observed trend for x�t�� xpr�t� ts� is
the prediction� shifted by ts� Over� and under�bars rep�
resent the upper and lower dynamic envelopes� respec�
tively� Similar conditions hold for � and � segments�

This intersection process is applied to all segments of
the mode� Improvements in time uncertainty propagate
from segment to segment by interval arithmetic and in�
tersection of bounding intervals�

��� Incremental Re�nement

When there is a great deal of time uncertainty about the
transition from one mode to another� many samples in
the observation stream fall within the uncertainty inter�
val� and thus cannot be unambiguously assigned to one
of the adjacent segments of monotonic change� After
time uncertainty is decreased� some samples can now be
assigned to a de	nite adjacent segment� The additional
information helps re	ne the mode the segment belongs
to� and its underlying model� Improvements to the ad�
jacent modes can� in turn� lead to further decreases in
time uncertainty of the transition� And so on until no
further improvement results�

The algorithm for incremental re	nement of the time
uncertainty between two adjacent modes i and j is pre�
sented in Figure �� The trend�prediction intersection
�line 
� is performed for each behavior in the succeeding
mode� If the trend is inconsistent with the behavior at
the qualitative level or no valid mapping can be found for
any time o�set within the time uncertainty the behavior
is refuted �line ��� Since each behavior is independently
intersected with the trend this method results in di�erent
re	nements on the uncertainty interval for each behavior
of the succeeding mode�

� refine�transition�tu� modei� modej� SQtrend�
� behs � generate�behaviors�modej�
� for each behavior beh in behs do
� t � tu
	 repeat

 refine � false
� tn � intersect�beh� SQtrend�
� if �tn 
 	� then
� refute beh
�� elseif �tn � t� then
�� t � tn
�� refine � true
�� re�assign samples to modei and modej
�� re�track modei
�	 inherit re�nements from modei to beh
�
 endif
�� until not�refine�
�� endfor

Figure �� Incremental re	nement of the initial time un�
certainty tu between modei and modej�

� Overall Monitoring System

The overall monitoring system tracks multiple hypothe�
ses in parallel� The hypotheses may represent di�erent
nominal or fault models of the plant� or they may repre�
sent di�erent qualitative behaviors predicted from semi�
quantitative simulation of a particular model�

A particular hypothesis is a sequence of mode hy�
potheses �H��t�� t��
H��t�� t��
 
 
 
 
Hn�tn��� tn��� The
monitoring system alternates between tracking a partic�
ular mode hypothesis Hi�ti��� ti� and re	ning the time
uncertainty of the mode transition at ti� Several track�
ers and their hypotheses may be re	ned in parallel �Fig�
ure ��� The achieved re	nements �SQ prediction and
SQDE� are passed to the tracker manager which instanti�
ates new trackers and re	nes the time uncertainty of the
mode transition� As discussed in Section �� we assume
that the models for new modes are known� Information
from the observation stream� such as the satisfaction of
a condition that autonomously moves the system to an�
other mode or a signal indicating an operator action�
allows the tracker manager to choose the model�s� for
the new mode� Fault models may also be proposed at
any time by a separate diagnosis engine�

Model re	nements such as improved variable bounds
or static envelopes may be inherited from one model Hi

to the next Hi�� across a mode transition� In the cur�
rent implementation� the user speci	es the variables and
functional relations whose re	nements can be inherited�

The degree of model precision is important for the
fault detection performance of our monitoring system�
However� with imprecise models� uncertain observation
and limited observability we may never be able to detect
all faults or distinguish between every possible hypoth�
esis� In order to achieve a su�ciently precise prediction
for fault detection� �i� our initial knowledge about the
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system must be precise enough or �ii� we must collect
enough data from the �healthy� physical system to re�
	ne its model to the required degree of precision�

� Experimental Results

We demonstrate the re	nement capabilities of our mon�
itoring system using a two tank system� In this example
�Figure ��a��� we start with a 	lled upper tank and an
empty lower tank
 the drains of both tanks are open and
the upper tank is 	lled at a constant in�ow rate� When
the amount in the upper tank drops below a limit the in�
�ow rate is increased� This scenario is modeled as a tran�
sition between two operating modes �Figure ��b��� Only
imprecise information is known about this scenario� i�e��
intervals for variables and bounding envelopes for func�
tional relations� Since both tanks remain unchanged�
the re	nements of the variables a and b as well as of the
functional relations f and g are inherited from the 	rst
to the second mode�

SQSIM predicts � di�erent behaviors for the two tank
scenario
 � of them include the region transition� Only
one is consistent with the SQ trend
 the other trackers
are refuted� Figure ��c� shows the predicted dynamic
envelopes for the amount in the lower tank for the sur�
viving prediction� SQSIM predicts the time of the mode
transition as ������ inf ��

The observations are generated by numeric simulation
of an ODE� adding Gaussian noise with 	xed mean and
variance to the samples� The exact model for deriving
the samples is given as a� � ifa��

p
a� b� � �

p
a��

p
b

with a�t�� � ��� b�t�� � �� c � � and an in�ow rate
ifa � �� before and ifa � �� after the transition� The
samples are generated at a rate of �� Hz�

Figure ��d� shows the samples and bounding envelopes
derived by trend forming for the variable b� MSQUID

obs� vars� a�t� b�t� f g tc
none � � � � ������ inf	
b � 
��� � � �
��
� ��
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Table �� Achieved re	nements dependent on the ob�
served variables including noise with � � � and var � ��
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���� ��
�	

