
On�line Scheduling of Tasks in Multi�DSP Systems �

Bernhard Rinner and Diethard Kaufmann

E�mail� rinner�iti�tu�graz�ac�at

Institute for Technical Informatics

Technical University of Graz� AUSTRIA

Abstract

We present a comparison of three dif�
ferent list scheduling algorithms for on�line
scheduling of independent tasks� This com�
parison is based on runtime measurements
of parallel applications taken on a multi�
DSP system �TMS���C��	 of up to 
 pro�
cessors�

keywords�

list scheduling�
multi�DSP TMS���C���
parallel processing

� Introduction

Many applications in the area of digi�
tal signal processing are implemented on
multi�processor systems to meet their high
performance requirements� In such a
multi�processor implementation the overall
application is partitioned into a collection
of separate cooperating and communicat�
ing modules� called tasks ���� Tasks can
execute in sequence or at the same time on
two or more separate processing elements�

�This project is partially supported by the
Austrian National Science Foundation Fonds zur
F�orderung der wissenschaftlichen Forschung un�
der grant number P������MAT�

The scheduling of the tasks� i�e�� the order�
ing of their execution� plays a crucial role
for the overall performance�
Scheduling is a NP�complete problem�

it must satisfy the conditions of the tasks
	e�g�� time constraints and precedence re�
lations
 and of the computer architecture
	e�g�� number of processing elements and
communication times
 ���� The objective
is to �nd an optimal mapping with regard
to a speci�c optimality criteria� A com�
mon optimality criteria is the sum of the
completion time of all tasks�
There are many applications which do

not have strong dependencies between the
tasks� Especially in the �eld of digital sig�
nal processing� multi�processor implemen�
tations exploit the data parallelism of the
DSP�algorithms� Examples of such imple�
mentations are audio or image processing
applications where each task operates in�
dependently in its own frequency range or
image area� respectively� However� even
in those applications some characteristics�
like the number of tasks and
or their ex�
ecution times� are either often not known
at compile time or may change during run�
time� Therefore� on�line scheduling is nec�
essary�
In this paper we compare three di�er�

ent list�scheduling algorithms for on�line
scheduling� In Section �� the scheduling
algorithms are brie�y described� Section �



� procedure LS�I��

� begin

� for all n processors i do

� sumi � �

	 tasklisti � �

 endfor

� for all tasks j do

� �nd processor i with min� sumi�pij

 sumi � sumi�pij

�� add fjg to tasklisti
�� endfor

�� end

Figure �� Pseudo code for the simple list
scheduling algorithm 	LS�I
�

presents the experimental setup and the re�
sults� Section � concludes the paper�

� List Scheduling Algorithms

In on�line scheduling� the execution time
of the scheduling algorithm is included in
the overall execution time� Heuristics are
often applied for on�line scheduling to keep
the execution time of the scheduling algo�
rithm small� However� the heuristics di�er
in their qualities� i�e�� the deviation in com�
pletion time between the generated and the
optimal schedule� Hence� there is a trade�
o� between the scheduler�s execution time
and it�s quality� both in�uencing the over�
all execution time�
List scheduling ��� is an excellent

scheduling heuristic for independent tasks
on multi�processor implementations due to
the following reasons�

� This scheduling heuristic exploits the
execution times of the tasks or esti�
mations of the execution times to im�
prove the schedule�

� List scheduling guarantees that the
deviation of the completion time is
bounded by the factors n� �

�

p
n or

	� �
p
�

p
n for the three scheduling

algorithms where n denotes the num�
ber of processors�

� List scheduling has a short execution
time� it is essentially linear in the
number of tasks and number of pro�
cessors�

The list scheduling algorithm generates
the schedule using an individual tasklist
for each processor� This scheduling algo�
rithm requires the task execution times of
all tasks on all processors� The execution
time of task j on processor i is denoted
as pij� Hence� this scheduling heuristic is
capable of scheduling tasks on heteroge�
neous multi�processor architectures� In the
following sections� the list scheduling al�
gorithm and two modi�cations are brie�y
described� A detailed description can be
found in ����

��� Simple List Scheduling

The simple list scheduling algorithm
	LS�I
 is based on ��� and is shown in Fig�
ure �� In simple list scheduling� the as�
signment of tasks to processors is based on
the actual processing time of each proces�
sor� sumi� Each task is assigned to the pro�
cessor with the minimal sum of processing
time and task execution time 	line �
�

��� Modi�ed List Scheduling

The modi�ed list scheduling algorithm
presented in Figure � was �rstly intro�
duced by ���� It di�ers from the simple list
scheduling algorithm mainly by two facts�
First� for each processor a tasklist includ�
ing all tasks is created� The tasks in these
tasklists are sorted by their e�ciency� The
e�ciency eij of a task j on processor i is
de�ned as the ratio of the minimum exe�
cution time of task j over all processors to
the execution time of task j on processor i



� procedure LS�II��

� begin

� for all n processors i do

� create tasklisti sorted by eij
	 sumi � �

 endfor

� while �not all tasks are assigned� do

� �nd processor i with minimal sumi

 get next unassigned task j of tasklisti

�� if ��� � j� � �eij �
�p
n
�� then

�� deactivate processor i

�� else

�� assign task j to processor i

�� sumi � sumi � pij
�	 endif

�
 endwhile

�� end

Figure �� Pseudo code for the modi�ed list
scheduling algorithm 	LS�II
�

	eij � �
� Second� a task is only assigned
to the processor with the shortest process�
ing time� if the task has a high e�ciency�
If the e�ciency drops below a limit� then
the processor is deactivated and no more
tasks are assigned to it 	line ��
�
In the third scheduling algorithm� LS�

III� the ordering criteria for the tasklists is
extended� Tasks with the same e�ciency
are ordered by their execution times�

� Experimental Results

The comparison of the three schedul�
ing algorithms is based on runtime mea�
surements taken on a multi�DSP system
from Transtech� This PC�based system is
equipped with up to � TMS���C�� pro�
cessors 	TIM�� modules
� Two parallel
implementations are used for the com�
parison� In the �rst implementation� a
set of randomly generated dummy tasks
with prede�ned execution times is sched�
uled� In the second implementation� the
list scheduling algorithms are applied in

task set mean �ms� std� dev�
T� � ���
T	 �� �
T
 ��� ��

Table �� Mean and standard deviation of
the task execution times for the randomly
generated tasks�

a high�performance simulator� Both par�
allel algorithms are implemented using
the distributed operating system Virtuoso
���� They are organized in a master
slave
structure� The master processor is respon�
sible for the task generation� the schedul�
ing of all tasks onto the slave processors as
well as the reception and processing of the
tasks� results� All tasks are executed on the
slave processors� The multi�DSP system is
connected in a tree topology with the mas�
ter processor as root� The root has at most
� children� Hence� the tree topology of the
��processor system has � processors at the
�rst level and � processors at the second
level�
Two runtimes are used for the compari�

son� the runtime required for the schedul�
ing of all tasks on the master processor�
tsch� and the runtime required for the exe�
cution of all tasks on the slave processors�
texe� This runtime includes the communi�
cation time for the tasks� input and output
data�

��� Randomly Generated Tasks

To evaluate the scheduling algorithms� a
prede�ned number of independent dummy
tasks is generated� At task generation�
each task is assigned to a random task
execution time which is utilized by the
scheduling algorithms� On the slave pro�
cessors� the tasks wait actively for the pre�
de�ned task execution time and then they
return an acknowledgment to the master
processor� Three di�erent sets of tasks are



t(
n)

 [
m

s]

0

5

10

15

20

25

1 2 3 4 5 6 7
n

LS-I
LS-II

LS-III

Figure �� Runtimes of LS�I� LS�II and LS�
III for scheduling ��� tasks on � to � slave
processors�

used for the comparison� Each set consists
of ��� tasks with normally distributed exe�
cution times� Table � shows the mean and
standard deviation of the task execution
times� The tasks are scheduled on � to �
slave processors�

Figure � presents the runtimes of the
scheduling algorithms dependent on the
number of slave processors� n� LS�I has
the shortest runtime� the runtime of LS�II
and LS�III increases linear with the num�
ber of slave processors due to the sorting
of the tasklists by the task e�ciency eij�

Figure � shows the
in�uence of the scheduling algorithm on
the overall speedup� The overall speedup
S	n
 is de�ned as the ratio of the single�
processor runtime over the runtime of the
parallel implementation using n slave pro�
cessors 	tsch � texe
� LS�I achieves a better
speedup for short tasks 	tasks set T�
 than
the other two scheduling algorithms due to
the short runtime of the scheduling algo�
rithm� In this case� tsch and the commu�
nication overhead limit also the speedup�
For longer task runtimes� the runtime of all
tasks� texe� dominates the runtime of the
parallel implementation� For these tasks�
LS�II and LS�III achieve better speedups
than LS�I�

��� Application Example

In this application example� the list
scheduling algorithms are applied in a par�
allel implementation of a qualitative sim�
ulation algorithm ���� In this application�
the tasks are also scheduled onto n slave
processors� However� there are two di�er�
ences to the previous application� First�
the slave processors are equipped with spe�
cialized coprocessors to reduce the runtime
of some functions� Hence� the runtime for
a task may be di�erent on di�erent slave
processors� Second� the exact runtime of
a task is not known at scheduling time�
Therefore� estimations of the runtimes are
used�
Table � shows the scheduling runtime�

tsch� and the runtime of all tasks� texe� for
the three di�erent simulation models M��
M� and M�� Each model is partitioned
into �� tasks which are executed on � slave
processors� In this special�purpose com�
puter architecture� each slave processor is
equipped with a di�erent coprocessor� In
most cases� LS�I achieves the shortest par�
allel runtime 	tsch � texe
� The modi�ed
scheduling algorithms do not su�ciently
reduce the task completion time to com�
pensate for the increased scheduling time�
Therefore� LS�I is �nally applied in this im�
plementation�

� Conclusion

We presented a comparison of three list
scheduling algorithms for on�line schedul�
ing of independent tasks on multi�DSP sys�
tems� The modi�ed list scheduling algo�
rithms LS�II and LS�III achieve better re�
sults for tasks with longer execution times
	tsch � texe
 and more slave processors�
In these cases� the scheduling algorithms
reduce the parallel execution time� For



S(
n)

LS-II
LS-III

LS-I

LS-III
LS-II
LS-I

LS-III
LS-II
LS-I

task set T1

0
1
2
3
4
5
6
7

1 2 3 4 5
n

6 7

S(
n)

0
1
2
3
4
5
6
7

1 2 3 4 5 6 7
n

task set T2

S(
n)

0
1
2
3
4
5
6
7

1 2 3 4 5 6 7
n

task set T3

Figure �� Achieved speedup S	n
 using � to � slave processors for the task sets T�� T� and
T��

LS�I LS�II LS�III
model tsch�ms� texe�ms� tsch�ms� texe�ms� tsch�ms� texe�ms�
M� ���	 	
��� ��

 	
��� ��	� 	
��	
M	 ���	 	�
� ��
� ���
 ��	� ���

M
 ���
 ��
� ��
	 ���� ��	� ����

Table �� Comparison of LS�I� LS�II and LS�III using � slave processors� Measurements are
taken from a parallel high�performance simulator�

short task execution times 	tsch � texe
�
LS�I results in the shortest parallel execu�
tion time�

References

��� E� Davis and J� M� Ja�e� Algo�
rithms for Scheduling Tasks on Unre�
lated Processors� Journal of the ACM�
��	�
��������� Oct� �����

��� R� I� Graham� Bounds on multiprocess�
ing timing anomalies� SIAM Journal
on Applied Mathematics� ��	�
�����
���� Mar� �����

��� O� H� Ibarra and C� E� Kim� Heuris�
tic Algorithms for Scheduling Indepen�
dent Tasks on Nonidentical Processors�
Journal of the ACM� ��	�
���������
Apr� �����

��� T� Lewis and H� El�Rewini� Parallax�
A Tool for Parallel Program Schedul�

ing� IEEE Parallel 
 Distributed Tech�
nology� �	�
��������� May �����

��� M� Platzner� B� Rinner� and R� Weiss�
Parallel Qualitative Simulation� Simu�
lation Practice and Theory� ����� Else�
vier Science Publishers B�V� In print�

��� B� Rinner� Design� Implementation and
Experimental Evaluation of a Scalable
Multiprocessor Architecture for Quali�
tative Simulation� PhD thesis� Graz
University of Technology� �����

��� J� A� Stankovic� M� Spuri� M� D� Na�
tale� and G� C� Buttazzo� Implica�
tions of Classical Scheduling Results
for Real�Time Systems� IEEE Com�
puter� ��	�
������� June �����

��� E� Verhulst� Virtuoso� A virtual sin�
gle processor programming system for
distributed real�time applications� Mi�
croprocessing and Microprogramming�
����������� �����


