On-line Scheduling of Tasks in Multi-DSP Systems *

Bernhard Rinner and Diethard Kaufmann

E-mail:

rinner@iti.tu-graz.ac.at

Institute for Technical Informatics
Technical University of Graz, AUSTRIA

Abstract

We present a comparison of three dif-
ferent list scheduling algorithms for on-line
scheduling of independent tasks. This com-
parison is based on runtime measurements
of parallel applications taken on a multi-
DSP system (TMS320C40) of up to 8 pro-

CeSsors.

keywords:
list scheduling,
multi-DSP TMS320C/0,
parallel processing

1 Introduction

Many applications in the area of digi-
tal signal processing are implemented on
multi-processor systems to meet their high
performance requirements. In such a
multi-processor implementation the overall
application is partitioned into a collection
of separate cooperating and communicat-
ing modules, called tasks [4]. Tasks can
execute in sequence or at the same time on
two or more separate processing elements.

*This project is partially supported by the
Austrian National Science Foundation Fonds zur
Férderung der wissenschaftlichen Forschung un-
der grant number P10411-MAT.

The scheduling of the tasks, i.e., the order-
ing of their execution, plays a crucial role
for the overall performance.

Scheduling is a NP-complete problem;
it must satisfy the conditions of the tasks
(e.g., time constraints and precedence re-
lations) and of the computer architecture
(e.g., number of processing elements and
communication times) [7]. The objective
is to find an optimal mapping with regard
to a specific optimality criteria. A com-
mon optimality criteria is the sum of the
completion time of all tasks.

There are many applications which do
not have strong dependencies between the
tasks. Especially in the field of digital sig-
nal processing, multi-processor implemen-
tations exploit the data parallelism of the
DSP-algorithms. Examples of such imple-
mentations are audio or image processing
applications where each task operates in-
dependently in its own frequency range or
image area, respectively. However, even
in those applications some characteristics,
like the number of tasks and/or their ex-
ecution times, are either often not known
at compile time or may change during run-
time. Therefore, on-line scheduling is nec-
essary.

In this paper we compare three differ-
ent list-scheduling algorithms for on-line
scheduling. In Section 2, the scheduling
algorithms are briefly described. Section 3

1 procedure LS-I()

2 begin

3 for all n processors i do
4 sum; < O

5 tasklist; « 0

6 endfor

7 for all tasks j do

8 find processor i with min. sum;+p;;
9 sum; < sum;+p;;

10 add {j} to tasklist,
11 endfor

12 end

Figure 1: Pseudo code for the simple list
scheduling algorithm (LS-T).

presents the experimental setup and the re-
sults. Section 4 concludes the paper.

2 List Scheduling Algorithms

In on-line scheduling, the execution time
of the scheduling algorithm is included in
the overall execution time. Heuristics are
often applied for on-line scheduling to keep
the execution time of the scheduling algo-
rithm small. However, the heuristics differ
in their qualities, i.e., the deviation in com-
pletion time between the generated and the
optimal schedule. Hence, there is a trade-
off between the scheduler’s execution time
and it’s quality, both influencing the over-
all execution time.

List scheduling [2] is an excellent
scheduling heuristic for independent tasks
on multi-processor implementations due to
the following reasons.

e This scheduling heuristic exploits the
execution times of the tasks or esti-
mations of the execution times to im-
prove the schedule.

e List scheduling guarantees that the
deviation of the completion time is
bounded by the factors n, g n or

(1 + v/2)y/n for the three scheduling
algorithms where n denotes the num-
ber of processors.

e List scheduling has a short execution
time; it is essentially linear in the
number of tasks and number of pro-
Cessors.

The list scheduling algorithm generates
the schedule using an individual tasklist
for each processor. This scheduling algo-
rithm requires the task execution times of
all tasks on all processors. The execution
time of task j on processor ¢ is denoted
as p;;- Hence, this scheduling heuristic is
capable of scheduling tasks on heteroge-
neous multi-processor architectures. In the
following sections, the list scheduling al-
gorithm and two modifications are briefly
described. A detailed description can be
found in [6].

2.1 Simple List Scheduling

The simple list scheduling algorithm
(LS-T) is based on [3] and is shown in Fig-
ure 1. In simple list scheduling, the as-
signment of tasks to processors is based on
the actual processing time of each proces-
sor, sum;. Each task is assigned to the pro-
cessor with the minimal sum of processing
time and task execution time (line 8).

2.2 Modified List Scheduling

The modified list scheduling algorithm
presented in Figure 2 was firstly intro-
duced by [1]. Tt differs from the simple list
scheduling algorithm mainly by two facts.
First, for each processor a tasklist includ-
ing all tasks is created. The tasks in these
tasklists are sorted by their efficiency. The
efficiency e;; of a task j on processor ¢ is
defined as the ratio of the minimum exe-
cution time of task j over all processors to
the execution time of task j on processor i

1 procedure LS-II()

2 begin

3 for all n processors i do

4 create tasklist; sorted by e;;

5 sum; < 0

6 endfor

7 while (not all tasks are assigned) do
8 find processor i with minimal sum;
9 get next unassigned task j of tasklist;
10 if ((A3) V (e <¢Lﬁ)) then
11 deactivate processor i

12 else

13 assign task j to processor i

14 sum; < sum; + p;;

15 endif

16 endwhile

17 end

Figure 2: Pseudo code for the modified list
scheduling algorithm (LS-II).

(e;j < 1). Second, a task is only assigned
to the processor with the shortest process-
ing time, if the task has a high efficiency.
If the efficiency drops below a limit, then
the processor is deactivated and no more
tasks are assigned to it (line 11).

In the third scheduling algorithm, LS-
III, the ordering criteria for the tasklists is
extended. Tasks with the same efficiency
are ordered by their execution times.

3 Experimental Results

The comparison of the three schedul-
ing algorithms is based on runtime mea-
surements taken on a multi-DSP system
from Transtech. This PC-based system is
equipped with up to 8 TMS320C40 pro-
cessors (TIM40 modules). Two parallel
implementations are used for the com-
parison. In the first implementation, a
set of randomly generated dummy tasks
with predefined execution times is sched-
uled. In the second implementation, the
list scheduling algorithms are applied in

task set | mean [ms] | std. dev.
T1 1 0.5
T2 10 5
T3 100 50

Table 1: Mean and standard deviation of
the task execution times for the randomly
generated tasks.

a high-performance simulator. Both par-
allel algorithms are implemented using
the distributed operating system Virtuoso
[8]. They are organized in a master/slave
structure. The master processor is respon-
sible for the task generation, the schedul-
ing of all tasks onto the slave processors as
well as the reception and processing of the
tasks’ results. All tasks are executed on the
slave processors. The multi-DSP system is
connected in a tree topology with the mas-
ter processor as root. The root has at most
5 children. Hence, the tree topology of the
8-processor system has 5 processors at the
first level and 2 processors at the second
level.

Two runtimes are used for the compari-
son: the runtime required for the schedul-
ing of all tasks on the master processor,
tsen, and the runtime required for the exe-
cution of all tasks on the slave processors,
tere. This runtime includes the communi-
cation time for the tasks’ input and output
data.

3.1 Randomly Generated Tasks

To evaluate the scheduling algorithms, a
predefined number of independent dummy
tasks is generated. At task generation,
each task is assigned to a random task
execution time which is utilized by the
scheduling algorithms. On the slave pro-
cessors, the tasks wait actively for the pre-
defined task execution time and then they
return an acknowledgment to the master
processor. Three different sets of tasks are

t(n) [ms]

Figure 3: Runtimes of LS-I, LS-IT and LS-
I1I for scheduling 100 tasks on 1 to 7 slave
Processors.

used for the comparison. Each set consists
of 100 tasks with normally distributed exe-
cution times. Table 1 shows the mean and
standard deviation of the task execution
times. The tasks are scheduled on 1 to 7
slave processors.

Figure 3 presents the runtimes of the
scheduling algorithms dependent on the
number of slave processors, n. LS-I has
the shortest runtime; the runtime of LS-1I
and LS-III increases linear with the num-
ber of slave processors due to the sorting
of the tasklists by the task efficiency e;;.

Figure 4 shows the
influence of the scheduling algorithm on
the overall speedup. The overall speedup
S(n) is defined as the ratio of the single-
processor runtime over the runtime of the
parallel implementation using n slave pro-
cessors (tsen + tese). LS-T achieves a better
speedup for short tasks (tasks set T1) than
the other two scheduling algorithms due to
the short runtime of the scheduling algo-
rithm. In this case, t,., and the commu-
nication overhead limit also the speedup.
For longer task runtimes, the runtime of all
tasks, t.ze, dominates the runtime of the
parallel implementation. For these tasks,
LS-IT and LS-III achieve better speedups
than LS-I.

