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Abstract

Monitoring and diagnosis of dynamic systems in industrial environments, like assembly lines
and power plants, are challenging tasks. Faulty behaviors must be detected as soon as possi-
ble to avoid shutdown or damage. Recently, techniques from artificial intelligence (AI) have
been applied to achieve these tasks. To overcome performance problems for the industrial ap-
plication of the rather new Al technique qualitative simulation, a special-purpose computer

architecture has been developed.
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Die Uberwachung und Fehlerdiagnose dynamischer Systeme in industriellen Umgebungen,
wie z.B. Produktionsanlagen oder Kraftwerke, zur friihzeitigen Fehlererkennung und Vermei-
dung von Systemausfiillen oder Systemschéden stellen eine grofle Herausforderung dar. In
jingster Zeit werden fiir diese Aufgaben Techniken aus dem Bereich der kiinstlichen Intel-
ligenz (KI) eingesetzt. Herkdommliche Rechnersysteme weisen fiir den industriellen Einsatz
der neuen KI-Technik Qualitative Simulation eine zu geringe Rechenleistung auf. Um dieses

Problem zu iiberwinden, wurde eine Spezialrechnerarchitektur entwickelt.

Schliisselworter: anwendungssperzifische Rechnerarchitektur, Uberwachung und Fehlerdiag-

nose, qualitativer Simulator QS1M, Parallelverarbeitung, Software/Hardware Migration
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1 Introduction

As many technical systems, like assembly lines and power plants, are becoming more and more
complex, the need for automatic control systems is increasing enormously. The task of the
control system is often to monitor the technical system and to detect faulty behaviors as soon as
possible to avoid system shutdown or damage. It is nearly impossible to achieve this ambitious
task without any computerized support. Recently, techniques from artificial intelligence (AI)
have been applied in control systems for such technical systems.

A rather new Al technique is qualitative simulation. In qualitative simulation, physical sys-
tems are modeled on a higher level of abstraction than in other simulation paradigms, e.g., in
continuous simulation. In continuous simulation, the structural description of a physical system
is modeled by a mathematical description in form of differential equations. Qualitative simu-
lation relies on a further abstraction of these differential equations — the so-called qualitative
differential equations (QDEs). Qualitative simulation requires neither a complete structural
description of the physical system nor a fully specified initial state. The major strength of
qualitative simulation is the prediction of all physically possible behaviors derivable from this

incomplete knowledge.

1.1 Application Areas of Qualitative Simulation

The qualitative simulation paradigm is mainly used in applications where a detailed description
of a physical system is not required or even not known. Qualitative simulation is furthermore
a key inference technique of model-based reasoning — i.e., given the (qualitative) model of the
system, the goal is to predict the possible behaviors consistent with that model. This inference

technique is applied in areas, like monitoring, fault diagnosis and explanation:

e monitoring
Based on a model of the system and a behavior predicted by that model, the task is
to monitor the system’s behavior and to check for malfunctions. This is achieved by

identifying discrepancies between observations (measurements) and predictions (simulation



results).

e fault diagnosis
Based on a model of the system, the task is to detect faults and to identify faulty com-
ponents. The predicted behavior is compared with the actual observations, producing
discrepancies. Discrepancies in turn give rise to a possible diagnosis, i.e., identification of
the faulty device(s). Compared to rule-based systems where only already known faults
can be identified, a model-based diagnosis covers a broader range of faults by viewing

misbehavior as anything other than what the model predicts.

e explanation
Based on a sequence of observations, the task is to find one or more models consistent
with the observation. This is done by extracting the relevant features of those models,

e.g., cause-effect relationships, and communicating them to the user.

1.2 Application Examples of Qualitative Simulation in Dynamic Systems

For industrial applications diagnosis and monitoring are probably the most interesting domains.
An increasing amount of research has been done in the field of qualitative simulation for these
domains. Most of these papers demonstrate the successful application of qualitative simulation
in monitoring and diagnosis based on small to medium complex dynamic systems. Dvorak and
Kuipers [1] describe a monitoring system using qualitative simulation in the example of water
heater. In Lackinger and Nejdl [5], a diagnosis and monitoring system for a central heating
system is presented. Subramanian and Mooney [8] demonstrate a multiple-fault diagnosis system

for the reaction control system of the space shuttle.

Condition Monitoring for Gas Turbines

Probably the most advanced industrial application of qualitative simulation in the area of moni-
toring and diagnosis is the recently completed ESPRIT III project Tiger [9]. In the Tiger project,

a condition monitoring system for gas turbines has been developed. Qualitative simulation is
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Figure 1: Diagnosis architecture of Tiger. Reasoning is performed at three different levels using

the tools KHEOPS, IxTeT and CA-EN.

used to predict the behaviors of the turbine at start up and in response to load changes. Ap-
plication sites include a large industrial turbine at Exxon Chemical in UK and a small aircraft
auxiliary power unit turbine at Dassault Aviation in France.

