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Abstract—Many data-flow oriented applications are based on
the pipe-and-filter concept. This paper presents an improvement
of the state of the art for multi-threaded pipe-and-filter processing
architectures. We present a novel approach for adapting the time
of data generation in the pipeline where adjacent pipeline stages
exchange information about the current utilization. We compare
our approach to a traditional input data driven pipeline and
achieve a significant reduction of the processing delay and re-
quired memory consumption. The improvement of the presented
system is based on self-adapting the data generation rate in the
processing pipeline. This adaptation results in two key efficiency
improvements: (i) the reduction of the time data elements spend
in the pipeline and (ii) the reduction of the memory requirement
for communication buffers. These improvements are of special
interest for reactive and interactive multi-camera applications
where short delays of the image processing pipelines is often
required. The presented approach enables any data-flow based
application to execute with reduced memory usage, reduced
execution delay and the highest possible data-rate.

Keywords—data-flow processing; middleware system; data gen-
eration; adaptation; multi-camera systems; pipe-and-filter architec-
ture

I. OVERVIEW

During the last years, more and more applications are exe-
cuted within a network of devices. Therefore, design patterns
are used to improve the software development for distributed
systems. One of these concepts is the pipe-and-filter approach
as described in [1]. In this case, a number of filters which
are responsible for data processing are connected via pipes.
The pipes are responsible for transferring data between filters.
Based on this architecture it is possible to create a distributed
system by executing some of the filters on remote devices.

The general requirements for processing systems are al-
ways a high data-rate, low memory consumption and a low
processing delay. The performance that is achievable by an
application mainly depends on four components. First, the
hardware used to execute the code. Second, the algorithms
used for processing the data. Third, the assignment of the
individual filters to hardware devices. Fourth, the architecture
for triggering the execution of the individual filters. In this
paper, we will concentrate on the fourth component.

Finding an optimal architecture depends on a number of
different factors. These factors are first the number and the
possible combinations of individual filters (number of pipeline
merges and splits). The architecture is further influenced by
the execution time of the individual filters, the transmission

time of the pipelines and the complexity of the algorithms.
All these factors vary during runtime and the challenge is to
find an architecture to find an optimal solution for all possible
cases. Within this paper, we demonstrate that all these factors
can be reduced to a few parameters that can be easily measured
and enforced. By controlling these few parameters we show
that it is possible to achieve a number of positive effects. First,
it is possible to execute any pipe-and-filter architecture with
reduced memory usage. Second, the time a data element spends
in the pipeline is reduced. Third, the maximal data-rate is still
provided. We further describe how the system can adapt its
configuration to compensate changes in the execution of the
single elements.

In this paper, we show how the reduction of the required
main memory and the reduction of execution delay (time spent
by data element in the pipeline) can be realised by adaption
of the execution time of the data-source. The data rate of
the source is adapted to the data rate of the bottleneck in
the system. Therefore information about the optimal time to
execute the data-source is backwarded from the bottleneck
through all processing elements. The source then adapts its
execution time according to the measured and the desired
value. This approach is distributed and enables self-adaption
with no need for a central component.

The optimisation of distributed systems is an important
field to study as a lot of research currently focuses on this
field. Smart cameras are one example of this trend. They
combine image sensing, processing and networking. While
single cameras can be used to trigger events and support
a human observer in a surveillance system [2] or perform
vehicle detection and speed estimation [3], distributed smart
camera networks offer an even higher benefit [4]. They can be
used to detect obstacles to avoid collisions [5] or perform a
cooperative tracking with local image analysis [6]. Usually a
middleware system is used to organise the distributed execu-
tion and the communication between devices. In cooperative
scenarios, it is of special interest to use a middleware that
is able to execute the application with low overhead for
different system configurations. As the configurations may
change during runtime, a middleware system has to support
online adaption of parameters. One example of such a dynamic
system is described by Esterle et al. [7] where they use a
socio-economic approach for online vision graph learning and
tracking handover in smart camera networks.

As more and more high-level tasks are required to be
executed on these smart cameras, it is important to provide



an efficient execution of these tasks.

