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Abstract

This paper presents a novel method for video-based traf-
fic state detection on motorways performed on smart cam-
eras. Camera calibration parameters are obtained from
the known length of lane markings. Mean traffic speed is
estimated from Kanade-Lucas-Tomasi (KLT) optical flow
method using a robust outlier detection. Traffic density is
estimated using a robust statistical counting method. Our
method has been implemented on an embedded smart cam-
era and evaluated under different road and illumination
conditions. It achieves a detection rate of more than 95%
for stationary traffic.

1. Introduction

Traffic information systems aim to provide reliable and
fast traffic messages to advise drivers against obstructions,
such as impeded road conditions and congestions. To gener-
ate traffic messages, different data sources such as drivers’
reports, traffic sensors, or travel-times recorded by toll sys-
tems [12] can be used. Moreover, traffic operators employ
video surveillance to recognize interesting traffic situations.
Automatic video analysis is mainly used to detect interest-
ing situations such as traffic jams or impeded road condi-
tions. The video data can either be analyzed centralized on
a remote server or decentralized on smart cameras or road-
side units. Many motorway operators maintain a huge in-
stallation of simple surveillance cameras that provide video
streams to remote servers, where video analysis can be ap-
plied without additional road side installations. However,
centralized solutions have the drawback of high commu-
nication requirements and low scalability. In contrast, de-
centralized solutions perform local analysis of the captured
video data and streams are only transmitted for verification
if an interesting traffic situation has been detected.

Smart cameras integrate video sensing, video process-
ing, and communication in a single device [3]. The acquired
video data can be processed onboard in real-time. If the
smart camera has detected an interesting traffic state, e.g.,

stationary traffic, the smart camera delivers an event de-
scription and a video sequence of the event as visual proof.

In this paper we present a fast and accurate method for
estimating the average traffic speed and traffic density on
the motorway for smart cameras. In contrast to most other
methods, we use feature statistics to estimate the mean
speed and traffic density. The mean speed is obtained from
optical flow analysis and the traffic density is calculated
from edge information. Speed and traffic density values are
combined to compute the so-called level of service (LOS)
that describes the prevailing traffic state. The presented
method has been implemented on a smart camera and eval-
uated under real-world conditions.

The sequel of the paper is organized as follows. Sec-
tion 2 provides a short overview of the background and re-
lated work. Section 3 presents the system architecture of
the traffic state detector. In section 4, our video-based traffic
state detection algorithm is described, including the camera
calibration and the video-based estimation of traffic speed
and density. Section 5 presents the evaluation results of our
method using a 156 hours video data set. Finally, section 6
concludes this paper.

2. Background and related work

Traffic state detection in the uncompressed and com-
pressed video domains has been a well-studied research
area for more than ten years. Traffic speed and density es-
timation is typically based on vehicle tracking or vehicle
detection. Vehicle tracking either relies on motion analysis
using background models or on feature tracking. However,
despite significant research efforts, accurate real-time back-
ground modeling for embedded computer vision is still a
major challenge.

Segmenting moving foreground objects from the back-
ground is the main approach used in background modeling.
In [14] and [16], background models have been proposed
which adapt to changing light and weather conditions. Ap-
plying frame differencing with probability density functions
to estimate the segmentation of background objects is pro-
posed in [6].



Feature-based tracking methods typically employ cor-
ner features for vehicle tracking. In [1], an algorithm em-
ploying Kalman filtering and correlation testing for track-
ing the features is described. A grouping module groups
the features in order to segment the individual vehicles. In
[9], the authors describe a method for classifying the traf-
fic state based on optical flow-based motion features and
edge-based density features. The proposed method uses a
Gaussian radial basis function network for traffic state clas-
sification and is also designed to run on smart cameras in
real-time. The method reaches an average classification ac-
curacy of 86.2%, but has not been evaluated under different
weather conditions. Employing texture and edge features
for traffic density estimation is proposed in [5]. Using a 21-
dimensions feature, Hidden Markov Models are trained to
estimate the traffic density state. The method was evaluated
for different weather conditions and shows an average ac-
curacy of 95.6%. However, this method estimates only the
traffic density and is not designed for real-time execution on
smart cameras.