The diagnosis architecture of Tiger [10] (see Figure 1) consists of 3 independent tools. They
can work in parallel, each reasoning with knowledge at different levels. At the lower level,
KHEOPS reacts in real-time to the current state of the process. It is a high speed rule-based
system and is used primarily for limit checking. However, it does not have a global view on
the past history and evolution of the process. Such a view is given by the second level in
the hierarchy. Here in IxTeT, the user is able to specify a sequence of events corresponding
to normal or faulty situations. IxTeT then monitors the turbine to ensure that the sequence is
properly followed. The more complex causal reasoning mechanisms are devoted to the third level.
Reasoning at this level is based on CA-EN, a model-based diagnosis system using qualitative
simulation. Because diagnosis at this level may require non-deterministic searches, it does not
meet real-time constraints. The results of all tools are coordinated by the fault manager, and

the conclusions are communicated to the user (technician) via the user interface.



1.3 A Specialized Computer Architecture for QSim

For industrial applications of qualitative simulation it is of utmost importance that diagnosis
and monitoring are done on-line. High-performance qualitative simulators are required in these
environments. However, the main drawback of current qualitative simulators is poor runtime
performance. Models of only low to medium complexity can be simulated within reasonable
execution time.

QS [4] is the best-known and widely-used algorithm for qualitative simulation. In the past
years, QSIM has been widely studied, applied and extended both by the original developers and
by researchers worldwide. The lack in runtime performance of current QSIM implementations
is basically caused for two reasons. First, QSIM tends to generate a huge number of system be-
haviors during simulation. This can be at least partially avoided by improved filter algorithms.
Research in this area is done by the Qualitative Reasoning group at UT Austin. Second, QSiM
is implemented in LISP and executed on general-purpose computers. In a research project at the
Institute for Technical Informatics, Technical University Graz, a special-purpose computer ar-
chitecture for QSiM has been developed. The primary goal of this application-specific computer
architecture is to increase the performance. Improved performance is achieved by methods of
computer architecture — i.e., parallelizing and mapping of QSiM functions onto a multiproces-
sor system and migrating functions from software to hardware. Furthermore, plans have been
already made to integrate qualitative simulation into the multi-agent system for model-based
real-time fault diagnosis at our institute (compare article in this issue).

The remaining part of this paper deals with the design and implementation of this specialized
computer architecture. Section 2 introduces briefly the qualitative simulator QSim. In Section 3,
the design of a multiprocessor and specialized coprocessors for QSIM as well as experimental

results are presented. Section 4 concludes this paper.
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Figure 2: Hierarchical structure and runtime analysis of the QSiM kernel. The runtimes are

informally presented with regard to the runtime of the calling function.
2 Qualitative Simulator QSIiM

In QS1iM, models are described as qualitative differential equations or equivalently as constraint—
networks, which consist of variables and constraints. Variables represent system parameters,
e.g., speed or temperature. The values of qualitative variables are expressed by two parts, a
qualitative magnitude (qmag) and a qualitative direction (qdir). Constraints describe relations
between system parameters. QSIM uses several types of constraints which represent arithmetic
relations (e.g., ADD—, MULT-, D/DT-constraints) and functional dependencies (e.g., MT—,
M~ —constraints) between variables.

The qualitative simulator QSIM is a very complex algorithm and has many optional features.
The design considerations for our specialized computer architecture are restricted to the QSim
kernel functions. The kernel functions are essential in calculating one simulation step, and
they normally dominate the overall runtime of QSiM. Furthermore, several model-based fault
diagnosis and monitoring systems do not require the functionality of the whole simulator [1] [5].
These systems are based on the QSiM kernel functions.

Figure 2 presents an overview of the hierarchical structure of the QSiM kernel functions.



The constraint check functions (CCFs) are primitive kernel functions. For each constraint type,
an individual CCF exists. The CCFs are called by the tuple-filter. For each constraint of
the input model one tuple-filter is required. The constraint-filter is generated by all tuple-
filters and the Waltz-filter which is used for efficiency reasons. The final kernel function is
called form-all-states. The presented runtime ratios in Figure 2 are extracted from various
runtime measurements of a QSIM system implemented on a TI Explorer LISP workstation.
Many input models were simulated and the runtimes of the individual functions were measured.
The runtime ratios represent an average of all simulated models. For most models, the kernel
functions require more than 50 % of the overall QSIM runtime. An important fact is that this
percentage is positively correlated to the complexity of the model. Qualitative models for 'real-
world’ technical systems usually have many constraints and variables [3]. For these models,
kernel runtime ratios of up to 90 % were observed. The empirical runtime analysis reveals that

the tuple-filter and subsequently the CCFs dominate the kernel runtime.