Table �� Achieved re	nements dependent on the ob�
served variables including noise with � � � and var � ��

constructs the bounding envelopes around the observa�
tions to achieve a certainty of ���� This 	gure also
presents the 	nal re	nement achieved by the monitor�
ing system� The dynamic envelopes for b are re	ned
to ��� of their initial area and the time uncertainty
is re	ned to ���
�� ����� after two iterations of the re�
	nement algorithm�� Observations for a� b� ofa and ofb�
with noise � � � and var � �� are used in this case�
Note the propagation of re	nements through the SQDE�
i�e�� the dynamic envelopes in the 	rst segment are nar�
rower than the bounding envelopes of the observation of
b� Due to time uncertainty� the dynamic envelopes in
the second mode are wider than the bounding envelopes
of the observation�

The e�ect of observability is shown in Table �� This
table presents the achieved re	nements dependent on the
observed variables� The degree of re	nement is de	ned
by the ratio of the predicted and re	ned areas for vari�
ables and functional relations� For the variables a and b�
the area is speci	ed by the dynamic envelopes over the
observation time� For the functional relations f and g�
the area is speci	ed by the bounding functions �static
envelopes� over the range of f and g� The achieved re�
	nement of the time uncertainty is represented by tc�
As the number of observed variables increases the re�
	nement improves and extends to more variables and
functional relations� Table � presents the reduced re	ne�
ments caused by an increase of noise in the observation�

� Conclusion

We have presented a method for monitoring dynamic
systems that exhibit both discrete and continuous be�
haviors� The monitoring system re	nes the behavior pre�
diction� the underlying model and the time uncertainty
of discontinuous changes� The hypothesis is refuted and
pruned from the tracking set when re	nement eliminates
all possible values for any parameter�

Trend matching uses a statistical best 	t to observed

�In our experiments incremental re�nement never required
more than � iterations� it usually stopped after � or 
�



AMOUNTB

t

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00

........................................................................................................................................................



AMOUNTB

t

-5.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00

................................................................................................................................................

............................................................................................................................................................................
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(a) Two tank scenario
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Tank B outflow ofb
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amount a
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(d) Refined behavior and time uncertainty

(c) Predicted behavior

(b) Imprecise model with mode transition

a’  =  ifa - f(a)

b’  =  f(a) - g(b)

a(t0) = [90, 100]

f(a) = [8*sqrt(a), 12*sqrt(a)]  = ofa

g(b) = [8*sqrt(b), 12*sqrt(b)]  = ofb

ifa = {[24, 26]

[60, 65]

if a>c

otherwise

b(t0) = [0, 0] c = [8, 12]

Figure �� A two tank scenario �a�� modeled as an autonomous mode transition �b�� its prediction �c� of the upper
and lower bounds �dynamic envelopes� for b� and the re	ned bounds and time uncertainty �d�� In both graphs� the
solid lines represent the predicted or re	ned dynamic envelopes� The dotted box represents the time uncertainty
of the mode change
 the dashed lines represent the bounding envelopes of the observations �d�� Due to the time
uncertainty of the discontinuous change the prediction of the second mode can start at any time within the dashed
box� For the sake of readability� they start in the middle �c� and at the right end �d� of the dashed box� respectively�

data� plus bounding envelopes out to any desired con	�
dence bound� Portions of the model space are removed
only when they are inconsistent with these bounds� This
gives a good �and adjustable� compromise between ag�
gressiveness and robustness in handling noise and unin�
formative data�

Related work has been done by �Mosterman et al��
������ In their framework for model�based diagnosis
the physical system is modeled by a temporal causal
graph� Qualitative candidate models are derived from
this representation and parameter estimation techniques
are applied to 	t the candidate models to the obser�
vation� TrenDx �Haimowitz and Kohane� ����� is a
monitoring system which uses a semi�quantitative rep�
resentation of a behavior and attempts to 	t data to
this behavior representation� Since TrenDx uses pre�

de	ned behavior templates no re	nement can be per�
formed� PRET �Bradley and Stolle� ����� automatically
constructs a precise ODE model of a physical system�
PRET focuses on system identi	cation and not on mon�
itoring� Loiez and Taillibert �Loiez and Taillibert� ���
�
use piecewise polynomial functions� so�called temporal
band sequences� to bound the observation stream� The
behavior of components in analog circuits is modeled by
sums of temporal functions including derivatives of any
order� This approach is only able to detect discrepancies
but not to predict the behavior of the system� McIlraith
et al� �McIlraith et al�� ����� present an approach for
diagnosing hybrid systems where all mode transitions�
i�e�� the history of executed actions� are known� Can�
didate generation and model estimation are based on
the model�based diagnosis framework of �Mosterman et



al�� ����� and the tracker framework is adopted to re	ne
multiple candidates�

Furthermore� our monitoring method is directly ap�
plicable to fault diagnosis in dynamic systems� Fault
hypotheses can be proposed for monitoring based on
initial weak information such as the signs of discrep�
ancies between observations and predictions� by using
existing methods such as �de Kleer and Williams� ���


Ng� ������ Automatic model�building methods can select
relevant model�fragments from a background knowledge
base to express initially weak knowledge about a fault
as an SQDE �Crawford et al�� ����
 Rickel and Porter�
������ The observation stream is then used to re	ne or
refute each proposed model�
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