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Abstract

Qualitative simulation is a new and challenging
simulation paradigm. QSim, the widely-used algo-
rithm for qualitative simulation has been developed
by Kuipers at UT Austin. A drawback of current
QSim-implementations is poor execution speed. In
our research project a special-purpose computer ar-
chitecture for QSim is developed to increase the per-
formance. Two approaches are considered to improve
the performance. Complex functions are parallelized
and mapped onto a multiprocessor system. Less com-
plex functions are directly implemented in hardware.
These functions are executed on specialized coproces-
sors. The prototype implementation of this compu-
ter architecture is based on digital signal processors
TMS320C40 and field programmable gate arrays (Xi-
linx). This paper presents first experimental results of
this research project.
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1 Introduction

QSIM, the widely-used algorithm for qualitative si-
mulation, has been developed by Kuipers [6]. Qualita-
tive simulation is a new and challenging simulation pa-
radigm. QSIM is mainly used in applications where a
accurate description of a system is not required or even
not known. Major areas of qualitative simulation ap-
plications are design, monitoring, and fault-diagnosis.
A drawback of current QSiM implementations is poor
execution speed. In our research project [10] [11] a
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Figure 1: Flow chart of QSim.

special-purpose computer architecture for QSIM is de-
veloped to improve the performance.

In qualitative simulation systems are modeled on
a higher level of abstraction than in other simula-
tion paradigms, like continuous simulation. Varia-
bles and constraints are basic components of a qua-
litative model. Variables represent system parameters
(e.g. speed, temperature etc.) and constraints des-
cribe relations between system parameters. QSIM uses
several types of constraints which represent arithme-
tic relations (ADD—, MULT-, D/DT—constraints) and
functional dependencies (M*—, M~ —constraints) bet-
ween variables.

Figure 1 shows the flow chart of QSIiM. States are
stored in a global queue called agenda. A state in
QSIM is defined as an assignment of values to all varia-



bles of the model. A state characterizes the system at a
given time. In one simulation step (one loop cycle) all
possible values for the next time step are determined.
Qualitative simulation can predict several behaviors
— contrary to continuous simulation. The simulation
step is repeated until the agenda is empty or a time
limit or state limit is exceeded. The individual steps of
this procedure can be informally described as follows.

The first step generates the possible values for the
next time step for all variables. An assignment of
possible values of all variables of a given constraint
is called tuple. The tuple-filter rejects all tuples of
an individual constraint which do not satisfy the con-
ditions of this constraint. The Waltz-filter discards
additional tuples by detecting inconsistencies between
adjacent constraints. Constraints are adjacent if they
share a variable. The final kernel function (FORM-
ALL-STATES) finds consistent combinations of tup-
les of all constraints. Global filters reduce the set of
new states which are added to the agenda. There are
many global filters in QSIM. Some of them are ne-
cessary while many of them are optional extensions of
QSIM.

This paper describes the current state of our rese-
arch project and presents experimental results of first
prototypes of components of the overall computer ar-
chitecture. Chapter 2 gives an overview of QSIM ker-
nel functions and shows a runtime analysis. In Chap-
ter 3 top-level kernel functions are analyzed and the
speedup of a parallel version of FORM-ALL-STATES
is estimated. Chapter 4 presents an analysis of low-
level kernel functions and experimental results of an
implemented coprocessor for these functions. Some
conclusions are given in the final chapter.

2 Simulator Kernel

The qualitative simulator QSIM is a very complex
algorithm and has many optional features. Design
considerations of this specialized computer architec-
ture are restricted to kernel functions. Kernel func-
tions are essential in calculating one simulation step,
and they normally dominate the runtime of the com-
plete simulator. Several model-based fault diagnosis
and monitoring systems use qualitative simulation [1]
[7]. These systems do not require the functionality of
the whole simulator. However, QSIM kernel functions
are required.

Figure 2 presents an overview of the kernel func-
tions. These functions are hierarchically structured
and are analyzed in the following two chapters. The
constraint check functions (CCFs) are primitive kernel
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Figure 2: Runtime analysis of the kernel. Kernel func-
tions are hierarchically structured and their runtimes
are informally presented with regard to the runtime of
the calling function.

functions but they dominate the overall kernel run-
time. These functions are called by the tuple-filter.
For each constraint of the input model one tuple-filter
is required. The constraint-filter is generated by all
tuple-filters and the Waltz-filter, which is used for ef-
ficiency reasons. The final kernel function is called
FORM-ALL-STATES.

The presented runtime ratios in Figure 2 are extrac-
ted from various runtime measurements of a QSIM sy-
stem implemented on a TI Explorer LISP workstation.
Many input models were simulated and the runtimes
of the individual functions were measured. The run-
time ratios represent an average of all simulated mo-
dels. For most models kernel functions require more
than 50 % of the overall runtime. An important fact
is that this percentage is positively correlated to the
complexity of the model. Qualitative models for seri-
ous technical processes usually have many constraints
and variables [5]. For these models kernel functions
consume definitely more than 50 % of the overall run-
time.

According to the complexity of the kernel functions
different approaches to increase the performance are
considered. Complex kernel functions (like constraint-
filter and FORM-ALL-STATES) are parallelized and
mapped onto a multiprocessor system. Less complex
functions (CCFs) are HW-implemented using FPGAs.
These runtime intensive functions are executed on spe-
cialized coprocessors.



3 QSiM Multiprocessor

As depicted in Figure 2, the QSIM kernel mainly
consists of two consecutive functions — the constraini-
filter and FORM-ALL-STATES. In this chapter we
analyze these functions and present some implemen-
tation considerations and experimental results from
parallelizing and mapping these functions onto a mul-
tiprocessor system.

3.1 Constraint-filter

The constraint-filter is generated by mutually inde-
pendent functions (tuple-filters) and the Waltz-filter.
The number of tuple-filters is variable and depends
on the input simulation model. For each constraint
of the input simulation model one tuple-filter has to
be executed. Waltz-filtering can be considered as a
preprocessing step for the successive function of the
QSIM kernel (FORM-ALL-STATES). It is used for ef-
ficiency reasons to reduce the search space for FORM-
ALL-STATES as soon as possible. An even better im-
provement is achieved by interleaving the tuple-filter
with the Waltz-filter. This is called incremental Waltz-
filtering which possibly eliminates input data for un-
processed tuple-filters. The pseudocode of sequential
and incremental Waltz-filtering is shown in Figure 3.

FOR all constraints ¢; DO
tuple-filter(c;)

ENDFOR

waltz-filter()

FOR all constraints ¢; DO
tuple-filter(c;)
waltz-filter()

ENDFOR

Figure 3: Constraint-filter pseudocode with sequential
(left) and incremental (right) Waltz-filtering.

Parallelization of tuple-filter with sequential Waltz-
filtering is trivial. Tuple-filters are executed on indivi-
dual processors. After all tuple-filter results have been
received sequential Waltz-filtering is performed. Since
the Waltz-filter requires global access to the results of
the tuple-filters, incremental Waltz-filter disables par-
allelization of the tuple-filter. However, a variant of
incremental Waltz-filtering can be used, if there are
more tuple-filters than processing elements. Whene-
ver results from tuple-filters are received, scheduling
is stopped and Waltz-filtering is executed. After com-
pletion of the Waltz-filter scheduling is continued.

3.2 FORM-ALL-STATES

FORM-ALL-STATES is actually a backtracking
algorithm to solve a constraint satisfaction problem

(CSP) [9]. A big search space has to be processed
with a depth-first search to find all solutions of the
CSP. Many parallel algorithms for constraint satisfac-
tion are known in literature. A classification of the
most common parallel algorithms can be found in [8].
We use a parallel-agent-based (PAB) strategy for our
application. The basic idea of PAB is to partition
the overall search-space into smaller independent sub-
spaces, which can be solved with any sequential CSP-
algorithm. The overall result is formed by merging
the results of the subspaces. Hence, the overall CSP
is partitioned into independent smaller sub-CSPs.

Partitioning the complete search-space is essential
to achieve good parallel performance. Due to red-
undancies in the subproblems, the overall runtime to
solve all sub-CSPs can be longer than the runtime to
solve the complete CSP. An efficient partitioning keeps
this overall runtime small. It is also important to gene-
rate equally complex sub-CSPs. Big differences in the
runtime of individual sub-CSPs can lead to poor load-
balance. When tasks with long runtimes are scheduled
last some processors can get idle.

3.3 Implementation and Experimental
Results

Analysis of both kernel functions (constraint-filter
and FORM-ALL-STATES) has brought up the same
logical structure of the parallel algorithms. The tasks
are logically connected in a star structure. The master
task, which is responsible for distributing tasks and re-
ceiving results, is the center of the star. The multipro-
cessor system is implemented in a wide tree structure,
which is a compromise between scalability and logical
structure. Hence, the processing elements of the multi-
processor system should be equipped with many com-
munication ports. This requirement was one reason
for choosing the digital signal processor TMS320C40
as processing element. It is equipped with six indepen-
dent high performance communication ports. Multi-
processor trees with up to five children can be built
with this processor.

The number of tasks is not known at compile time.
Thus, dynamic mapping and dynamic scheduling of
these tasks is required. Implementation is based on
the distributed real-time operating system Virtuoso
[13]. Virtuoso eases a scalable design of the parallel
algorithms and allows a flexible and portable imple-
mentation.

In this paper we present only experimental results
from parallelizing FORM-ALL-STATES [12]. Several
partitioning heuristics are evaluated and compared by
a speedup estimation. The evaluation is based on
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Figure 4: Speedup estimation for parallel FORM-ALL-STATES. Speedup limits (Spmqez, Smin) for two partitioning
heuristics (VBP-INST and VBP-CON) are shown in the left and right column plots. The speedup limits for different
numbers of partitioned sub-CSPs (16, 64, and 256 tasks) are shown. Especially for complex models, like RCS[5],

VBP-CON performs better than VBP-INST.

many CSPs traced from QSIM simulations. The par-
titioning heuristics are evaluated using these CSPs.
The partitioned sub-CSPs are solved sequentially on
a single TMS320C40, where runtimes are measured.
The most interesting runtimes are the overall runtime
to, which is the sum of the runtimes of all sub-CSPs,
the maximum runtime of all sub-CSPs t,,,4;, and the
sequential Tuntime of the unpartitioned CSP ¢,,.

These runtimes are used to estimate the speedup of
the parallel algorithm. Communication times are not
considered for this estimation and simple task attrac-
tion is assumed to schedule tasks to free processors.
The speedup is defined as S(n) = t,cq/tpar, where tpq,
denotes the runtime using n processors. An upper li-
mit (worst-case) and a lower limit (best-case) for ¢p,,
are given using t,, tmqg, and n. Worst-case runtime
of the parallel algorithm can be given as

to—1
tpar = w+tmw
n

and best-case runtime can be estimated as

to . to
p o w i<l
par tmaz Otherwise

A comparison of two partitioning heuristics is pre-
sented in Figure 4. A detailed description of the parti-
tioning heuristics can be found in [12]. The most suc-
cessful partitioning heuristic is VBP (variable-based-
partitioning) with the two variants VBP-INST and
VBP-CON. This partitioning strategy is based on the
variables of the input simulation model. The difference
between the variants is the order in which variables are
processed. It turns out that in most cases VBP-CON
performs better than VBP-INST. VBP-CON results in



a linear speedup for worst- and best-case estimation.
A further interesting point is the number of generated
sub-CSPs. Three cases are considered — the complete
CSP is partitioned into at most 16, at most 64, and
at most 256 sub-CSPs. The corresponding speedup
limits are also presented in Figure 4. Speedup increa-
ses with the number of generated tasks. However, the
more tasks are generated the more overall communi-
cation time is required and the speedup of highly par-
titioned CSPs can be lost. Best results are expected
with VBP-CON and a medium number of tasks.

4 QSim Coprocessor
4.1 Tuplefilter

The tuple-filter is executed for each constraint of
the simulation model. Its task is to check each com-
bination of possible values (pvals) for the particular
constraint and to discard the combination if it viola-
tes the rules of qualitative simulation. This check is
done by the so called constraint check function (CCF).

Two important attributes of constraint types are
arity and the existence of corresponding values (cvals).
For example, the arity of the constraint types D/DT,
MT, and M~ is 2, the constraint types ADD and
MULT are ternary. The maximum number of pvals
per variable is limited by 4 1. This leads to at most 16
checks for binary constraints and to at most 64 checks
for ternary constraints, respectively. Cvals are tuples
which are known to be correct. Most constraint types
have an associated set of cvals. This set can grow mo-
notonically during simulation. However, the creation
of a new cval-tuple is a very rare process compared to
the execution of the CCF. Therefore, cvals are consi-
dered as constants rather than variables in the context
of the tuple-filter.

Figure 5 shows the tuple-filter pseudocode for a ter-
nary constraint. The indices 2, j, and k scan over the
pvals of the corresponding parameters, the constants
tmazs Jmaz, and kmqe are bounded by 4. Input data
for the constraint check function are the possible va-
lues p1(z), p2(J), and p3(k).

To improve the performance of the tuple-filter it
is of utmost importance to accelerate the constraint
check function. The following sections in this chapter
present the analysis, hardware implementation, and
experimental evaluation of one of the most complex
check functions, the Mult—-CCF. CCFs for other cons-

! Calculating initial states from an incomplete state descrip-
tion can lead to more the 4 pvals of an individual variable.

FOR i=1 TO %,,,, DO
FOR j =1 TO jyas DO
FOR k=1 TO k,,uy DO
result(s, 7, k) = ecf (p1(2), p2(5), p3(k))
ENDFOR
ENDFOR
ENDFOR

Figure 5: Tuple—filter pseudocode for a ternary cons-
traint.

{true/false} {true/false} {true/false} {true/false}

{true/false}

Figure 6: Dataflow diagram for the Mult—CCF.

traint types are very similar in structure, but less com-
plex.

4.2 Mult—CCF

Figure 6 presents the dataflow diagram for the
Mult—CCF. The function is partitioned into four sub-
functions, SF1 to SF4. Subfunction SF3 consists of n
iterations, where n denotes the number of cvals. All
subfunctions produce a boolean result.

Two important facts can be taken from Figure 6.
First, the subfunctions SF1, SF2, and all iterations of
SF3 are dataflow—independent. Therefore they can be
executed in parallel. Second, subfunction SF4 can be
implemented as short-circuit-evaluation, i.e. whenever
one of the subfunctions SF1 to SF3 returns a negative
result, the entire calculation is aborted. A negative
result is returned to the tuple—filter, which discards
the current pval combination.

4.3 Implementation and Experimental
Results

The Mult—CCF was designed at the gate- and regi-
ster level and implemented directly in hardware to ob-
tain maximum execution speed [2]. Figure 7 shows the
block diagram of the Mult—-CCF coprocessor. Main
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Figure 7: Block diagram of the Mult—-CCF coprocessor. The input and output controller connect the coprocessor to
the host processor via two 8 bit data buses and four handshake lines (2xSTROBE, 2xREADY). For simplification
control lines between input/output controller and function controller are not shown in this diagram.

features of the design are (i) optimized data struc-
tures for the application QSIM, (ii) operations using
maximum parallelism, and (iii) customized memory
architecture for parallel access.

The input and output controller establish commu-
nication to the host processor (digital signal processor
TMS320C40) via two separate communication chan-
nels. These unidirectional connections ease the I/O
controller design of the coprocessor and allow paral-
lel input- and output—operations. The operands and
the instruction code (2 bit) are packed into a 32 bit
word for communication from host to the coprocessor.
The function controller decodes the instruction, sup-
plies the coprocessor’s function blocks with data, and

controls the operation. Also short-circuit-evaluation
is handled by the function controller. The blocks SF1
to SF3 correspond directly to the subfunctions SF1 to
SF3 in Figure 6. The iterations of SF3 are executed
sequentially in this design. For the cvals a fast internal
RAM is used. This memory is partitioned and allows
access to a whole cval-tuple in one memory read—cycle.
A detailed description of the design and implementa-
tion of the Mult—-CCF coprocessor can be found in [3].
Three instructions are defined for the coprocessor:

e EXECUTE_CFF

e RESET _CVAL_MEMORY
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Figure 8: Speedup of the Mult—CCF coprocessor com-
pared to a CCF implemented in software on the DSP
TMS320C40.

e LOAD CVAL_MEMORY

The most frequently used instruction
is EXECUTE_CCF. The other two instructions establish
operations with the internal memory of the coproces-
sor. The runtime for an EXECUTE_CCF operation can
be divided into three phases: (i) communication from
host to coprocessor (¢;5,), (ii) operation (¢,p), and (iii)
communication from coprocessor to host (¢o4¢). The
number of coprocessor clock cycles for ¢, = 7 , for
tout = 8, and for t,, the runtime depends on 3, the
number of cvals:

4 = 3 fori1<2
P 204+1 fori>2

To evaluate the performance of the Mult-CCF co-
processor we compare it to a Mult—CCF software im-
plementation on the host processor. We have to distin-
guish several cases according to the subfunction, which
causes termination of the Mult—CCF. In Figure 8 six
cases are shown. Computation is finished after SF1,
SF2, or 1 to 4 iterations of SF3. Although the number
of cvals is unbounded in general, more than 4 cvals are
very unlikely [4]. Figure 8 shows a runtime improve-
ment with the Mult—CCF coprocessor of up to factor
20.

The numbers in Figure 8 were measured on a copro-
cessor implementation in one FPGA (Xilinx XC4013)
at a clock frequency of 15 MHz. The software refe-
rence was executed on a TMS320C40 running at a
clock frequency of 32 MHz. The TMS320C40’s in-
struction cycle time is two clock cycles. Therefore,
the TMS320C40 and the CCF coprocessor are actually
running at nearly same clock rates (16 MHz vs. 15
MHz). Hence, the given speedup evaluates directly

our hardware design — no clock frequency transfor-
mation is necessary.

As the number of clock cycles for t;y,, top, and Zou:
is almost equal, the three phases can be overlapped.
This leads only to a minor increase of t,,. However,
the runtime for the tuple-filter is further improved by
a factor of up to 3 resulting in a maximum speedup
for the tuplefilter of factor 60.

5 Conclusion, Further Work

We presented the design and implementation of a
specialized computer architecture. We shortly intro-
duced the qualitative simulator QSIM and analyzed
the simulator kernel. Runtime measurements were
used to identify the most runtime intensive functions.
It turned out that two approaches to increase per-
formance should be used: Parallelization of complex
functions and direct HW implementation of less com-
plex but frequently used functions. These approaches
were discussed in more detail in chapter 3 and chapter
4, respectively.

We already obtained first experimental results,
some of them are presented in this paper. These first
results are very important. They allow a rough per-
formance estimation of the overall architecture. Ob-
taining experimental results on real simulation runs is
the only useful evaluation method for this special com-
puter architecture. This is due to following facts: (i)
Since the algorithm QSIM is very irregular and input—
data sensitive, analytical performance predictions are
not possible or at least very difficult. Predicting per-
formance by simulation is too complex. (ii) The under-
lying hardware architecture can not easily be modeled
at a satisfying level of detail.

Speedup factors as shown in chapter 3 and chapter
4 stress that a significant performance increase com-
pared to QSIM implementations on single-processor,
general-purpose computers will be achieved.

Work, which partially is already going on and par-
tially has to be done is divided into three sections:

QSiM multiprocessor Implementation of the de-
veloped parallel functions constraint—filter and
FORM-ALL-STATES on the multi-DSP system;
evaluation of several alternatives concerning sche-
duling policies and partitioning heuristics

QSIM coprocessors Implementation of coprocessors
for other often used constraint types, e.g. ADD,
M+, M—, D/DT



Overall architecture SW integration of the specia-

lized coprocessors into the multi-DSP system; ex-
perimental evaluation of the QSIM machine with
all features in its operational state
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