3 QSim Computer Architecture

The specialized computer architecture presented in this paper improves the runtime of the QSIM
kernel by using two strategies. First, the parallelism in the complex kernel functions constraint-
filter and form-all-states is exploited. These functions are parallelized and mapped onto a
multiprocessor system. Second, the less complex CCFs are accelerated by software to hardware
migration, i.e., the CCFs are directly implemented in hardware. In the following sections,
design considerations for this specialized computer architecture, a prototype implementation

and experimental results are described.
3.1 Design of the QSiM Kernel Multiprocessor

3.1.1 Constraint-Filter

The constraint-filter consists of a number of calls to the function tuple-filter and a final call

to the Waltz-filter function. A data depencency analysis reveals a high parallelism within the



Figure 3: Logical structure of the constraint-filter.

constraint-filter. All tuple-filter functions are independent of each other and can be executed in
parallel.

Figure 3 presents the logical structure of the constraint-filter. It consists of a set of tasks
and communication links. The tasks are partitioned into two groups — a master task and a
set of slave (tuple-filter) tasks. The master task is responsible for the transmission of the input
data to all tuple-filter tasks, the reception of the tuple-filters’ results and the execution of the
Waltz-filter. Since all tuple-filters are independent of each other, no communication among the
slaves is required. The maximum degree of parallelism for the constraint-filter is the number of
constraints C'. Therefore, the logical structure consists of C slaves.

The logical structure forms a star with the master as the central element. However, in a star
structure the master becomes a bottleneck as the number of slaves increases. This limits the
scalability of the computer architecture. To achieve a scalable architecture, our multiprocessor
system is connected in a wide tree topology which is a compromise between logical structure
and scalability. In a wide tree, each processing element has a constant node degree and, hence,
a fixed number of required communication links. The root node of the tree corresponds to the

master task; all other nodes correspond to the slaves of the logical structure.

3.1.2 Form-All-States

The kernel function form-all-states solves a constraint satisfaction problem (CSP) by a back-

tracking algorithm. A big search space has to be processed by a depth-first search to find all



solutions of the CSP. Contrary to the constraint-filter, there is no obvious parallelization given
by the function hierarchy of form-all-states. For a parallel implementation of form-all-states, the
CSP must be partitioned artificially. A parallel-agent-based (PAB) strategy [6] is used for the
parallelization of the CSP in our QSIM architecture. The basic idea of PAB is to partition the
overall search-space into smaller independent subspaces which can be solved by any sequential
CSP algorithm in parallel. The partitioning step is essential for the performance of the parallel
implementation. A variable-based partitioning (VBP) heuristic [7] is used to partition the search
space of QSim CSPs.

The logical structure of the parallel form-all-states algorithm is similar to the logical structure
of the constraint-filter. Due to the PAB strategy, a master/slave structure is also derived. The
master task is responsible for the generation and transmission of subproblems to the slave tasks
and for merging the partial results to the overall result. The maximum degree of parallelism is
determined by the number of generated subproblems. The same architectural considerations for

the constraint-filter are also valid for form-all-states.

3.2 Design of the CCF Coprocessor

The CCFs are executed on specialized coprocessors. This section presents the coprocessor de-
sign for the MULT-CCF. The MULT-CCF is one of the most complex CCFs; CCFs for other
constraint types are less complex but very similar in structure.

An analysis of the MULT-CCF reveals that this CCF can be partitioned into several sub-
functions. The partitioned MULT-CCF is shown in Figure 4. Subfunction SF1, value check,
tests the signs and directions of change of the input values. Subfunction SF2, infvalue check,
tests relations between infinite and zero input values. Subfunction SF3, cval check, tests the
input values against all tuples from the list of corresponding value tuples. Corresponding value
tuples are stored in an internal memory of the coprocessor. SF1 to SF3 form the functionality
of the MULT-CCF. SF4 performs a logical AND operation on the partial results of SF1 to SF3.

The specialized coprocessor implementing the functionality of the MULT-CCF is designed

at the gate- and register-level to obtain maximum performance. The main features of the design
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Figure 4: Partitioned MULT-CCF. The MULT-CCEF is partitioned into three subfunctions SF1

to SF3.
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are (1) exploitation of parallelism, i.e., the parallel execution of SF1, SF2 and SF3, (ii) use of
optimized data types, i.e., the number of bits and the coding scheme of the input values and the
corresponding value tuples, and (iii) use of customized memory architectures, i.e., the internal
organization and the access mode of the cval tuple memory.