3.2 Application Example

In this application example, the list
scheduling algorithms are applied in a par-
allel implementation of a qualitative sim-
ulation algorithm [5]. In this application,
the tasks are also scheduled onto n slave
processors. However, there are two differ-
ences to the previous application. First,
the slave processors are equipped with spe-
cialized coprocessors to reduce the runtime
of some functions. Hence, the runtime for
a task may be different on different slave
processors. Second, the exact runtime of
a task is not known at scheduling time.
Therefore, estimations of the runtimes are
used.

Table 2 shows the scheduling runtime,
tsen, and the runtime of all tasks, t.ze, for
the three different simulation models M1,
M2 and M3. Each model is partitioned
into 30 tasks which are executed on 3 slave
processors. In this special-purpose com-
puter architecture, each slave processor is
equipped with a different coprocessor. In
most cases, LS-I achieves the shortest par-
allel runtime (t4p + tere). The modified
scheduling algorithms do not sufficiently
reduce the task completion time to com-
pensate for the increased scheduling time.
Therefore, LS-1 is finally applied in this im-
plementation.

4 Conclusion

We presented a comparison of three list
scheduling algorithms for on-line schedul-
ing of independent tasks on multi-DSP sys-
tems. The modified list scheduling algo-
rithms LS-IT and LS-IIT achieve better re-
sults for tasks with longer execution times
(tsen < teze) and more slave processors.
In these cases, the scheduling algorithms
reduce the parallel execution time. For

task set T1 task set T3
7" T T T T T = 7 7
6F LS|~ 1 6 6
5 LS =— q 5 5
Al LSl 1 2 2
% 30 1 3 7 3
2;/3/@6% 2 2
1 1 1 1
o | | | | | o 1 1 1 1 1 o 1 1 1 1 1
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
n n n

Figure 4: Achieved speedup S(n) using 1 to 7 slave processors for the task sets T1, T2 and
T3.

LS-I LS-II LS-IIT
model | tsen[ms| | teze[ms| | tscn[ms] | texe[ms] | tsen[ms] | texe[ms]
M1 0.12 27.09 0.73 27.10 1.28 27.12
M2 0.12 2.75 0.71 1.47 1.28 1.67
M3 0.13 0.78 0.72 0.90 1.29 0.90

Table 2: Comparison of LS-I, LS-IT and LS-IIT using 3 slave processors. Measurements are

taken from a parallel high-performance simulator.

short task execution times (tsep, & tege),

ing. IEEFE Parallel € Distributed Tech-

LS-I results in the shortest parallel execu- nology, 1(5):155-166, May 1993.
tion time.
[5] M. Platzner, B. Rinner, and R. Weiss.
Parallel Qualitative Simulation. Simu-
lation Practice and Theory, 1997. Else-
References vier Science Publishers B.V. In print.
[1] E. Davis and J. M. Jaffe. Algo- [6] B.Rinner. Design, Implementation and
rithms for Scheduling Tasks on Unre- Experimental Evaluation of a Scalable
lated Processors. Journal of the ACM, Multiprocessor Architecture for Quali-
28(4):721-736, Oct. 1981. tative Simulation. PhD thesis, Graz
University of Technology, 1996.
[2] R.I. Graham. Bounds on multiprocess-
ing timing anomalies. SIAM Journal [7] J. A. Stankovic, M. Spuri, M. D. Na-
on Applied Mathematics, 17(2):416— tale, and G. C. Buttazzo. Implica-
429, Mar. 1969. tions of Classical Scheduling Results
for Real-Time Systems. [EEE Com-
[3] O. H. Ibarra and C. E. Kim. Heuris- puter, 28(6):16-25, June 1995.
tic Algorithms for Scheduling Indepen-
dent Tasks on Nonidentical Processors. 8] E. Verhulst. Virtuoso: A virtual sin-

Journal of the ACM, 24(2):280-289,
Apr. 1977.

T. Lewis and H. El-Rewini. Parallax:
A Tool for Parallel Program Schedul-

gle processor programming system for
distributed real-time applications. Mi-

croprocessing and Microprogramming,
40:103-115, 1994.