Vehicle trackers utilizing vehicle detectors have shown
promising results. In [11, 10], the authors employ classi-
fier grids with adaptive online learning for detecting cars.
The feature-based KLT algorithm is used to calculate the
velocity of vehicles. In [13] the authors discuss the princi-
pal component analysis (PCA) and histogram of gradients
(HoG) approaches for vehicle detection. However, the de-
tection rate of these approaches is usually affected by oc-
clusions and difficult weather conditions. Therefore, in [2]
multiple sensor data is exploited and classification rates are
improved by co-training.

3. System overview

Our video analysis method is designed to run on a smart
camera. Our smart camera includes a 1280x1024 (SXGA)
color CCD sensor that is connected to an embedded proces-
sor board. The processor board is equipped with an Intel
Atom Z 530, 1.6 GHz processor, 1024 MB RAM and a 32
GB solid state disk for internal storage. The processor runs
a standard Linux distribution that provides flexible integra-
tion of additional hardware components and external soft-
ware libraries. The smart camera is connected to the video
network through a Gigabit Ethernet interface. Every time
the camera detects a change in traffic state, it uses a web
service interface to send an event description and the as-
sociated video sequence to the back-end traffic information
system.

Traffic state detection is carried out using the video anal-
ysis method described in section 4. Figure 1 shows the data
flow of the video-based traffic state detection that is imple-
mented on the smart camera. The image sensor acts as a
data source providing the raw video data with a frame rate
of 19 fps. The captured frames are written to the video ring
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Figure 1. Data flow of the traffic state detection.

Table 1. National traffic state classes for a single lane[4].

Level I Lane - -
Mean speed (km/h) | Density (vehicles/km)
1 (free flow) [80,00) [0,20]
2 (heavy) [80,00) (20,50]
3 (queuing) [30,80) [0,50]
4 (stationary) [0,30) (50,00)

A

Figure 2. Calibration points (left) and 1-by-1 meter grid, computed
from obtained camera parameters (right)

buffer and passed to the video analysis module. For each
frame, the video analysis module computes the estimated
speed and traffic density values and stores them in the statis-
tics buffer. At periodic intervals, e.g. every minute, the data
aggregation module reads the data from the statistics buffer
and computes the current mean traffic speed and density es-
timates. These traffic speed and density estimates are used
to calculate the prevailing level of service (LOS).

LOS is a qualitative measure that describes the opera-
tional conditions of a segment or traffic stream. According
to [4], four LOS classes are defined: free-flow, heavy, queu-
ing, and stationary traffic. Table 1 shows the LOS definition
for a single lane, depending on the measured mean speed
and traffic density.

4. Video-based traffic state detection
4.1. Camera calibration

For our video analysis method described in sections 4.2
and 4.3, we use the length of motion vectors for speed esti-
mation. To model the perspective projection of the camera
from 3D world coordinates to 2D image coordinates, we use
the well known pinhole camera model [7] in conjunction
with a polynomial lens distortion model. Camera param-
eters are obtained from known point correspondences us-
ing Zhang’s calibration method. The point correspondences
(calibration points) are obtained from known distances of
lane markings, as well as lane length and width. Figure 2
(left) depicts the calibration points used for calibration of a
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Figure 3. Vehicle in ROI with KLT motion vectors (left) and KLT
feature matching (right)

smart camera, which is located on a national motorway. The
y-axis of the world coordinate system is chosen in direction
of the lane markers (i.e., towards driving direction). Figure
2 (right) shows a 1-by-1 meter grid that was generated from
the computed camera parameters.

4.2. Speed estimation

The mean speed is estimated from the length of motion
vectors and the frame rate of the image sensor. To obtain the
motion vectors, we use the Kanade-Lucas-Tomasi (KLT)
[8] feature tracking method. Using corner detection, the
KLT method selects a number of distinctive image points
p;,; and searches for the corresponding matched feature
points p; ; in the subsequent frame. Using a feature pair
(pij: Di,j)» we define the j-th motion vector from frame i to
frame 7 + 1 as:

o —
Mij = Dij,Pij (D

Figure 3 shows an example for the matched features and
the corresponding motion vectors. Although KLT feature
tracking is considered relatively robust, incorrect feature
matches (outliers) occur. To avoid outliers disrupting the
speed estimations, we apply a cascaded outlier detection.
Features points are only computed within a predefined ROI
(region of interest) and cannot be tracked outside the ROI.
Since appearing and disappearing feature points often lead
to incorrect feature matches, any feature points within a
given margin to the border of the ROI are ignored.