The rest of the paper is organised as follows: The next
section concentrates on the related work to the topic of data-
flow based execution models. The section starts with theoretic
approaches and continues with middleware systems that use
a similar data-flow structure to trigger execution. Section III
analyses the benefits of an ideal executed pipeline. This section
further analyses the parameters that can be used to evaluate
the properties of a pipeline. In Section IV, we explain the
necessary modifications of the execution model to optimise
the system performance. We define a system as optimal when
the highest data-rate with lowest possible memory usage and
lowest possible CPU usage is achieved. Section V describes
the required steps of adaption to keep the system in an optimal
configuration if parameters or the data-flow structure of the
system changes during runtime. Section VI presents insights
into the implementation of the system and shows measurement
results of the proposed system and a reference implementation
to demonstrate that the theoretic improvements can also be
applied to real implementations. The last section concludes
the paper.

II. RELATED SYSTEMS

The theoretical background of data-flow oriented process-
ing frameworks is based on Kahn process networks [8].
Kahn process networks are models for distributed computing
where processes communicate through unbounded unidirec-
tional FIFO queues. The processing network provides deter-
ministic behaviour and does not depend on computation or
communication delays.

As unbounded queues are practically impossible (due to
limited memory on real devices), Lee et al. [9] extend this
model. They introduce bounded queues. As a consequence
of bounded queues, a method to prevent message drops if a
queue is full was required. Some mechanisms to overcome this
problem are described. One mechanism is to block the data-
providing process as soon as the queue where this process
writes the data to reaches a threshold or is full. The blocking
is necessary to keep deterministic behaviour of the system.
In certain conditions, the blocking of processes can lead to
deadlocks.

Canella et al. [10] implement and test three different
approaches which implement the semantics of Khan Process
networks on Network-on-Chip architectures. Also these sys-
tems provide deterministic behaviour. They block processes as
soon as queues are filled higher than a threshold.

CORBA [11] provides methods for remote method invo-
cation. Two methods, synchronous and asynchronous calls are
possible. This middleware system is not comparable to data-
flow concepts where data from element “a” is analysed by ele-
ment “b” and then forwarded to element “c”. The infrastructure
provided by CORBA can be used to implement a data-flow
based system, but this is not supported by the base system.
The timing for method invocation and the decision between
synchronous or asynchronous calls has to be made by the
programmer. This requires detailed knowledge of all elements
and their needs (e.g., if an algorithm needs every picture or if
pictures can be dropped). Mechanisms for changing parameters

such as the execution time based on the system load or the
current context are missing.

Gstreamer [12] runs applications as pipelines. The pipelines
are normally executed on a single device and in a single thread.
Once started, pipelines will run in a separate thread until you
stop them or the end of the data stream is reached. Streaming
data are passed between elements in the pipeline with buffers.
Buffers are created by the data provider and read by the data
consumer. A reference counter is introduced to find out about
the number of references currently accessing the data element.
As soon as no one is using the buffer any longer, the buffer
will be destroyed. This setup is good for playing or converting
a video or audio file as every element from the data source is
executed till the end of the queue where it is either displayed
or stored.

The manual of the Gstreamer framework also argues that
in some cases it makes sense to use threads. Their example
is the playback of an multimedia stream where they want to
visualise the images at the same time as the audio is replayed.
This framework provides so called “queue” elements that force
the use of threads. In this case, a classic producer / consumer
model is used. This makes data throughput between threads
thread safe and also acts as a buffer. These elements can be
configured for specific uses. Lower and upper thresholds can be
defined. If the buffer is lower than the lower threshold, it will
by default block the output. If the upper threshold is reached,
either the input is blocked (default) or data can be dropped.
This system works good for pre-captured sources. In the case
of live data, it would make sense to provide a mechanism that
automatically adapts the frame-rate of the data producer to
those of the consumer.

Systems more focused on a specific application are for
example middleware systems for smart cameras. They usually
focus on distributed processing and fusion of results [13].
Rinner et al. [14] discuss requirements on middleware for
distributed smart cameras and services such a middleware has
to provide. For their application - the tracking of an object
with multiple cameras, they found the agent-oriented paradigm
to build flexible and self-organizing applications to suite best.
The following references show other examples for middleware
systems built to support the developer of distributed smart
camera applications. All of them are focused on data-flow
oriented applications.

HIVE [15] creates pipelines called “swarms” out of single
elements called “drones”. Each drone is executed in its own
thread. Two data transfer models are provided to transmit data
from one drone to another. One is called synchronized and the
other is called streaming data transfer.

In the case of streaming data transfer, a pipeline (or
“swarm”) is created and it is up to the programmer to set their
parameters in a way that the execution speed is the same for
all “drones” in the “swarm”. There is no mechanism provided
to react on context changes such as a change in the processing
load that would reduce the speed of a single filter. If the input
queue of a filter becomes full, new elements are dropped.

The other option, the synchronized data transfer, should
ensure that a processing pipeline operates at its maximal
capacity and does not waste unnecessary bandwidth. It works
in a way that each drone only requests data from its provider as



soon as this drone has finished with the processing for the last
data. After receiving the data, the drone will process this data
element and request the next data as soon as the processing is
finished.

The problem about this mechanism is that even if the data
transfer is called synchronized, the threads of the drones are
not synchronized which means that it can happen, that a source
drone produces more data than a filter drone can process. This
would lead to frame-drops in case of a video encoding. In the
case of live video-data this would mean that images are at least
generated that will never be processed which means a waste
of processing resources. Another drawback is the added delay
that is introduced by requesting the next data after the last data
has finished processing. The delay is even higher if a whole
image has to be transmitted via the network.

Schriebl et al. [16] describe a system where every block
has an output memory where its results can be accessed by
subsequent blocks. To maintain consistency of the stored data,
access to the memory is guarded by a lock that is passed
between the producing and consuming block similar to a token.
Blocks can form chains of arbitrary length where each pair of
blocks is connected by a shared memory and a lock.

This mechanism ensures that the whole pipeline is always
filled. Assume a producer (A) and a consumer (B). As soon
as B finishes computation, A may provide new data to B.
This data can already be pre-calculated while B processes the
last values from A. With this system, the execution speed of
the whole processing pipeline is automatically reduced to the
speed of the slowest component and no data element will be
dropped. In the case of recorded video sources, every frame
will be processed with the pipeline nearly filled (only the filters
after the bottleneck will be free from data for some time). This
mechanism also works for live-video sources as the capturing
rate is automatically adapted to the one of the processing rate
of the bottleneck. It is not mentioned how filters with more
than one input are handled.

Moreland [17] presents in his paper a survey about visu-
alisation networks. The behaviour when modules get executed
is described as a primary feature of visualisation pipeline
systems. According to this paper, all visualisation pipelines
generally fall under two execution systems: event driven and
demand driven.

According to their definition [17], an event-driven pipeline
launches execution as data becomes available in sources. When
new data becomes available in a source, that source module
must be alerted. When sources produce data, they push it to
the downstream modules and trigger an event to execute them.
Those downstream modules in turn may produce their own data
to push to the next module. Because the method of the event-
driven pipeline is to push data to the downstream modules,
this method is also known as the push model. The event-driven
method of execution is useful when applying a visualization
pipeline to data that is expected to change over time.

A demand-driven pipeline launches execution in response
to requests for data. Execution is initiated at the bottom of
the pipeline in a sink. The sinks upstream modules satisfy this
request by first requesting data from their upstream modules,
and so on up to the sources. Once execution reaches a
source, it produces data and returns execution back to its

downstream modules. The execution eventually unrolls back
to the originating sink. Because the method of the demand-
driven pipeline is to pull data from the upstream modules,
this method is also known as the pull model. The demand-
driven method of execution is useful when using a visualization
pipeline to provide data to an end user system. For example,
the visualization could respond to render requests to update a
GUI.

III. ANALYSIS OF PIPELINE EXECUTION

This section describes the benefits that can be achieved
by optimising the data-flow of a pipe-and-filter architecture.
Typical requirements for a software is to provide a high data-
rate with a low memory consumption. Some systems have
the additional requirement of a low processing delay. Control
applications for example rely on a very short reaction time
which requires a low processing time. To control a crane and
use a distributed smart camera application as described in [5]
to detect location, orientation and dimensions of obstacles in
the scene, it is necessary that the result data about the obstacles
is delivered within guaranteed time bounds.

This analysis is based on a pipe-and-filter architecture.
Figure 1 visualises an example of such an architecture. Pipe
and filter architectures consist of two main components, first
the filters, which are responsible for producing, processing and
consuming data. In Figure 1, the filters are shown as circles.
The numbers inside the circles represent the filter IDs. The
values t which are also displayed for each filter are an example
of their processing time. The processing time of a filter is
the period between start of processing till the result values
are produced. In Figure 1, the data-inputs are visualised with
arrows pointing towards the filters and the outputs are shown
as arrows pointing out of the filters. Each filter may have any
number of inputs but can only produce a single output type.
Each input can only receive data from a single output but
an output can forward data to any number of filter inputs.
Source filters or data producers are filters having no input.
Sinks or data consumers are filters with no output. In the
current example, the filter with ID 1 is a source filter and
the filter with ID 14 is a sink filter. Filters for this paper are
assumed to be single rate elements meaning that they can only
process data if at least one element is present on each input.

Pipes are the second component of a pipe-and-filter struc-
ture. These components are responsible for transferring data
from the output of one filter to the input of another filter (rep-
resented as arrows in Figure 1). Pipe-and-filter architectures
are also often used in distributed systems as the filters are
self-contained and can be executed on different devices. The
pipes which represent the data-communication take care of
the data-transfer between devices. For communication, each
filter has an input buffer to store data-elements for the next
processing period and an output buffer to store results of
previous calculations while they are not forwarded to the
input buffers of the connected filters. Pipes transfer available
data from output buffers to input buffers of other filters and
delete the data from the output buffers. A combination of
filters connected with pipes is called pipeline. For the current
analysis, we allow all acyclic directed graph structures with a
single source filter.
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Fig. 1. A sample pipeline with a number of filters, their processing times. The filters which belong to the bottleneck-pipeline are connected with thick arrows.

The first step in preventing the system to waste resources
is to ensure that no produced data-element is dropped. This
requires a synchronisation between the filters in the pipeline
which can be realized by blocking filter executions if buffers
inside the pipeline are full. This can be easily achieved by
placing a blocking buffer at the input of each filter. The
filter will be automatically executed as soon as new data is
present and the source of this filter can provide new data
as soon as this buffer is not completely full anymore. This
mechanism guarantees a maximum possible data-rate. As this
architecture already provides the maximum possible data-rate
for a synchronized system and is used in systems as described
in [16], we use the blocking-filter structure as a reference
design which we will later use to compare our system to.

Assume a set of filters fi where i represents the ID of
the single filter and each of these filters requires a certain
processing time ti to process its task. In a synchronized pipe-
and-filter architecture, the minimum delay between two data
elements at the end of the pipeline equals the processing time
of the slowest filter tb = max(ti)∀i. This slowest filter is
called the bottleneck-filter. This effect comes from the fact
that all filters after the bottleneck have to wait for data from
this filter before they can continue processing. This further
means that the maximum rate at which a pipeline can produce
or process data is always the data-rate of the bottleneck.

As the bottleneck is a limiting factor of the system,
we extract a critical-pipeline (which we call the bottleneck-
pipeline) from the whole pipeline that is defined as the path
with the highest sum of processing delays from the bottleneck-
filter to the source-filter. In Figure 1 the bottleneck-pipeline is
marked with thick arrows.

This is the part of the whole pipeline that limits the
performance. Therefore it makes sense to further analyse the
different effects on this part of the pipeline as they will also
be present on the rest of the pipeline.

The bottleneck-pipeline will always be a linear pipeline
with a number of filters before the bottleneck and the bot-
tleneck at the end. This linear pipeline can now be defined
by the number of filters before the bottleneck nb, the pro-
cessing delays of the filters before the bottleneck tb,i and the
processing delay of the bottleneck tb. For the analysis, we
can further replace the tb,i by a single average delay value
tavg = (

∑
tb,i) ÷ nb. We can now replace the filters before

the bottleneck that used to have different execution times by
nb filters all having the same execution time tavg . This reduced
pipeline now consists of nb filters before the bottleneck where
each filter takes tavg time to process a data element and the
bottleneck filter at the end with tb = max(ti)∀i.

We can now see in the bottleneck-filter that the producer
filter is per definition faster than the bottleneck-filter. In the
reference system, a new data-element is produced as soon
as possible. This can be achieved by producing new data as
soon as the output buffer is empty and new data-values can be
stored. We propose a strategy that produces new data as late
as possible. The realisation of this strategy is further described
in Section IV. The benefits are described in this section.

The minimum delay between two data-results has already
been described as tb. We will now analyse the time that a
single data-element takes to pass through the whole bottleneck-
pipeline. Therefore we distinguish two cases: the case when
the pipeline is empty and the case when the pipeline is full. In
the case of an empty pipeline, the time it takes to process
a single data-element is the sum of all processing times:
Tmin = (nb × tavg + tb). This equals the minimum time
it takes to process a single data element. As the producer
and the filters before the bottleneck are able to produce more
data-elements than the bottleneck can handle and the producer
provides new data as soon as possible, the buffers before the
bottleneck will start filling up to the time when all buffers
before the bottleneck will be filled. This effect can later be
seen in Section VI. From this moment, the time to process a
data-element is automatically increased to Tmax = (nb+1)×tb
which means that each data-element will now remain in every
filter before the bottleneck for the same time as the bottleneck-
filter takes to execute a data-element. This means that there is
a potential for optimisation in the part of the pipeline before
the bottleneck.

Figure 2 shows the overhead that is introduced for different
number of filters nb (between one and ten) and different
times tavg where the times are expressed as fraction of the
bottleneck-time tb. This means that in the case of 10 filters
before the bottleneck and an average execution time of these
filters of half of the execution time of the bottleneck filter, it
takes five times longer to process a new data element than in
the optimal case. The optimal case is calculated as nb × tavg .

The number of data-elements in the pipeline is also higher
than the optimum. The optimal number of elements in the
pipeline is the number which ensures that the bottleneck
receives a new data-element to process as soon as the last
processing has completed. This number can be calculated with
the formula eopt = dnb×tavg

tb
e. The number of additional data-

elements in the pipeline and therefore in the main memory
is shown in Figure 3. With a relative execution time for the
filters before the bottleneck of 0.4 and 10 filters before the
bottleneck, 6 elements more are in the bottleneck than there
would be in the optimal case.
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Fig. 2. The factor of which the time a data element spends in the pipeline is reduced compared to the reference architecture.
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Fig. 3. The factor of which the number of data-elements in the pipeline is reduced compared to the reference architecture.

In the case of the reference system, at the moment when
the bottleneck filter finishes the execution it automatically
accesses the next data-element from the input buffer triggering
the execution of all previous filters. This means that at this
point all filters preceding the bottleneck start their execution.
Figure 4 shows the number of active filters during the relative
processing time of the bottleneck filter if the time of all
previous filters is assumed to be 0.4× tb for different number
of filters before the bottleneck. What can be seen is that during
the relative execution time before 0.4, all filters are executed
at the same time and later only one single filter is executed.
This causes a high load at the beginning of the period tb and a

low load at the end of the period tb. In real systems, this edge
will not be that sharp as not all filters before the bottleneck
have the exact same processing time.

IV. DELAYED DATA GENERATION

The drawbacks as demonstrated in the previous section can
be handled by delaying the execution of the first filter (the
producing filter) only. All other filters work as in the reference
system meaning that they start processing as soon as all input
data are available and forward the result as soon as this is
present. The producing filter is delayed to have the same rate as
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Fig. 4. The number of filters processing during the relative processing time of the bottleneck-filter (0.1 → 1) where the execution time of the filters before
the bottleneck-filter is 0.4× tb. The values in the graph are always bigger than one as the one represents the bottleneck-filter that is executed during the whole
period. All other filters finish execution after 0.4.

the bottleneck-filter. With this mechanism, the pipeline never
fills up, the number of data-elements in the pipeline is reduced
to the minimum and the time to execute a data-element equals
the sum of all filter execution times which is the minimum
possible execution time. The main idea of an optimal execution
is to ensure that every data-element is continuously processed
in one of the filters, reducing the time that a data-element is
stored in the input buffers. The time that a data-element is
stored in an input buffer (and not processed) should be zero
in the optimal case.

By assuming an execution time of the filters before the
bottleneck of 0.4×tb and 10 filters before the bottleneck filter,
the execution time overhead could be reduced by a factor of 6
as shown in Figure 2. In addition 6 data elements less would
be in the main memory during execution as seen in Figure 3.

Another interesting observation is that this modification
also has an influence on the number of filters being processed
at a time. In the reference system, (compare Figure 4) 11
filters have been executed from the beginning of the period till
relative time 0.4. The modified version shows a more smoothed
processing distribution. The distribution of the processing
times of the filters for the proposed system is shown in
Figure 5.

By comparing the values from Figure 4 to the values from
Figure 5, the difference of the two systems can be noted. In
the first case, all filters are executed at the same time resulting
in a higher CPU utilisation during this period. In the second
case, the execution of all filters is distributed over the whole
processing period. The sum of all filter execution times is the
same for both cases, the only difference is that in the second
case the distribution is more smoothed over the whole period
where in the first case there is always a peak at the beginning
of the processing period.

In this section, we could show that by adapting the exe-
cution rate of the first filter only, we can reduce the required
memory, smooth the CPU utilisation over the processing period
of the bottleneck filter by still keeping the highest possible
data-rate.

V. ADAPTIVE, DYNAMIC BEHAVIOUR

So far we described that with a modification of the
execution-rate of the first filter, it is possible to smooth the
CPU utilisation, reduce the required main memory and reduce
the time that each data-element is processed within the pipeline
to a minimum. All scenarios described in this paper so far had
fixed, static values for the important parameters (number of
filters before the bottleneck nb, average execution time of the
filters before the bottleneck tavg and execution time of the
bottleneck filter tb).

In real systems, these values are not constant for the entire
execution period. In most modern systems, the requirements
for the systems change over time or depending on events. In
such scenarios, the filters are not able to process each data-
element with the same processing speed. Depending on the
parameters and the properties of the input data, the execution
time of a filter may change over time. An example would be
an image processing pipeline. By changing the resolution of
the images, most filters process at different execution speeds.
We now analyse the effects of dynamic changes of any of the
three parameters and how the system has to adapt to come
back to the optimal case.

To have a system that is able to handle all these effects,
it is necessary to keep track of two pairs of values at the
production filter. The first pair is the optimal configuration
which the system aims to achieve. This is the optimal number
of data elements in the bottleneck-pipeline eopt and the delay
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Fig. 5. The number of active filters during the relative processing time of the bottleneck-filter where the execution time of the filters before the bottleneck-filter
is 0.4× tmax. The values in the graph are always bigger than one as one represents the bottleneck-filter that is executed during the whole period. The execution
of all other filters is spread over the whole processing period

of the bottleneck filter tb. The second pair of variables is the
current system state. First, the number of elements currently
in the bottleneck-pipeline eb and the current time between two
produced data elements ts (the execution period of the source
filter).

Every possible change in any of the pipeline parameters
nb, tavg or tb will influence the values of eopt and tb. This
means that if there is an algorithm that can compensate changes
in these two values, it will be able to handle any change in
pipeline structure.

It is now sufficient to find an algorithm that can change ts
and eb so that they fit the optimal values again. Changing ts
is easy as this only requires the setting of the new value for
ts as described in the first part of Algorithm 1. The adaption
of this parameter ensures that the source produces new data
elements at the same rate as the bottleneck-filter can process
them. However, this parameter is not sufficient as the number
of data-elements in the pipeline are not taken into account
so far. The influence of a pipeline with less elements than
optimal results in an additional delay at the bottleneck filter
(and a reduced processing rate) as it is not be possible to
provide new data to the bottleneck as soon as this finished
processing. As the producer is executed at the same rate as
the bottleneck consumes data, the pipeline is automatically re-
filled by the producer filter in an optimal way (at the same rate
as the bottleneck filter can process). If the number of elements
in the pipeline is bigger than the optimal number, this results in
an increased processing delay for the single data-elements as it
blocks one of the filters. This does not influence the processing
rate but the memory requirements are higher than necessary
and the time it takes a single data-element to be processed

(the processing delay for single data-elements) is increased.
This is the main reason why also the number of elements in
the pipeline has to be adapted to the optimal value. Adapting
the number of data-elements in the pipeline can be done as
described in the bottom part of Algorithm 1. If the number of
elements in the pipeline eb is larger than the optimal number
of elements in the pipeline eopt, the execution will be delayed
resulting in a reduction of eb. This is done until the optimal
number of elements in the pipeline eopt is reached again. If
there are less elements in the pipeline than in the optimal case,
no modification is needed, the source filter is executed at the
current rate of tb. This will fill up the pipeline in an optimal
manner (time between two data-elements is the processing time
of the bottleneck-filter).

This section analysed the dynamic case, how to handle
the case of a different bottleneck filter and the case when the
processing speed of the bottleneck-filter changes to faster or
slower execution. The next section will describe the practical
realisation of this mechanism and compare measurements
between the reference-system and the proposed system.

VI. IMPLEMENTATION

This section focuses on the practical realisation of the
proposed mechanism. Later at this section we compare the
proposed system to the reference system for the parameters as
described in the previous section (number of data elements in
the pipeline and processing delay for the data-elements).

For this comparison, a middleware system was imple-
mented that is based on the pipe-and-filter approach. Each filter
can be executed on a different hardware and the middleware



handles the communication between the filters. The selected
programming language was C#. The compiled binary files
can be executed on Windows as well as on Linux systems
(in the case of Linux systems, the help of mono is required
for execution). Pipelines have been tested on heterogeneous
systems with Linux and Windows operating systems. The filter
logic can be implemented by the user. One requirement for
the filter implementation is that the input and output data
are serializable, otherwise these data cannot be forwarded to
other devices and the application terminates. For evaluation
purposes, three dummy-filters have been implemented, one
producer, one consumer and one processor. Dummy filters
have been chosen as they can be modified in a way that they
simulate a desired behaviour. The important parameter in this
case is the execution time of the filters. The chosen execution
time was realized by a delay that could be set for each filter.
The data that were transmitted through the pipeline were two
dimensional byte arrays. We executed the reference system as
well as the proposed system on two devices. The producer
and consumer filter are both executed on a Linux device. The
rest of the filters are equally distributed on both devices. In our
case, we took a Windows pc as the second middleware device.
During the execution, we stored the data that resulted in the
measurements presented later in this section. The stored data
include the creation time of a new data-element and the time
when the data-element finally passed the pipeline. With those
two times, it was possible to calculate the time that a packet is
inside the pipeline. In addition, the number of data-elements
inside the pipeline has been stored.

From Section V we know that it is sufficient that the
source filter modifies its execution time. We further know that
the correct time to trigger the next execution depends on the
following values:

• The optimal number of elements in the bottleneck-
pipeline eopt

• The processing time of the bottleneck filter tb

• The current processing time of the source filter ts

• The current number of elements in the bottleneck-
pipeline eb

There are two important tasks to consider upon implemen-
tation of the middleware. First, how should the middleware
react based on these values and Second, how can these required
measurement data be obtained from the system.

In the real implementation, we had to compensate a lot
of effects like scheduling which causes a non-constant time
for processing of a single data-element. These effects were
handled by using average values and standard deviations over
a number of executions. These values were also considered
by setting the processing time of the producer filter. In the
rest of this chapter we will no longer mention the average
and standard deviation of the values as these would make all
algorithms too complex to describe.

Starting with the first task, Algorithm 1 shows how the
source-filter decides whether to execute the filter code imme-
diately or delay the execution. The described function is always
called after a period of ts by a timer. This algorithm is based
on the observations from Section V.

Algorithm 1 Execution triggering on source filter
1: function EXECTRIGGER(tb, tsum, eb, ts, tlast time executed)
2: if ts 6= tb then
3: ts = tb
4: end if
5: eopt = dtsum ÷ tbe
6: eextra = eb − eopt
7: if eextra ≥ 1 then
8: dfirst = tb ×−(NOW()− tlast time executed)
9: drest = tb × (eextra − 1)

10: DELAY(dfirst + drest)
11: end if
12: EXECUTEFILTER()
13: tlast time executed = NOW()
14: end function

Algorithm 1 works based on the values from tb, tsum, eb, ts
and tlast time executed. The values for ts and tlast time executed

can be directly read from the filter internal variables but
the other values have to be gained from the system. As in
this system, each filter only knows its direct data-sinks, an
algorithm was required that is able to return the values that
are required by Algorithm 1.

The implementation of the data measurement can be com-
pared to a depth search from a tree-structure. The algorithm is
shown in Algorithm 2. At the beginning, each filter assumes
that he is the bottleneck filter. Therefore he checks whether
he is slower in processing or in transmission. Depending on
the result, a preliminary maximum delay tfused,max is stored.
The time tsumfrombottleneck is also initialized depending
on the location of the bottleneck. Afterwards all filters that
receive data from this filter are requested for their values
for tfused,max and tsumfrombottleneck. The preliminary local
results and the received results are then fused as described
in the function fuseResults. This function stores the data for
either the highest number of tfused,max or if they have the
same value, the longest delay between the current filter and
the bottleneck-filter (tsumfrombottleneck). Before returning the
result, the number of data-elements in the own filter is added
to the fused result (fused).