The coprocessor design contains functional blocks for SF1 to SF4, the internal memory, an
I/O controller and a function controller [2]. The I/O controller establishes communication to a
host processor via two separate communication channels which enable simultaneous input and
output operations. The function controller decodes the instructions and controls the operation
of all other functional blocks of the coprocessor. Three instructions are defined for the MULT-
CCF coprocessor. Two instructions update the internal memory; the third instruction actually

executes the MULT-CCF.

3.3 Prototype Implementation and Experimental Results

A prototype of the overall heterogeneous multiprocessor architecture is shown in Figure 5. The
digital signal processor TMS320C40 was chosen as the processing element because of its high I/O
performance and its 6 independent communication channels. Software is developed in ’C’ under
the distributed real-time operating system Virtuoso [11], which supports a portable and flexible
software design. The specialized CCF coprocessors are implemented on field programmable gate

arrays (FPGAs).

3.3.1 QSim Kernel Multiprocessor

The experimental evaluation of the QSiM kernel multiprocessor is based on a comparison of the
execution times of the sequential implementation, ¢4, and the parallel implementation using n
processing elements, t,q,(n). With these execution times, the speedup S(n) = % can be de-
termined. The execution times are measured on a prototype of the QSIM kernel multiprocessor
by using a 32 bit timer of the TMS320C40 with a resolution of 80 ns. The sequential imple-

mentation of the QSiM kernel is executed on the root node of the QSiMm kernel multiprocessor.

In the next two sections, the QSiM kernel multiprocessor is evaluated independently for both

11
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Figure 6: Speedup S(n) of the parallel implementation of the constraint-filter for the models

RCS, QSEA, and M1 using n = 1...3 slave processors.

kernel functions, constraint-filter and form-all-states.

Constraint-Filter. The parallel implementation of the constraint-filter is evaluated using
three different sets of input data. Two sets are derived from the QSiM models RCS (48 con-
straints) [3] and QSEA (21 constraints) and one set is constructed artificially (M1). In the data
sets RCS and QSEA, the numbers and types of the tuple-filter tasks as well as the numbers of
tuples which must be checked vary. The data set M1 consists of 30 tuple-filters of type MULT;
each tuple-filter must check 64 tuples. From all data sets, M1 has the longest execution times
of the individual tuple-filter tasks.

Figure 6 presents the speedups of the parallel implementation of the constraint-filter using

1, 2, and 3 slave processing elements. The best speedup is achieved with input data set M1.

Form-All-States. The parallel implementation of form-all-states is evaluated using CSPs
derived from the simulation of the QSiM models RCS and QSEA. Figure 7 presents the speedups
of the parallel implementation of form-all-states by using up to 7 slave processors. Parallel
execution of the RCS model reveals a superlinear speedup using one and two slave processor(s).
This occurs because the partitioning algorithm discards many inconsistent subproblems, and
the total execution time of the remaining consistent subproblems is smaller than the execution

time of the unpartitioned problem.
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and QSEA using n = 1...7 slave processors.

3.3.2 CCF Coprocessor

The experimental evaluation of the CCF coprocessors is based on a comparison of the execution
times of the software CCF, t,,, with the execution times of the pair host and coprocessor, tj,
for the CCF. From these execution times, the overall speedup of the coprocessor, S, = f;—’:, is
calculated. This overall speedup also respects the required communication between the host and
the coprocessor. The coprocessor execution times are measured on a MULT-CCF coprocessor
prototype with the sequential execution of SF3 iterations. This coprocessor is implemented on
an FPGA of type Xilinx XC4013 and is operated at a clock frequency of 15 MHz [2]. The
measured execution times and the calculated speedups are subdivided into 6 cases according to
the subfunction which causes termination of the MULT-CCF. For the short-circuit-evaluation
of the software CCF, the execution order SF1, SF2, SF3 is assumed. Six cases are differentiated
where case 1 denotes only execution of SF1, and case 6 denotes execution of SF1, SF2 and four

iterations of SF3. These six cases reflect the most likely situations. In Figure 8, the overall

speedup of the coprocessor, Sy, is presented based on the six execution cases.

4 Conclusion

In this paper, we presented the design and the prototype implementation of a specialized com-

puter architecture necessary for the qualitative simulator QSIM to overcome the performance
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Figure 8: Speedup Sy, of the MULT-CCF coprocessor dependent on 6 different execution cases.

problems of current QSiM implementations. The experimental results proved that a significant
speedup can be achieved with this computer architecture.

In general, our computer architecture exploits the parallelism in the QSiM kernel functions.
The degree of parallelism depends strongly on the input simulation model. More complex mod-
els, i.e., models with many constraints and variables, lead to higher degrees of parallelism. Due
to the high complexities of models for ’real-world’ problems, the efficiency of existing qualita-
tive simulators poses a significant barrier to their application. The presented special-purpose

computer architecture will help to remove this barrier.
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