Moreover, the direction of the motion vectors is also well
suited for detecting outliers. As discussed in section 4.1, we
defined the y-axis of the world coordinate system heading
towards the driving direction of the vehicles. Ideally, a valid
motion vector should be parallel with the y-axis. In practice,
however, the limited accuracy of the calibration parameters
induces small deviations. Therefore, we calculate the devi-
ation angle to the y-axis for all motion vectors and omit all
vectors, where the deviation angle exceeds a certain thresh-
old.

In the final stage of our outlier cascade, we take advan-
tage of the rigidity of the moving objects. Due to the rigidity
of objects, the relative order of feature points (with respect
to the x-axis and y-axis) cannot change.

Figure 4 shows an example, where the relative order of
feature points is changed due to an incorrect feature match.

Figure 4. Incorrect KLT feature match (green line)

The green line (incorrect feature match) crosses a number
of valid matchings. In a valid set of motion vectors, for any
pair of feature points (p; j,pi ) and their corresponding
feature matches (p; j,pi k), the following condition must
be true.

cijk = [(X(pij) = X(pin)) = (X(ij) = X(pix))] A
(Y(pij) = Y(pix)) = Y(pij) = Y(pik))]

X (p;,j) represents the x-coordinate, and Y (p; ;) the y-
coordinate of feature point p; ;. Using equation 2, the out-
lier detector creates a consensus matrix C' (upper triangu-
lar matrix), that contains the consensus c; ;. for feature
matches in the ROL Further, for each (p; ;, p; ), the num-
ber of contradictions (i.e., the number of c¢; ;. that eval-
uate false) are written to the main diagonal of matrix C'.
After that, the algorithm iteratively rejects the motion vec-
tors with the maximum number of contradiction until all
elements in the main diagonal are zero (i.e., consensus is
reached).

The speed is calculated from the median length of mo-
tion vectors. For that reason, the coordinates of the valid
motion vectors are back-projected to metric world coordi-
nates on a predefined plane. For reasons of efficiency, the
mapping to of the individual pixels to world coordinates is
stored in a lookup table. Using the metric length of motion
vectors along with the known frame time 7, for every mo-
tion vector 17, ; the corresponding speed v(m; ;) is com-
puted as follows:

Y(w(@is)) = Y(wpiy)

v(1m ) = 3)

In equation 3, Y (w(p;,;)) denotes the y-component of
the back-projected feature point p; ;. Since the direction of
the y-axis was chosen in driving direction, the x-component
of the world coordinates can be ignored. To compute the
mean speed estimation ©(r) for the r-th observation period,
the median of calculated speed values is used.

median

r) =
T~Nf§i<(T+1)-Nf

<N
—

(v(1,5)), Y j € Ry “4)

In equation 4, Ny denotes the number of frames for the
observation time (e.g., number of frames per minute) and
R; is the set of valid motion vectors in frame 7.
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Figure 5. Binary edge image (left) and occupied stripes (right)

4.3. Traffic density estimation

For traffic density estimation, we use edge information
within the ROI to obtain a statistical vehicle count. There-
fore, we further subdivide the ROI in a number of disjoint
stripes sy, which are equally sized with respect to world co-
ordinates. For each frame, our method applies canny edge
detection to obtain a binary edge mask e(x, y); for the frame
1. Using the binary edge masks of the current and preced-
ing frame, the moving edge mask E(x,y); is calculated as
described in equation 5.

E(z,y)i = e(z,y)i — [e(z,y)i Ne(z,y)i-1], 1 <0 (5)

In equation 5, A denotes the bit-wise AND operation. An
example for a moving edge mask is shown in Figure 5 (left).

Using the moving edge mask F(x,y), our traffic den-
sity estimation method calculates the number of edge pixels
(edge count) for the individual stripes s;. To obtain a met-
ric unit (pizel/m?), we define the edge density E(s;); of
stripe s, as the number of moving edge pixels divided by
the (predefined) area of the stripes Ag;yipe, as described by
equation 6.

E(s;); = !

E i 6
Astm‘pe Z (377 y) ( )
V(xz,y)Es;
Using the edge density (s 5 )i» the occupation state occ(s;)
of a stripe s; is defined in equation 7. In this equation,
FEhres denotes a predefined threshold parameter.

)

oce(s)s = {1 if £(s;)i > Enres
0 else

For ideal conditions (i.e., low noise), the state transitions
of occ(s;) can directly be used for statistical vehicle count-
ing. However, especially for difficult environment condi-
tions (e.g., reflecting lights, moving shadows), it shows that
simple transition counting of occ(s;) does not lead to ac-
curate results. To increase the robustness of the counting
method, we introduce additional constraints to the valid
state transition of the individual stripes. These constraints
make use of a number of assumptions: (1) vehicles move
towards a (predefined) driving direction; (2) all vehicles
within the ROI move at constant velocity; (3) all vehicles
move through the entire ROI; (4) all vehicles have a mini-
mum length (of 1.5 meters); and (5) vehicles do not move

Table 2. Definition of stripe transition state ¢(s;);.

t(sj)i | occ(sj)i—1 | occ(sj)i
0 0 0
1 0 1
2 1 0
3 1 1

(occ(s;)s = 1) A afs;);
Inactive ]/ /[ Active

(oce(s;); = 0) A d(s;)s

Figure 6. State diagram for stripe states

faster than 1 stripe per frame. Especially for stationary traf-
fic situations (e.g., stop and go traffic) constraint (2) is vio-
lated, which leads to potential overestimation of traffic den-
sity. However, as our evaluation shows, this overestimation
does not have a major impact on the accuracy of stationary
traffic detection.

To implement robust statistical counting, we introduce
the two stripe states active and inactive. The state diagram
for the two stripe states is shown in Figure 6 . The state tran-
sitions not only depend on the occupation state occ(s; );, but
also on the constraints a(s;); and d(s;);, defined in equa-
tion 8.

a(s;)i = (j =1) v (oce(sj-1)i = 1)
A inCluster(s;,1)
d(sj)i = (t(sj+1)i # 0)) A (t(sj-1)i # 1) ®)

The inCluster function returns true if the stripe is part
of a cluster of active stripes with a predefined cluster size
C. Furthermore, the constraints also use the temporal tran-
sition state t(s; ), of the neighboring stripes. The four possi-
ble transition states are listed in table 2 . To compute the ve-
hicle count, the algorithm maintains a transition count ¢(s;)
for each stripe. The transition count is incremented on every
Active to Inactive state transition and reset after each obser-
vation period. The traffic flow estimation ¢ is computed
as median transition count of all stripes s;, as described in
equation 9.

= median c(s;) )

where N denotes the number of stripes in the ROI. Using
the flow estimate ¢ and the corresponding speed estimate
0, the traffic density estimate K is calculated as shown in
equation 10.

[N(:

SINESN

- As (10)

Here, )\, denotes a scaling constant that accounts for the
observation period and unit conversions.
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Figure 7. (a) Region of interest used for evaluation, (b) dry road
with small shadows, (c) large shadows, (d) water on the road

5. Evaluation and results
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Figure 8. Evaluation of the traffic state detection method for dif-
ferent conditions based on precision, recall and accuracy of the
LOS classifier: (a) Large shadows, (b) small shadows/no shadows,
(c)wet road/water on the road, (d) dry road, (e) entire test set

For evaluating our video-based traffic state detection we

Table 3. Distribution of test data (number of samples for different

road conditions/traffic states).

Traffic State | Small Shadow | Large Shadow | Dry Road | Wet Road
Free Flow 7916 804 7628 1092
Heavy 347 58 364 41
Queuing 138 0 4 134
Stationary 144 0 0 144

used 156 hours video data recorded at successive days in
July and August 2011 by our smart camera mounted at
a gantry on the national motorway. The video sequences
were recorded at daylight conditions at VGA resolution
and a frame rate of 16 frames per second. All recordings
were taken with the same camera orientation at the same
camera location. For the speed estimations, we used the
exact frame times obtained from the image sensor driver.
The video sequences include traffic situations with different
traffic states (all LOS levels) as well as different weather
and illumination conditions (i.e., sunny, cloudy, light rain,
and heavy rain). The ROI was defined manually on the
left lane as shown in Figure 7(a) (red area) and 0.5m was
used as stripe width. Mean speed and traffic density val-
ues were computed over one minute intervals. The results
were compared to the measurements of a triple-tech traffic
sensor [15] mounted next to the smart camera. The triple-
tech traffic sensor combines doppler radar, passive infrared,
and ultrasound for speed measurement and vehicle count-
ing. To evaluate the robustness of our method for different
conditions, the video data were manually annotated regard-
ing weather and lightning conditions. The classification re-
sults were clustered in the following four (non-disjoint) cat-
egories: (1) No shadows or light shadows smaller than the
lane, (2) large shadows, larger than the lane, (3) wet road
or water on road, and (4) dry road. Figure 7 shows exam-
ples for the different weather and lighting conditions. The
video analysis results were compared to the reference mea-
surements, and the precision, recall, and accuracy values
were calculated for the individual LOS classes. For practi-
cal reasons (i.e., more disk space, less computation time),
the video data for this evaluation was analyzed on a server
using the same implementation that runs on the smart cam-
era. Live tests on the smart camera showed a mean execu-
tion time in the range of 30ms per frame.

Table 3 shows the distribution of the test data for the dif-
ferent road conditions and traffic states. The evaluation re-
sults are shown in Figure 8 and indicate a high precision and
robustness of our method. The precision for the individual
LOS levels does not show significant variations with respect
to the different weather and lighting conditions. Stationary
traffic is detected reliably also at difficult weather condi-
tions (precision > 95%). Free flow traffic is also detected
very reliable (99% precision on the entire test set).

The evaluation shows a lower precision (67% on the en-
tire test set) for heavy traffic. The discrimination between



Table 4. Mean absolute error (MAE) of traffic speed and traffic
density.

Traffic State  MAE speed (km/h)  MAE density (vehicles/km)
Free Flow 3.01 1.11
Heavy 3.05 2.33
Queuing 1.79 4.78
Stationary 2.35 19.14

free flow traffic and heavy traffic is only related to traffic
density (cp. definition of LOS in Table 1). Detailed anal-
ysis of reference data indicates two major reasons for the
lower detection rate of heavy traffic. First, heavy rain can
lead to significant image blur and lowers the edge density,
which sometimes leads to lower vehicle counts. Second, the
test set contains a high amount of borderline cases, where
small deviations lead to classification errors (44% of mis-
classified heavy traffic samples differ only by 1 vehicle/km
from free flow traffic).

In addition to the LOS-based evaluation of our traffic
state detection method, we used the reference data from a
triple-tech sensor to obtain the mean absolute error (MAE)
for the described mean speed and traffic density estimation
methods. Table 4 shows the MAE for the different traf-
fic states, evaluated on the entire test set. The figures indi-
cate the high quality of the presented methods for automatic
video surveillance. The accuracy of the traffic density esti-
mation decreases only for very high traffic density values
(e.g., with stop and go traffic), which has no impact on the
quality of the traffic state detection.

6. Conclusion

In this paper we presented a novel vision-based traffic
state detection method that was implemented on an embed-
ded smart camera. Our method uses optical flow and a ro-
bust cascaded outlier detection for speed estimation, and
a robust statistical counting for traffic density estimation.
The camera calibration parameters are obtained from the
known length and distances of lane markings. Evaluations
on a comprehensive test video set have shown the robust-
ness of our method for different weather and illumination
conditions. Stationary traffic is detected with a precision of
95.8%. As ongoing work, our prototype is currently eval-
uated for monitoring temporary maintenance areas on mo-
torways.
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