The practical implementation was tested for 10 filters
before the bottleneck and the average time of the filters before
the bottleneck was set to 10% and 40%. The test has been
executed for the reference system and the proposed system.
The producer and consumer were executed on a Linux host.
Each second of the other filters was executed on a remote Win-
dows host. With this system we could show that a distributed
execution on heterogenious devices can be performed. The
adaption process from the proposed architecture also works
in this distributed scenario as expected.

In the reference architecture, the number of elements in
the pipeline rises to a value of approximately 30 see Figure 6,
graphs marked with ref. This value can be explained as each
filter has an input buffer, a processing buffer and an output
buffer which means that altogether each filter can store three
data elements. This storage is fully used by the reference
system.

The proposed system in Figure 6, graphs marked with



Algorithm 2 Algorithm for bottleneck-queue detection
1: function GETBOTTLENECKPARAMETERS
2: if taverage execution ≥ taverage transmission then
3: tfused,max = taverage execution
4: tsumfrombottleneck = 0
5: else
6: tfused,max = taverage transmission

7: tsumfrombottleneck = taverage execution
8: fused = [tfused,max, tsumfrombottleneck, 0]
9: end if

10: notBottleneck = False
11: for all sink filters do
12: received =GETBOTTLENECKPARAMETERS()
13: newV alue =FUSERESULTS(ref fused, received)
14: if newV alue = True then
15: notBottleneck = True
16: end if
17: end for
18: if notBottleneck == True then
19: fused.tsumfrombottleneck+ = (taverage execution + taverage transmission)
20: end if

fused.numelements in pipeline+ = numelements in filter return fused
21: end function
22: function FUSERESULTS(ref fused, received)
23: if fused.tfused,max > received.taverage transmission then return False
24: else if fused.tfused,max == received.taverage transmission then
25: if fused.tsumfrombottleneck > received.tsumfrombottleneck then return False
26: else
27: fused.tfused,max = received.tfused,max

28: fused.tsumfrombottleneck = received.tsumfrombottleneck return True
29: end if
30: else
31: fused.tfused,max = received.tfused,max

32: fused.tsumfrombottleneck = received.tsumfrombottleneck return True
33: end if
34: end function

new, show a different utilisation of elements in the processing
pipeline. The first peak can be described by the fact that at the
beginning, the filters do not know how fast they can process
data and therefore return a low value for their processing
time. This low value corresponds to a high number of allowed
data-elements in the pipeline. The source filter reacts to this
request by increasing the processing speed. As soon as the first
data-elements are processed by the filters, the filters return
the measurements for their real execution time. As soon as
the bottleneck filter returns its first measurement, the data-
producing filter has to adapt to this situation. Based on these
measurements, the data-producing filter decides to delay data
production until a lower threshold (eopt) is reached which
depends on the parameters as described in Algorithm 1. As
shown in this figure, the number of data-elements in the
pipeline automatically adapts to the correct, optimal value.

Figure 7 visualises the data-element delays for the same
two systems - reference (ref ) and proposed (new) for an aver-
age execution time of the filters before the bottleneck at 10%
and 40%, respectably. The ref graphs refere to the reference
architecture and the new refere to the proposed architecture.
In the reference architecture, the delay is constantly increased
till all buffer elements are full. From that point, the delay

remains at a constant high level. In the proposed system,
the delay also increases at the beginning. At the same time
when the number of data-elements in the pipeline is reduced
(see Figure 6) also the delay is reduced. Where the suggested
approach reduces the number of filters in the pipeline to a
minimal value, the reference system fills all available storage
spaces which increases the processing delay.

VII. CONCLUSION

In this paper, we showed that by adding a delay to the
source-filter of a pipeline, it is possible to improve the pipeline
execution in a number of ways. The required main memory is
reduced, the CPU utilisation is smoothed and the processing
delay of a single packet is reduced. The processing rate is not
influenced by this modification bringing an overall increase
in execution efficiency. The effects have been reviewed in
theory, required parameters have been analysed, mechanisms
to retrieve the required parameters have been invented and
implemented. The final implementation has been compared to
a state-of-the art reference design which proved that the pro-
posed method also works in real systems. This mechanism can
improve any multi-threaded pipe-and-filter based architecture.
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Fig. 6. Number of objects in the pipeline using the suggested (new) approach
(lower two graphs) compared to the reference approach (ref) for two different
average execution times for the 10 filters before the bottleneck filter. Both
systems were executed on a distributed network.
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